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EMBEDDING OF HARDY SPACES INTO WEIGHTED
BERGMAN SPACES IN BOUNDED DOMAINS WITH C2

BOUNDARY

HONG RAE CHO AND ERN GUN KWON

Abstract. Let D be a bounded domain in Cn with C2 boundary. Let
Hp(D) be the Hardy space and Ap,α(D) be the space of holomorphic

functions which are Lp-integrable with respect to the weighted measure
dVα(z) = δD(z)α−1dV (z). We obtain some estimates on the mean
growth of Hp functions in D. Using these estimates, we can embed
the Hp(D) space into Aq,β(D) for 0 < p < q < ∞, β > 0 satisfying
n/p = (n+ β)/q. We also show that the condition of C2-smoothness of

the boundary of D is an essential condition by giving a counter-example
of a convex domain with C1,λ smooth boundary for 0 < λ < 1 which
does not satisfy the embedding result.

1. Introduction

Throughout this paper, D will be a bounded domain in Cn with C2 bound-
ary. For z ∈ D we let δD(z) denote the distance from z to ∂D. For α > 0
we define a measure dVα on D by dVα(z) = δD(z)α−1dV (z), where dV (z)
is the volume element. For 0 < p, α < ∞, we let ‖f‖p,α be the Lp-norm
with respect to the measure dVα and we define the weighted Bergman spaces
Ap,α(D) = {f holomorphic on D : ‖f‖p,α < ∞}. We will denote the usual
Hardy space Hp(D) by Ap,0(D), and the associated norm by ‖f‖p,0. We can
identify Ap,0(D) in the usual way with a subspace of Lp(∂D : dσ) (see Section
4). In this paper we consider embedding results between Ap,α(D) spaces in a
bounded domain in Cn with C2 boundary.

The next embedding result is related to a classical estimate of Hardy-
Littlewood on the growth of the means of holomorphic functions in the unit
disc ([Du, p. 87]).

Theorem 1.1. Let D be a bounded domain in C
n with C2 boundary.

Assume that 0 < p ≤ q < ∞, α, β ≥ 0, and (n + α)/p = (n + β)/q. Then
Ap,α(D) ⊂ Aq,β(D) and the inclusion is continuous.
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The case α > 0 was proved in [Be1] in general bounded domains with C2

boundary. The case α = 0 is the embedding of Hardy spaces Hp(D) into
the weighted Bergman spaces Aq,β(D). As expected, the embedding of the
Hardy space is the most difficult one. Even though Beatrous [Be1] proved the
embedding Hp(D) ⊂ Aq,β(D) for 0 < p < q < ∞ with n/p < (n + β)/q, we
can not prove the optimal embedding of the case n/p = (n+β)/q by using his
method. The optimal embedding of the case α = 0 was proved only in some
model domains such as the unit disc [Du], the unit ball [BB], and the strongly
pseudoconvex domain [Be2]. Recently, the first author proved the case α = 0
in the case of a convex domain of finite type [Ch]. The key point in the proof
is the reproducing kernel with right estimate matching quasimetric on ∂D.
Usually we study the behavior of holomorphic functions in terms of the basic
invariant objects attached to the domain: the Bergman kernel and its metric,
the Szegö kernel, and the Poisson-Szegö kernel, all of which naturally take into
account simple geometric considerations. However, in general domains not
enough is known about these domain functions and so we must use a different
approach. Stein [St2] introduced the boundary behavior of Hp-functions in
general bounded domains in Cn with C2 boundary, without making use of any
assumptions of pseudo-convexity. In our proofs we overcome the difficulty by
using the Fatou theorem forHp-functions proved by Stein [St2] and the growth
space A−σ(D) introduced by Korenblum ([Ko1], [Ko2]).

In Section 6 we observe that the assumption of C2-smoothness of the
boundary of D is an essential condition for the study of the behavior of holo-
morphic functions in a general bounded domain. We give a counter-example
of a convex domain with C1,λ smooth boundary for 0 < λ < 1 which does not
satisfy our embedding results. Here a C1,λ-function is a function whose first
derivatives are Lipschitz continuous of order λ. The counter-example shows
that even a small loss of derivatives of the boundary is not permitted for the
sharp embedding in Theorem 1.1.

Acknowledgements. The first author was supported by the Korea Re-
search Foundation Grant (KRF-2001-015-DP0018). The second author was
supported by grant No. R01-2000-000-00001-0 from the Basic Research Pro-
gram of the Korea Science & Engineering Foundation. The authors would like
to express their sincere gratitude to the referee for helpful comments. The
referee remarked that Theorem 4.3 and its proof have nothing to do with
holomorphicity.

2. Growth spaces A−σ(D)

It is well-known that

|f(z)| ≤ (1− |z|2)−(n+α)/p‖f‖p,α, f ∈ Ap,α(Bn), z ∈ Bn,
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where Bn is the unit ball (see [Ru], [Vu]). For a general bounded domain D
with C2 boundary, the same sharp estimates hold for Ap,α(D) functions. For
the convenience of the reader we give here a proof. In [CK] we proved that the
assumption of C2-smoothness of the boundary of D is an essential condition
for the growth estimates in Lemma 2.1.

Lemma 2.1. Let α ≥ 0 and 0 < p <∞. Then we have

sup{δD(z)(n+α)/p|f(z)| : z ∈ D} . ‖f‖p,α for f ∈ Ap,α(D).

Proof. For p0 ∈ D sufficiently near ∂D, we translate and rotate the coor-
dinate system so that z(p0) = 0 and the Im z1 axis is perpendicular to ∂D.
Let Bε(p0) denote the non-isotropic ball

Bε(p0) =

{
|z1|2

(εδD(p0))2
+

n∑
2

|zj |2

εδD(p0)
< 1

}
.

Since ∂D is C2, it follows that there is an ε0 > 0 such that for p0 sufficiently
near ∂D and z ∈ Bε0(p0) we have z ∈ D and

δD(p0)
2

≤ δD(z) ≤ 2δD(p0)(2.1)

(see [Be1]). Let 0 < p < ∞ and α > 0. Let f ∈ Ap,α(D). Since the
plurisubharmonicity of |f |p is invariant under the affinity

(z1, z2, . . . , zn)→

(
z1

ε0δD(po)
,

z2√
ε0δD(p0)

, . . . ,
zn√

ε0δD(p0)

)
,

it follows that

|f(p0)|p . 1
Vol(Bε0(p0))

∫
Bε0 (p0)

|f(z)|pdV (z)(2.2)

.
1

(ε0δD(p0))n+1

∫
Bε0 (p0)

|f(z)|pdV (z).

By (2.1) and (2.2), it follows that

|f(p0)| . δD(p0)−(n+α)/p‖f‖p,α.

Parameterizing ∂D locally by x1, z2, . . . , zn, we let B̃ε0(p0) denote the non-
isotropic ball on ∂D:

B̃ε0(p0) =

z ∈ ∂D :
|x1|2

(ε0δD(p0))2
+

n∑
j=2

|zj |2

ε0δD(p0)
< 1

 .

For any u ∈ Lp(∂D) we denote by Λu the Hardy-Littlewood maximal function
of u:

Λu(z) = sup
ε>0

1
σ(B̃ε(z))

∫
B̃ε(z)

|u|dσ.
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Let f ∈ Ap,0(D). For 1 < p < ∞ we let f∗ be a boundary value function
in Lp(∂D). For z ∈ Bε0(p0) we let π(z) denote the projection of z onto ∂D.
Then it follows that

|f(z)| ≤ CΛf∗(π(z)) for z ∈ Bε0(p0).

From (2.2) we obtain that

|f(p0)|p . 1
δD(p0)n+1

∫
Bε0(p0)

|f(z)|pdV (z)(2.3)

.
1

δD(p0)n+1

∫
Bε0(p0)

Λf∗(π(z))pdV (z)

.
1

δD(p0)n+1

∫
B̃ε0(p0)

∫ 2δD(p0)

δD(p0)/2

Λf∗(ζ)pdtdσ(ζ)

.
1

δD(p0)n
‖Λf∗‖pLp(∂D)

.
1

δD(p0)n
‖f‖pp,0.

If 0 < p ≤ 1, we apply the estimate (2.3) above to the function |f |1/s,
where s is a large positive number, and with p replaced by sp, and obtain the
required inequality in this case as well. �

For any σ > 0, the space A−σ(D) consists of holomorphic functions f in D
such that

‖f‖−σ = sup{δD(z)σ|f(z)| : z ∈ D} <∞.

It is easy to verify that A−σ(D) is a Banach space with the norm defined
above. Each space A−σ(D) clearly contains all the bounded holomorphic
functions. The growth spaces A−σ were introduced by Korenblum (see [Ko1]
and [Ko2]) in the unit disc case.

For 0 < p <∞ and α ≥ 0 we define

Ap,α−σ (D) = Ap,α(D) ∩A−σ(D).

Then Ap,α−σ (D) is a Banach space with the norm defined by

‖f‖p,α,−σ = max{‖f‖p,α, ‖f‖−σ}.

Applying Lemma 2.1, we get the following result.

Proposition 2.2. Let 0 < p <∞ and α ≥ 0. Then we have

Ap,α−(n+α)/p(D) = Ap,α(D).
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3. Inclusion relations between weighted Bergman spaces

Let α > 0 and 0 < p ≤ q <∞. Then∫
D

|f |qdVα+σ(q−p) =
∫
D

|f |p|f |q−pδα−1δσ(q−p)dV(3.1)

≤
(∫

D

|f |pdVα
)

(sup δσ|f |)q−p .

By (3.1), we have that

‖f‖q,α+σ(q−p) ≤ ‖f‖p/qp,α‖f‖
1−p/q
−σ

≤ ‖f‖p,α + ‖f‖−σ
. ‖f‖p,α,−σ.

Hence it follows that

Ap,α−σ (D) ⊂ Aq,α+σ(q−p)(D).

If we choose σ = (n + α)/p, by Proposition 2.2, we obtain the following
result.

Theorem 3.1. Assume that 0 < p ≤ q < ∞, α, β > 0, and (n + α)/p =
(n+ β)/q. Then Ap,α(D) ⊂ Aq,β(D) and the inclusion is continuous.

Theorem 3.1 above was proved by Beatrous in [Be1] by a different method.

4. Embedding of Hardy spaces

Let N be a real vector field in a neighborhood of ∂D which agrees with the
outward unit normal vector field on ∂D. For z ∈ ∂D and t > 0 sufficiently
small, say 0 < t < δ0, the integral curve for N through z has a unique
intersection point with the hypersurface {z ∈ D : δD(z) = t}. We denote this
intersection point by zt.

For any function f on D we define ft on ∂D by ft(z) = f(zt) for z ∈ ∂D.
For f ∈ Ap,0(D) we have that

‖f‖p,0 ' sup
0<t<δ0

(∫
∂D

|ft|pdσ
)1/p

.

Let θ > 0, z ∈ ∂D. Let νz be the unit outward complex normal vector at
z. Define

Aθ(z) = {ζ ∈ D : |(ζ − z) · ν̄z| < (1 + θ)δz(ζ), |z − ζ|2 < θδz(ζ)},

where δz(ζ) is the minimum of the distance from ζ to ∂D and from ζ to the
tangent plane at z.
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Definition 4.1. We say that f has an admissible limit at z, z ∈ ∂D, if

lim
Aθ(z)3ζ→z

f(ζ) exists, for all θ > 0.

Theorem 4.2 ([St2]). Let f ∈ Hp(D), p > 0. Then f has admissible
limits at almost every boundary point and∫

z∈∂D
sup

ζ∈Aθ(z)

|f(ζ)|pdσ(z) ≤ Cθ,p‖f‖pp,0.

For 0 ≤ σ <∞ we define the function Mσ
θ f(z) on ∂D by

Mσ
θ f(z) = sup{δD(ζ)σ|f(ζ)| : ζ ∈ Aθ(z) ∩ (D \Dδ0)},

where Dδ0 = {z ∈ D : δD(z) > δ0}.
Note that

Mσ
θ f(z) ≤ δσ0M0

θf(z)(4.1)

and ∫
∂D

M0
θf(z)pdσ . ‖f‖pp,0.(4.2)

The following estimates on the mean growth of Hp(D) functions were
proved in [KK] for the case of the unit disc.

Theorem 4.3. Let 0 < p, q, s < ∞, 0 < α < q, σ > 0, and (q − p)s ≤ p.
Let γ = pαs/(p− (q − α)s). Let u be a non-negative function on D such that
M0

θu ∈ Lp(∂D) and Mσ
θu ∈ Lγ(∂D). Then we have∫

∂D

(∫ δ0

0

ut(z)qtασ−1dt

)s
dσ . ‖M0

θu‖
(q−α)s
Lp(∂D)‖M

σ
θu‖αsLγ(∂D).

Proof. Let z ∈ ∂D. First we suppose that 0 <M0
θu(z) < ∞. From (4.1)

it follows that

0 <
Mσ

θu(z)
M0

θu(z)
≤ δσ0 .

Take

t0(z) =
(
Mσ

θu(z)
M0

θu(z)

)1/σ

.

Then we have∫ δ0

0

ut(z)qtασ−1dt ≤M0
θu(z)q

∫ t0(z)

0

tασ−1dt(4.3)

+Mσ
θu(z)q

∫ δ0

t0(z)

tσ(α−q)−1dt.
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We note that ∫ t0(z)

0

tασ−1dt =
1
ασ

(
Mσ

θu(z)
M0

θu(z)

)α
(4.4)

and ∫ δ0

t0(z)

tσ(α−q)−1dt =
1

σ(α− q)

{
δ
σ(α−q)
0 − t0(z)σ(α−q)

}
(4.5)

≤ 1
σ(q − α)

(
Mσ

θu(z)
M0

θu(z)

)α−q
.

By (4.3), (4.4), and (4.5), it follows that∫ δ0

0

ut(z)qtασ−1dt .M0
θu(z)q−αMσ

θu(z)α.(4.6)

Indeed, the inequality (4.6) is trivial if M0
θu(z) = ∞. Now suppose that

M0
θu(z) = 0. Since zt ∈ Aθ(z) ∩ (D \Dδ0), we have in this case ut(z) = 0 for

0 < t < δ0. Thus (4.6) holds for every z ∈ ∂D.
By Hölder’s inequality, we have∫

∂D

M0
θu(z)s(q−α)Mσ

θu(z)sαdσ .
(∫

∂D

M0
θu(z)pdσ

)(q−α)s/p

(4.7)

×
(∫

∂D

Mσ
θu(z)γdσ

)αs/γ
.

By (4.2), (4.6), and (4.7), it follows that∫
∂D

(∫ δ0

0

ut(z)qtαq−1dt

)s
dσ . ‖M0

θu‖
(q−α)s
Lp(∂D)‖M

σ
θu‖αsLγ(∂D). �

Corollary 4.4. Let σ > 0 and 0 < p ≤ q <∞. Then we have

Ap,0−σ(D) ⊂ Aq,σ(q−p)(D).

Proof. We note that

‖Mσ
θ f‖L∞(∂D) = sup

z∈∂D
sup{δD(ζ)σ|f(ζ)| : ζ ∈ Aθ(z) ∩ (D \Dδ0)}

≤ sup{δD(ζ)σ|f(ζ)| : ζ ∈ D \Dδ0}
≤ ‖f‖−σ.

We choose α = q − p and s = 1 in Theorem 4.3. Then it follows that∫
∂D

(∫ δ0

0

|ft(z)|qt(q−p)σ−1dt

)
dσ . ‖f‖qp,0,−σ.
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Hence we have ∫
D\Dδ0

|f |qdVσ(q−p) . ‖f‖qp,0,−σ.

Since |f |q is subharmonic, it follows that∫
Dδ0

|f |qdVσ(q−p) .
∫
D\Dδ0

|f |qdVσ(q−p).

Thus we have the result. �

If we choose σ = n/p in Corollary 4.4 and apply Proposition 2.2, we obtain
the following result.

Corollary 4.5. Let 0 < p ≤ q <∞, β ≥ 0, and n/p = (n+ β)/q. Then
Ap,0(D) ⊂ Aq,β(D) and the inclusion is continuous.

Theorem 1.1 is a consequence of Theorem 3.1 and Corollary 4.5.

5. A counter-example

In this section we observe that the assumption of C2-smoothness of the
boundary of D is an essential condition for the sharp embedding of Theorem
1.1 in a general bounded domain. Let Cm,λ be the space of Cm-functions
whose m-th derivatives are Lipschitz continuous of order λ.

Lemma 5.1. Let u(z) = |z|m+λ be a function in one complex variable
z = x+ iy ∈ C, where m is a non-negative integer and 0 < λ < 1. Let R > 0.
Then u ∈ Cm,λ(DR(0)), but u /∈ Cm,ν(DR(0)), where λ < ν ≤ 1.

Proof. For 0 ≤ |α| ≤ m we have

Dαu(z) = Pα(x, y)|z|m+λ−2|α|,

where Pα(x, y) is a homogeneous polynomial of degree |α| in x and y. Hence
it follows that

|Dαu(z)| ≤ Kα|z|λ, z ∈ DR(0),

and so u ∈ Cm,λ(DR(0)).
For |α| = m we have

|Dαu(x)−Dαu(0)|
|x− 0|ν

=
|Pα(x, 0)||x|λ−m

|x|ν

= K ′α
1

|x|ν−λ
.

Thus u /∈ Cm,ν(DR(0)) when λ < ν ≤ 1. �
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Example 5.2. We consider the domain defined by

D = {(z1, z2) ∈ C2 : |z1|2 + |z2|1+λ < 1}, where 0 < λ < 1.

Applying Lemma 5.1, we see that D is a bounded convex domain with C1,λ

boundary, but it has no C2 boundary.
Let 0 < p ≤ q <∞, α, β ≥ 0, and (n+ α)/p = (n+ β)/q. Let f(z1, z2) be

a branch of (1− z1)−d on D̄, where (1 + 2/(1 + λ) + β)/q < d < (1 + 2/(1 +
λ) + α)/p. We will prove that

f ∈ Ap,α(D), but f /∈ Aq,β(D).

These two facts imply that Ap,α(D) cannot be embedded into Aq,β(D).
First we consider the case α = 0. Set r(z1) = (1−|z1|2)1/(1+λ). By Fubini’s

theorem, we have∫
∂D

dσ

|1− z1|dp

=
∫
|z1|<1

dA

|1− z1|dp

×
∫
|z2|=r(z1)

(
1 +

(
2

1 + λ

)2

(1− |z1|2)2/(1+λ)−2|z1|2
)1/2

ds

.
∫
|z1|<1

dA

|1− z1|dp

∫
|z2|=r(z1)

(1− |z1|2)1/(1+λ)−1|z1|ds

.
∫
|z1|<1

(1− |z1|2)2/(1+λ)−1

|1− z1|dp
dA

= lim
r→1−

∫
|z1|<1

(1− |z1|2)2/(1+λ)−1

|1− rz1|dp
dA

' lim
r→1−

1
(1− r2)dp−1−2/(1+λ)

<∞,

since dp− 1− 2/(1 + λ) < 0. Hence f ∈ Ap,0(D).
Since D is a Lipschitz domain, we have

1− |z1|2 − |z2|1+λ ' δD(z1, z2) for (z1, z2) ∈ D(5.1)

(see Lemma 2 in [St1], Section 3.2.1 of Chapter VI).
By (5.1), it follows that∫

D

1
|1− z1|dq

dVβ '
∫
|z1|<1

dA

|1− z1|dq

×
∫
|z2|<r(z1)

(1− |z1|2 − |z2|1+λ)β−1dA.
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We now estimate the integral

I(z1) =
∫
|z2|<r(z1)

(1− |z1|2 − |z2|1+λ)β−1dA.

Changing to polar coordinates, we have

I(z1) '
∫ r(z1)

0

(1− |z1|2 − r1+λ)β−1rdr

'
∫ 1−|z1|2

0

(1− |z1|2 − s)β−1s2/(1+λ)−1ds

' (1− |z1|2)2/(1+λ)+β−1

∫ 1

0

(1− τ)β−1τ2/(1+λ)−1dτ.

Note that ∫ 1

0

(1− τ)β−1τ2/(1+λ)−1dτ = B

(
2

1 + λ
, β

)
,

where B(·, ·) is the beta function. Hence we have∫
D

1
|1− z1|dq

dVβ '
∫
|z1|<1

(1− |z1|2)2/(1+λ)+β−1

|1− z1|dq
dA

= lim
r→1−

∫
|z1|<1

(1− |z1|2)2/(1+λ)+β−1

|1− rz1|dq
dA

' lim
r→1−

1
(1− r2)dq−2/(1+λ)−β−1

=∞,

since dq − 2/(1 + λ)− β − 1 > 0. Thus f /∈ Aq,β(D).
By similar calculations as above, we see that in the case α > 0 we also have

f ∈ Ap,α(D), but f /∈ Aq,β(D)

for (1 + 2/(1 + λ) + β)/q < d < (1 + 2/(1 + λ) + α)/p.
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