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ON A CONJECTURE ON ALGEBRAS THAT ARE LOCALLY
EMBEDDABLE INTO FINITE DIMENSIONAL ALGEBRAS

KIRA SAMOL AND ACHIM TRESCH

Abstract. The notion of an algebra that is locally embeddable into
finite dimensional algebras (LEF) and the notion of an LEF group was

introduced by Gordon and Vershik in [1]. M. Ziman proved in [5] that
the group algebra of a group G is an LEF algebra if and only if G is
an LEF group. He conjectured that an algebra generated as a vector
space by a multiplicative subgroup G of its invertible elements is an
LEF algebra if and only if G is an LEF group. In this paper we give a

characterization of the invertible elements of an LEF algebra and use it
to construct a counterexample to this conjecture.

Fix an arbitrary field K and consider all vector spaces and algebras as
K-vector spaces and K-algebras, respectively. An algebra A is said to be
locally embeddable into finite dimensional algebras (LEF) if for every finite
subset M of A there exists a finite dimensional algebra B and a vector space
monomorphism ϕ : [M ] → B such that ϕ(x)ϕ(y) = ϕ(xy) for all x, y ∈ M
with xy ∈M . Here, [M ] denotes the vector subspace of A generated by M . In
an analoguous manner, a group G is said to be locally embeddable into finite
groups (LEF) if for every finite subset M of G there exists a finite group H
and an injective map ϕ : M → H such that ϕ(x)ϕ(y) = ϕ(xy) for all x, y ∈M
with xy ∈ M . These notions were first introduced by E.I. Gordon and A.M.
Vershik in [1]. Gordon and Vershik raised the question whether the group
algebra A = K[G] of a group G is LEF if and only if G is LEF. This question
was answered positively by M. Ziman in [5]. He conjectured the following
generalization:

(∗) Let an algebra A be generated as a vector space by a subgroup G of its
group of (multiplicatively) invertible elements. Then A is LEF if and only if
G is LEF.

The condition that A be LEF is sufficient for G to be LEF by Corollary 1 of
[5]. The converse, however, is not true as we shall show in this note. Without
danger of confusion, the neutral element of any occurring multiplicative group
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is denoted by 1. The group of invertible elements of an algebra A is denoted
by A−1. For LEF algebras A, we give a characterization of A−1.

Proposition. In an LEF-algebra A the set of left invertible elements
equals the set of right invertible elements and thus equals A−1.

Proof. Let r, l ∈ A be such that lr = 1, and let M = {1, r, l, rl}. Then
there exists a vector space monomorphism ϕ : [M ] → B, where B is a finite
dimensional algebra, such that ϕ(x)ϕ(y) = ϕ(xy) for all x, y ∈ M with xy ∈
M . Without loss, we may assume that B is generated as an algebra by
ϕ(M). From the equations ϕ(m)ϕ(1) = ϕ(m) = ϕ(1)ϕ(m) for m ∈ M it
follows that ϕ(1) = 1 in B. In a finite dimensional algebra, left invertible
and right invertible elements are well known to be identical. In particular,
ϕ(l)ϕ(r) = ϕ(lr) = ϕ(1) = 1 implies that ϕ(l) and ϕ(r) are inverse to each
other. Hence ϕ(rl) = ϕ(r)ϕ(l) = 1 = ϕ(1). By the injectivity of ϕ, we obtain
rl = 1. �

The remainder of this paper is devoted to the construction of a counterex-
ample to conjecture (∗). Our aim is to construct a non-LEF algebra A and
an LEF subgroup G of A−1 such that A = [G]. The idea is to find an algebra
containing two elements r and l such that lr = 1 but rl 6= 1. Probably the
most straightforward candidates for r and l are the right shift and the left
shift operators on a sequence space. To be precise, let K = C be the field of
complex numbers. Let

L1 =

 v = (v1, v2, . . . ) | vj ∈C, ‖v‖1 =
∑
j∈N

|vj |<∞


be the Banach space of all absolutely convergent series in C, with addition
and scalar multiplication defined componentwise. The algebra

L =
{
T ∈ EndC(L1) , ‖T‖Op = sup{ ‖Tv‖1, v ∈ L1, ‖v‖1 = 1} <∞

}
of all continuous endomorphisms of L1, together with the operator norm ‖.‖Op,
is a Banach algebra (see [4]). Define r, l ∈ L by

r(v1, v2, . . . ) = (0, v1, v2, . . . ) and l(v1, v2, v3, . . . ) = (v2, v3, . . . )

for v = (v1, v2, . . . ) ∈ L1 (note that ‖r‖Op = ‖l‖Op = 1). Clearly lr = 1 but
rl 6= 1 since l is not injective.

The next step is to look for an LEF-group G ⊆ L−1 for which [G] contains
r and l. In L, the elements 1+ 1

2r and 1+ 1
2 l lie within the open 1-ball around

1 ∈ L, so they are invertible ([4, Theorem 10.7]). This is indeed the reason for
choosing L1 as the underlying sequence space for L. For other sequence spaces
we considered, the “obvious” choices 1 + r and 1 + l were not both invertible.
A good guess for G is the group G = 〈1 + 1

2r, 1 + 1
2 l〉 ⊆ L

−1. Here, 〈 . 〉
denotes the subgroup of a group generated by the elements enclosed in the
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brackets. The algebra [G] contains the elements r = 2 · (1 + 1
2r) − 2 · 1 and

l = 2 · (1 + 1
2 l)− 2 · 1. By the proposition, [G] is not LEF. It merely remains

to check that G is an LEF group. Unfortunately, we have been unable to do
this. Instead, we extended the above construction as follows:

Example. Let X = C(x) and Y = C(y) be the fields of rational functions
in the indeterminants x and y, respectively. Define M = X ∗ Y as the free
product of the algebras X and Y. Consider the direct product A = L ×M,
where L has been defined above. In A choose the invertible elements

x1 = (1, x) , x2 = (1 + 1
2r,

1
2 + x) , y1 = (1, y) , y2 = (1 + l

2 l,
1
2 + y) .

Let X = 〈x1, x2〉, Y = 〈y1, y2〉, and G = 〈X,Y 〉 ⊆ A−1. The groups X and Y
are abelian. Let π : A = L ×M →M be the canonical projection onto the
second component of A, let X ′ = π(X), Y ′ = π(Y ). For an element g ∈ X
there are integers n1, n2 such that g = xn1

1 xn2
2 . Thus π(g) = xn1( 1

2 + x)n2

lies within C iff n1 = n2 = 0 and g = 1. In other words, π|X : X →
X ′ is an isomorphism of free abelian groups, X ′ ⊆ X and X ′ ∩ C = {1}.
Mutatis mutandis, the same reasoning applies to Y . By the construction of
M this implies that X ′ and Y ′ together generate their free product of groups,
〈X ′, Y ′〉 = X ′ ∗ Y ′. By the universal property of free products ([3, 6.2]), the
group homomorphisms π|−1

X : X ′ → X ⊆ G and π|−1
Y : Y ′ → Y ⊆ G extend

to a homomorphism ϕ : X ′ ∗ Y ′ → G with the property ϕ|X′ = π|−1
X and

ϕ|Y ′ = π|−1
Y . The composition ϕπ : G → G induces the identity mapping on

X and Y . As G is generated by X and Y , ϕπ is the identity on G. This
implies that π is one-to-one. Clearly π is also onto X ′ ∗ Y ′, proving that G
is isomorphic to X ′ ∗ Y ′. The groups X ′ and Y ′ are residually finite, because
free abelian groups generally have this property (e.g., [3, Ex.4.2.15]). By a
theorem of Grünberg ([2, Theorem 9.14]), the free product of residually finite
groups is residually finite. It follows that X ′ ∗ Y ′ is residually finite. So G is
residually finite, which by [1] means that it is LEF.

If we now let A = [G], we have G ⊆ A−1 and the algebra A contains the
elements r̄ = 2x2− 2x1 = (2 + r, 1 + 2x)− (2, 2x) = (r, 1) and l̄ = 2y2− 2y1 =
(l, 1). So l̄r̄ = 1, but r̄l̄ 6= 1. By the proposition, A is not LEF. This shows
that conjecture (∗) is not true.

References

[1] E. I. Gordon and A. M. Vershik, Groups that are locally embeddable in the class of finite

groups, St. Petersburg Math. J. 9 (1998), 49–67. MR 98f:20025
[2] D. J. S. Robinson, Finiteness conditions and generalized soluble groups. Parts 1, 2,

Springer-Verlag, New York, 1972. MR 48 #11314

[3] , A course in the theory of groups, Graduate Texts in Mathematics, vol. 80,
Springer-Verlag, New York, 1996. MR 96f:20001

[4] W. Rudin, Functional analysis, International Series in Pure and Applied Mathematics,
McGraw-Hill Inc., New York, 1991. MR 92k:46001



944 KIRA SAMOL AND ACHIM TRESCH

[5] M. Ziman, On finite approximations of groups and algebras, Illinois J. Math. 46 (2002),
837–839. MR 2004a:20008

Kira Samol, Fachbereich 17 Mathematik, Universität Mainz, 55099 Mainz, Ger-

many

E-mail address: kira.samol@gmx.net

Achim Tresch, Fachbereich 17 Mathematik, Universität Mainz, 55099 Mainz,

Germany

E-mail address: tresch@scai.fhg.de


