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MINIMAL LAGRANGIAN SUBMANIFOLDS IN THE
COMPLEX HYPERBOLIC SPACE

ILDEFONSO CASTRO, CRISTINA R. MONTEALEGRE, AND FRANCISCO

URBANO

Abstract. In this paper we construct new examples of minimal La-
grangian submanifolds in the complex hyperbolic space with large sym-

metry groups, obtaining three 1-parameter families with cohomogene-
ity one. We characterize these submanifolds as the only minimal La-
grangian submanifolds in CHn that are foliated by umbilical hypersur-
faces of Lagrangian subspaces RHn of CHn. By suitably generalizing
this construction, we obtain new families of minimal Lagrangian sub-
manifolds in CHn from curves in CH1 and (n− 1)-dimensional minimal
Lagrangian submanifolds of the complex space forms CPn−1, CHn−1

and C
n−1. We give similar constructions in the complex projective

space CPn.

1. Introduction

Special Lagrangian submanifolds of the complex Euclidean space Cn (or of
a Calabi-Yau manifold) have been studied widely over the last few years. For
example, A. Strominger, S.T. Yau and E. Zaslow [SYZ] proposed an expla-
nation of mirror symmetry of a Calabi-Yau manifold in terms of the moduli
spaces of special Lagrangian submanifolds. These submanifolds are volume
minimizing and, in particular, are minimal submanifolds. Furthermore, any
oriented minimal Lagrangian submanifold of Cn (or a Calabi-Yau manifold) is
a special Lagrangian submanifold with respect to one of the 1-parameter fam-
ilies of special Lagrangian calibrations which this kind of Kaehler manifolds
has (see [HL, Proposition 2.17]).

A very important problem here is to find non-trivial examples of special
Lagrangian submanifolds (i.e., oriented minimal Lagrangian submanifolds).
In [HL] R. Harvey and H.B. Lawson constructed the first examples in Cn,
and, in particular, the Lagrangian catenoid ([HL, Example III.3.B]). More
recently, D.D. Joyce ([J1], [J2], [J3], [J4]) and M. Haskins [H] have developed
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methods for constructing important families of special Lagrangian submani-
folds of Cn. We are particularly interested in examples with large symmetry
groups (see [J1]), i.e., submanifolds which are invariant under the action of
certain subgroups of the isometries group of Cn.

Using some ideas from the above-mentioned papers, we construct examples
of minimal Lagrangian submanifolds of the complex hyperbolic space CHn

with large symmetry groups. In particular, we consider the groups of isome-
tries of the sphere Sn−1, the real hyperbolic space RHn−1, and the Euclidean
space Rn−1, which we denote by SO(n), SO1

0(n) and SO(n− 1) ∝ R
n−1,

respectively, acting on CHn as holomorphic isometries (see Section 2.1). In
Theorems 1, 2 and 3 we classify the minimal Lagrangian submanifolds of CHn

that are invariant under the groups SO(n), SO1
0(n) and SO(n−1) ∝ Rn−1,

respectively. In each of these theorems we obtain a 1-parameter family of
minimal Lagrangian submanifolds M in CHn with cohomogeneity one, i.e.,
such that the orbits of the symmetry group are of codimension one in M .
In particular, M is foliated by a 1-parameter family of orbits parameterized
by s ∈ R , which are, respectively, geodesic spheres, tubes over hyperplanes,
and horospheres (i.e., umbilical hypersurfaces) of Lagrangian subspaces RHn

s

of CHn. In Theorem 4 we characterize the above examples as the only mi-
nimal Lagrangian submanifolds of CHn foliated by umbilical hypersurfaces
of Lagrangian subspaces RHn of CHn. A similar result characterizing the
Lagrangian catenoid in Cn was proved in [CU2].

Following an idea given independently in [H, Theorem A], [J1, Theorem 6.4]
and [CU2, Remark 1] (see Remark 1 in the latter paper for details), we con-
struct, in Propositions 3 and 4, families of minimal Lagrangian submanifolds
of CHn from curves in CH1 and (n−1)-dimensional minimal Lagrangian
submanifolds of the complex space forms CPn−1, CHn−1 and Cn−1. The
examples described in Theorems 1, 2 and 3 are the simplest examples of this
construction.

In Theorem 5 and Proposition 6 we obtain similar results in the complex
projective space CPn. In this case, there are fewer families of minimal La-
grangian submanifolds since there is only one family of umbilical hypersurfaces
of the Lagrangian subspaces RPn of CPn, namely the geodesic spheres. We
will focus on the case of CHn in this paper since the results and proofs are
far more difficult in this case.

2. Preliminaries

2.1. The complex hyperbolic space. In this paper we will consider
the following model for the complex hyperbolic space. In Cn+1 we define the
Hermitian form (, ) by

(z, w) =
n∑
i=1

ziw̄i − zn+1w̄n+1
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for z, w ∈ Cn+1, where z̄ stands for the conjugate of z. If

H
2n+1
1 =

{
z ∈ Cn+1 | (z, z) = −1

}
is the anti-de Sitter space, then < (, ) (where < denotes the real part) induces
on H2n+1

1 a Lorentzian metric of constant curvature −1. Letting (CHn =
H

2n+1
1 /S1, 〈, 〉) denote the complex hyperbolic space of constant holomorphic

sectional curvature −4, we have

CH
n =

{
Π(z) = [z] | z = (z1, . . . , zn+1) ∈ H2n+1

1

}
,

where Π : H2n+1
1 → CH

n is the Hopf projection. The metric < (, ) becomes Π
in a pseudo-Riemannian submersion. The complex structure of Cn+1 induces,
via Π, the canonical complex structure J on CHn. The Kähler two–form Ω
in CHn is defined by Ω(u, v) = 〈Ju, v〉. We recall that CHn has a smooth
compactification CHn ∪ S2n−1(∞), where S2n−1(∞) = π(N ),

N = {z ∈ Cn+1 − {0} | (z, z) = 0},

and π : N → S
2n−1(∞) is the projection given by the natural action of C∗

over N .
Moreover, in the paper we will denote by CPn the n-dimensional complex

projective space endowed with the Fubini-Study metric of constant holomor-
phic sectional curvature 4, and by Π : S2n+1 → CP

n the Hopf fibration
from the (2n+1)-dimensional unit sphere S2n+1. We also denote the complex
structure and the Kähler two-form in CPn by J and Ω, respectively.

If U1(n+1) is the group preserving the Hermitian form (, ), then

U1(n+1) = {A ∈ GL(n+1,C) | ĀtSA = S},

where

S =

(
In
−1

)
,

with In the identity matrix of order n. Then PU1(n+ 1) = U1(n+ 1)/S1 is
the group of the holomorphic isometries of (CHn, 〈, 〉).

Throughout this paper we will work with the special orthogonal group
SO(n), the identity component of the indefinite special orthogonal group
SO1

0(n), and the group of isometries of the Euclidean (n−1)-space SO(n−1) ∝
R
n−1. These groups act on CHn as subgroups of holomorphic isometries as

follows:

A ∈ SO(n) 7−→

[(
A

1

)]
∈ PU1(n+ 1),

A ∈ SO1
0(n) 7−→

[(
1

A

)]
∈ PU1(n+ 1),
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(A, a) ∈ SO(n− 1) ∝ Rn−1 7−→


 A Aat Aat

−a 1− |a|2/2 −|a|2/2
a |a|2/2 1 + |a|2/2




∈ PU1(n+ 1),

where a = (a1, . . . , an−1). Here [ ] stands for the class in U1(n+ 1)/S1.

2.2. Lagrangian submanifolds in CHn. Let φ be an isometric immer-
sion of a Riemannian n-manifold M in CHn (resp. CPn). φ is called La-
grangian if φ∗Ω ≡ 0. We denote the Levi-Civita connection of M and the
connection on the normal bundle by ∇ and ∇⊥, respectively. The second
fundamental form is denoted by σ. If φ is Lagrangian, the formulas of Gauss
and Weingarten lead to

∇⊥XJY = J∇XY,

and the trilinear form 〈σ(X,Y ), JZ〉 is totally symmetric for any tangent
vector fields X, Y and Z.

If φ : M −→ CH
n (resp. CPn) is a Lagrangian immersion of a simply

connected manifold M , then φ has a horizontal lift with respect to the Hopf
fibration to H2n+1

1 (resp. S2n+1), which is unique up to isometries. We denote
this horizontal lift by φ̃. We note that only Lagrangian immersions in CHn

(resp. CPn) have (locally) horizontal lifts. Horizontal immersions from n-
manifolds in H2n+1

1 (resp. S2n+1) are called Legendrian immersions (see [H]).
Thus we can paraphrase the above reasoning as follows: Lagrangian immer-
sions in CHn (resp. CPn) are locally projections of Legendrian immersions
in H2n+1

1 (resp. S2n+1).
If H is the mean curvature vector of the immersion φ : M −→ CH

n, then
φ is called minimal if H = 0. Minimality means that the submanifold is
critical for compact supported variations of the volume functional. In [O], the
second variation of the volume functional was studied for minimal Lagrangian
submanifolds of Kaehler manifolds. Among other things, it was proved that
minimal Lagrangian submanifolds in CHn are stable and without nullity.

Let 〈〈, 〉〉 be the restriction of (, ) to Rn+1 ≡ <Cn+1. The real hyperbolic
space RHn endowed with its canonical metric of constant sectional curvature
−1 is defined as the following hypersurface of (Rn+1, 〈〈, 〉〉):

RH
n = {x ∈ Rn+1 | 〈〈x, x〉〉 = −1, xn+1 ≥ 1}.

We recall that RHn has also a smooth compactification RHn ∪ Sn−1(∞),
where Sn−1(∞) = π(N ), with N = {x ∈ Rn+1 − {0} | 〈〈x, x〉〉 = 0} the
light cone and π the projection given by the natural action of R∗ over N . In
addition, SO1

0(n+ 1) is a group of isometries of (RHn, 〈〈, 〉〉).
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RH
n can be isometrically embedded in CHn as a totally geodesic La-

grangian submanifold in the standard way, via the map

x ∈ RHn 7→ [x] ∈ CHn.

Moreover, up to congruences, RHn is the only totally geodesic Lagrangian
submanifold of CHn. We also point out (for later use in Section 4) that
the totally umbilical submanifolds of CHn (which were classified in [ChO])
are either totally geodesic or umbilical submanifolds of totally geodesic La-
grangian submanifolds. Thus, up to congruences, the (n − 1)-dimensional
totally umbilical (non-totally geodesic) submanifolds of CHn are the umbil-
ical hypersurfaces of RHn embedded in CHn in the above manner. Up to
congruences, the umbilical hypersurfaces of RHn can be described as follows:

(1) Geodesic spheres. Given r > 0, let ψ : Sn−1 → RH
n be the embed-

ding given by

ψ(x) = (sinh r x, cosh r) .

Then ψ(Sn−1) is the geodesic sphere of RHn of center (0, . . . , 0, 1)
and radius r.

(2) Tubes over hyperplanes. Given r > 0, let ψ : RHn−1 → RH
n be the

embedding given by

ψ(x) = (sinh r, cosh r x) .

Then ψ(RHn−1) is the tube to distance r over the hyperplane dual
to (1, 0, . . . , 0).

(3) Horospheres. Let ψ : Rn−1 → RH
n be the embedding given by

ψ(x) =
(
x,
|x|2

2
,
|x|2

2
+ 1
)
.

Then ψ(Rn−1) is a horosphere of RH
n with infinity point

π(0, . . . , 0, 1, 1).

We will refer to these examples as (n − 1)-geodesic spheres, (n − 1)-tubes
over hyperplanes and (n− 1)-horospheres of CHn.

3. Examples of minimal Lagrangian submanifolds with symmetries

In this section we describe the minimal Lagrangian submanifolds of CHn

that are invariant under the actions of SO(n), SO1
0(n), and SO(n−1) ∝ Rn−1,

as subgroups of the isometries of CHn given in Section 2.1. These manifolds
may be regarded as the simplest examples of minimal Lagrangian submani-
folds.
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3.1. Examples invariant under SO(n).

Theorem 1. For any ρ > 0 there exists a minimal (non-totally geodesic)
Lagrangian embedding

Φρ : R × Sn−1 −→ CH
n

defined by

Φρ(s, x) =
[(

sinh r(s) exp
(
ia

∫ s

0

dt

sinhn+1 r(t)

)
x,

cosh r(s) exp
(
ia

∫ s

0

tanh2 r(t) dt
sinhn+1 r(t)

))]
,

where r(s), s ∈ R , is the unique solution to

(1) r′′ sinh r cosh r = (1− (r′)2)(sinh2 r + n cosh2 r), r(0) = ρ, r′(0) = 0,

and a = cosh ρ sinhn ρ.
The map Φρ is invariant under the action of SO(n) and satisfies∫

R×Sn−1
|σ|ndv <∞,

where dv is the canonical measure of the complete induced metric ds2 +
sinh2 r(s)g0, with g0 the canonical metric of the unit sphere Sn−1.

Moreover, any minimal (non-totally geodesic) Lagrangian immersion in
CH

n that is invariant under the action of SO(n), n ≥ 3, is congruent to an
open subset of one of the above submanifolds.

Proof. We begin with the analysis of the differential equation (1). The
energy integral of (1) is given by

(1− (r′)2) cosh2 r sinh2n r = constant,

which is equivalent to

(r′)2 +
ch2
ρ sh2n

ρ

cosh2 r sinh2n r
= 1,

where chρ = cosh ρ and shρ = sinh ρ.
By the qualitative theory of ordinary differential equations, for any initial

condition ρ = r(0) > 0, there exists a unique solution r(s) to (1), defined
on the whole space R . This will be the only absolute minimum of r(s) and
r(−s) = r(s) for s ∈ R .

It is easy to prove that Φρ is a Lagrangian immersion that is invariant
under the action of SO(n). The induced metric ds2+sinh2 r(s)g0 is a complete
metric, since sinh2 r(s) ≥ sinh2 ρ. We consider the orthonormal frame for this
metric given by

e1 = ∂s, ej =
vj

sinh r
, j = 2, . . . , n,
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where {v2, . . . , vn} is an orthonormal frame of (Sn−1, g0), and we compute
the second fundamental form σ of Φρ:

σ(e1, e1) = − (n− 1)Je1

sinhn+1 r
, σ(e1, ej) =

Jej

sinhn+1 r
, σ(ej , ek) =

δjkJe1

sinhn+1 r
.

Using this, it is not difficult to prove that Φρ is minimal, and a computation
shows that∫

R×Sn−1
|σ|ndv = 2((n+ 2)(n− 1))n/2cn−1

∫ +∞

0

ds

sinhn
2+1 r(s)

,

where cn−1 denotes the volume of (Sn−1, g0). Making the change of variable
t = sinh r(s), we get∫ +∞

0

ds

sinhn
2+1 r(s)

=
∫ +∞

sinh ρ

dt

tn2−n+1
√
t2n+2 + t2n − ch2

ρ sh2n
ρ

.

The latter integral is a hyperelliptic integral, and we can establish its conver-
gence using numerical methods.

We next show that Φρ is an embedding. Suppose Φρ(s, x) = Φρ(ŝ, x̂). Then
there exists θ ∈ R such that the horizontal lift Φ̃ρ of our immersion verifies

Φ̃ρ(ŝ, x̂) = eiθΦ̃ρ(s, x).

From the definition of Φρ we deduce that r(ŝ) = r(s), and so we have ŝ = ±s.
If ŝ = s, then necessarily x̂ = x. But if ŝ = −s, we get

x̂ = exp
(

2i
∫ s

0

dt

cosh2 r(t) sinhn+1 r(t)

)
x.

Using a similar reasoning as above, we can check that the increasing function

s→ 2
∫ s

0

dt

cosh2 r(t) sinhn+1 r(t)

is strictly less than π. Since the coordinates of x and x̂ are real numbers, it
follows that the case ŝ = −s is impossible. Hence Φρ must be an embedding.

Conversely, let φ : M −→ CH
n be a non-totally geodesic minimal La-

grangian immersion that is invariant under the action of SO(n), and let φ̃
be a local horizontal lift of φ to H2n+1

1 . Let p be any point of M and let
z = (z1, . . . , zn+1) = φ̃(p). As φ is invariant under the action of SO(n), for
any matrix A in the Lie algebra of SO(n) the curve s→ [zesÂ] with

Â =

(
A

0

)
lies in the submanifold. Thus its tangent vector at s = 0 satisfies

Π∗(zÂ+ (zÂ, z)z) ∈ φ∗(TpM).
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Since φ is Lagrangian, this implies that

=(zÂB̂z̄t) = 0

for any n-matrixes A and B in the Lie algebra of SO(n). Since n ≥ 3 this
easily implies that <(z1, . . . , zn) and =(z1, . . . , zn) must be linearly dependent.
As SO(n) acts transitively on Sn−1, we obtain that z is in the orbit (under
the action of SO(n) described above) of the point (a+ ib, 0, . . . , 0, zn+1), with
a2 + b2 = |zn+1|2− 1. This implies that locally φ̃ is the orbit under the action
of SO(n) of a curve in H3

1 ≡ H2n+1
1 ∩ {z2 = · · · = zn = 0}. Therefore M is

locally I × Sn−1, with I an interval in R , and the lift φ̃ : I × Sn−1 → H
2n+1
1

is given by
φ̃(s, x) = (γ1(s)x, γ2(s)),

where γ(s) = (γ1(s), γ2(s)) is a horizontal curve in H3
1. Since the curve γ in

H
3
1 is horizontal, we can find real functions r = r(s) > 0 and f = f(s), such

that

γ(s) =
(

sinh r(s) exp
(
i

∫ s

s0

f(t)dt
)
,

cosh r(s) exp
(
i

∫ s

s0

f(t) tanh2 r(t)dt
))

,

with s0 ∈ I. Using the fact that φ is a minimal immersion, we can determine
the functions f and r. After a long, but straightforward computation, one
can prove that the immersion φ is minimal if and only if f and r satisfy

(2) fr′′ tanh r = f3 tanh2 r (n+ tanh2 r) + (n+ 1)(r′)2f + f ′r′ tanh r.

If r is constant, then necessarily f ≡ 0 and γ degenerates into a point.
In order to analyze equation (2) in the remaining non-trivial case, we as-

sume that γ is parameterized by the arc, i.e., |γ′| = 1. By computing |γ′|, we
get

(r′)2 + f2 tanh2 r = 1.

Differentiating this equation and applying it to (2), we can simplify equation
(2) to

(n+ 1)fr′ + f ′ tanh r = 0.

If f ≡ 0, then r(s) is a linear map, which leads to the totally geodesic case.
The general solution to the above equation is

f(s) =
a

sinhn+1 r(s)
, a > 0.

It follows that r(s) must satisfy the equation

(r′)2 +
a2

cosh2 r sinh2n r
= 1.
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The solutions to this differential equation are defined in whole space R and
have only one critical point. Therefore we can take s0 = 0 in the definition
of γ and assume that r′(0) = 0, after a translation of the parameters. Thus
a2 = cosh2 r(0) sinh2n r(0), and r is therefore a solution to (1). �

We observe that for each s ∈ R , Φρ({s} × Sn−1) is a geodesic sphere of
radius r(s) and center [(0, . . . , 0, 1)] in the Lagrangian subspace RHn

s of CHn

defined by

RH
n
s =

{
[(x1, . . . , xn+1)A(s)] | xi ∈ R ,

n∑
i=1

x2
i − x2

n+1 = −1 , xn+1 ≥ 1
}
,

where A(s) is the matrix of U1(n+ 1) defined by

A(s) =

(
eia(s)In

eib(s)

)
,

with

a(s) =
∫ s

0

dt

sinhn+1 r(t)
, b(s) =

∫ s

0

tanh2 r(t) dt
sinhn+1 r(t)

.

Moreover, if s 6= s′, then RHn
s ∩ RHn

s′ = [(0, . . . , 0, 1)]. Hence {Φ({s} ×
S
n−1) , s ∈ R } defines a foliation on the minimal Lagrangian submanifold by

(n− 1)-geodesic spheres of CHn.
In a more general context, we can classify pairs of Lagrangian subspaces of

CH
n intersecting only in a point as follows (compare with Proposition 6.2 in

[J1]).

Proposition 1. Let RHn
a and RHn

b be two Lagrangian subspaces of CHn

which intersect only at [(0, . . . , 0, 1)]. Then there exist θ1, . . . , θn ∈ (0, π) and
A ∈ U1(n+1) such that

RH
n
a =

{
[(x1, . . . , xn+1)A] | xi ∈ R ,

n∑
i=1

x2
i − x2

n+1 = −1 , xn+1 ≥ 1
}

and

RH
n
b =

{
[(eiθ1x1, . . . , e

iθnxn, xn+1)A] | xi ∈ R ,
n∑
i=1

x2
i − x2

n+1 = −1 , xn+1 ≥ 1
}
.

Two Lagrangian subspaces RHn
a and RHn

b which intersect only at [(0,
. . . , 0, 1)] with θ1 = · · · = θn are said to be in normal position. In particular,
in our family of Lagrangian subspaces {RHn

s | s ∈ R} any two Lagrangian
subspaces RHn

s and RHn
s′ are in normal position.
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Proposition 2. Let φ : M → CH
n, n ≥ 3, be a minimal Lagrangian

immersion of a compact manifold with boundary ∂M . If φ(∂M) is the union of
two geodesic spheres centered at [(0, . . . , 0, 1)] in two Lagrangian subspaces in
normal position, then φ is congruent to one of the examples given in Theorem
1.

Proof. It is clear that, up to a holomorphic isometry of CHn, the La-
grangian subspaces in normal position can be taken as

RH
n
1 =

{
[(x1, . . . , xn+1)] | xi ∈ R ,

n∑
i=1

x2
i − x2

n+1 = −1 , xn+1 ≥ 1
}

and

RH
n
2 =

{
[(eiθx1, . . . , e

iθxn, xn+1)] | xi ∈ R ,
n∑
i=1

x2
i − x2

n+1 = −1 , xn+1 ≥ 1
}
.

Now, these Lagrangian subspaces and their corresponding geodesic spheres
centered at [(0, . . . , 0, 1)] are invariant under the action of the group SO(n) on
CH

n (see Section 2). Hence, if X is a Killing vector field in the Lie algebra of
SO(n), then its restriction to the submanifold is a Jacobi field on M vanishing
on ∂M . As the nullity of the submanifold is zero, X also vanishes along the
submanifold M . This means that the submanifold is invariant under the
action of SO(n). The result now follows from Theorem 1. �

3.2. Examples invariant under SO1
0(n).

Theorem 2. For any ρ > 0 there exists a minimal (non-totally geodesic)
Lagrangian embedding

Ψρ : R × RHn−1 −→ CH
n

defined by

Ψρ(s, x) =
[(

sinh r(s) exp
(
ia

∫ s

0

coth2 r(t) dt
coshn+1 r(t)

)
,

cosh r(s) exp
(
ia

∫ s

0

dt

coshn+1 r(t)

)
x

)]
,

where r(s), s ∈ R , is the unique solution to

(3) r′′ sinh r cosh r = (1− (r′)2)(cosh2 r + n sinh2 r), r(0) = ρ, r′(0) = 0,

and a = sinh ρ coshn ρ.
The map Ψρ is invariant under the action of SO1

0(n) and satisfies∫
R×RHn−1

|σ|ndv <∞,
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where dv is the canonical measure of the complete induced metric ds2 +
cosh2 r(s) 〈〈, 〉〉.

Moreover, any minimal (non-totally geodesic) Lagrangian immersion in
CH

n that is invariant under the action of SO1
0(n), n ≥ 3, is congruent to an

open subset of one of the above submanifolds.

We omit the proof of this result, as it is similar to the proof of Theorem 1.

3.3. Examples invariant under SO(n−1) ∝ Rn−1.

Theorem 3. For any ρ > 0 there exists a minimal Lagrangian embedding

Υρ : R × Rn−1 −→ CH
n

defined by

Υρ(s, x) =
[
eiAn+1(s)

(
r(s)x,

1 + r(s)2(|x|2 − 1− 2iAn+3(s))
2r(s)

,

1 + r(s)2(|x|2 + 1− 2iAn+3(s))
2r(s)

)]
,

where An(s) = ρn
∫ s

0
dt/r(t)n and r(s) = ρ cosh

1
n+1 ((n+ 1)s).

The map Υρ is invariant under the action of SO(n−1) ∝ Rn−1 and satisfies∫
R×Rn−1

|σ|ndv <∞,

where dv denotes the canonical measure of the complete induced metric ds2 +
r(s)2〈, 〉, and 〈, 〉 is the canonical metric of the Euclidean space Rn−1.

Moreover, any minimal (non-totally geodesic) Lagrangian immersion in
CH

n that is invariant under the action of SO(n−1) ∝ R
n−1, n ≥ 3, is

congruent to an open subset of one of the above submanifolds.

Proof. As in Section 3.1, the geometric properties of Υρ can be verified
using the explicit formulas given in the statement of the theorem.

Conversely, let φ : M → CH
n be a non-totally geodesic minimal La-

grangian immersion that is invariant under the action of SO(n−1) ∝ Rn−1,
and let φ̃ be a local horizontal lift of φ to H2n+1

1 . Let p be a point of M
and let z = (z1, . . . , zn+1) = φ̃(p). As φ is invariant under the action of
SO(n−1) ∝ Rn−1, for any (A, a) in the Lie algebra of SO(n−1) ∝ Rn−1, the
curve s→ [zesÂ] with

Â =

 A at at

−a 0 0
a 0 0


lies in the submanifold. Hence,

π∗(zÂ+ (zÂ, z)z) ∈ φ∗(TpM).
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Since φ is Lagrangian, we deduce from this that

=(zÂB̂tz̄t + (zÂ, z)(z, zB̂)) = 0,

for any elements Â, B̂ in the Lie algebra of SO(n−1) ∝ Rn−1. Since n ≥ 3,
it is easy to see from this that (z1, . . . , zn−1) = (zn+1−zn)(x1, . . . , xn−1), with
x = (x1, . . . , xn−1) ∈ Rn−1. As SO(n−1) ∝ Rn−1 acts transitively on Rn−1,
we conclude that z is in the orbit under the action of SO(n−1) ∝ R

n−1

described above of the point(
0, . . . , 0, zn − (zn+1−zn)

|x|2

2
, zn+1 − (zn+1−zn)

|x|2

2

)
.

This implies that locally φ̃ is the orbit under the action of SO(n−1) ∝ Rn−1

of a curve in H3
1 ≡ H2n+1

1 ∩ {z1 = · · · = zn−1 = 0}. Therefore M is locally
I×Rn−1, with I an interval in R , and the lift φ̃ : I×Rn−1 → H

2n+1
1 is given

by

φ̃(s, x) = (γ2(s)−γ1(s))
(
x,
|x|2

2
,
|x|2

2

)
+ (0, γ1(s), γ2(s)) ,

where γ(s) = (γ1(s), γ2(s)) is a horizontal curve in H3
1. Writing

(γ2 − γ1)(s) = r(s) exp
(
i

∫ s

s0

f(t)dt
)

with real functions r = r(s) > 0 and f = f(s) and using the assumption that
γ is horizontal, it follows that

γ(s) = exp
(
i

∫ s

s0

f(t)dt
)(

1− r(s)2

2r(s)
− ir(s)

∫ s

s0

f(t)
r(t)2

dt,

1 + r(s)2

2r(s)
− ir(s)

∫ s

s0

f(t)
r(t)2

dt

)
,

with s0 ∈ I. Arguing as in Section 3.1, we see that the minimality of the
immersion φ translates into the equation

(4) (n+ 1)f((r′)2 + r2f2)− frr′′ + f ′rr′ + f(r′)2 = 0.

If r is constant, then necessarily f ≡ 0 and γ degenerates into a point.
To analyze the equation (4), we assume that γ is parameterized by the arc,

i.e., |γ′| = 1. By computing |γ′| we get

(r′/r)2 + f2 = 1.

Differentiating this equation and using it again in (4), we obtain

(n+ 1)fr′ + f ′r = 0.
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If f ≡ 0, then r(s) = µe±s and the immersion φ is totally geodesic. The
general solution is given by

f(s) =
a

r(s)n+1
, a > 0.

It follows that r(s) must satisfy the equation

(r′)2 +
a2

r2n
= r2.

The general solution of this equation is, up to a translation of parameters, the
solution given the statement of the Theorem, with a = ρn+1. �

4. More examples of minimal Lagrangian submanifolds

The examples given in Theorems 1, 2 and 3 have been constructed in a
common way. By analyzing this construction, we will obtain new examples of
minimal Lagrangian submanifolds in CHn. In fact, the examples in Theorems
1, 2 and 3 are obtained, respectively, as follows:

(s, x) ∈ R × Sn−1 7→ [(γ1(s)x, γ2(s))] ∈ CHn,

(s, x) ∈ R × CHn−1 7→ [(γ1(s), γ2(s)x)] ∈ CHn,

(s, x) ∈ R × Rn−1 7→
[
(γ2(s)− γ1(s))

(
x,
|x|2

2
,
|x|2

2

)
+ (0, γ1(s), γ2(s))

]
∈ CHn.

Here [(γ1(s), γ2(s))] denote certain curves in CH1 and

x ∈ Sn−1 7→ [x] ∈ CPn−1,

x ∈ RHn−1 7→ [x] ∈ CHn−1,

x ∈ Rn−1 7→ x ∈ Cn−1

are the totally geodesic Lagrangian submanifolds in the (n−1)-dimensional
complex models.

We now construct new minimal Lagrangian submanifolds in CHn using the
same curves as above, but taking an arbitrary minimal Lagrangian subman-
ifold in the (n − 1)-dimensional complex models instead of the above totally
geodesic Lagrangian submanifolds. In fact, it is straightforward to prove the
following result.
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Proposition 3.

(a) Given a solution r(s) of equation (1) in Theorem 1 and a minimal
Lagrangian immersion φ : Nn−1 → CP

n−1 of a simply connected
manifold N , the map Φ : R ×N → CH

n defined by

Φ(s, x) =
[(

sinh r(s) exp
(
ia

∫ s

0

dt

sinhn+1 r(t)

)
φ̃(x),

cosh r(s) exp
(
ia

∫ s

0

tanh2 r(t) dt
sinhn+1 r(t)

))]
is a minimal Lagrangian immersion in CHn, where φ̃ : N → S

2n−1 is
the horizontal lift of φ with respect to the Hopf fibration Π : S2n−1 →
CP

n−1.
(b) Given a solution r(s) of equation (3) in Theorem 2 and a minimal

Lagrangian immersion ψ : Nn−1 → CH
n−1 of a simply connected

manifold N , the map Ψ : R ×N → CH
n defined by

Ψ(s, x) =
[(

sinh r(s) exp
(
ia

∫ s

0

coth2 r(t) dt
coshn+1 r(t)

)
,

cosh r(s) exp
(
ia

∫ s

0

dt

coshn+1 r(t)

)
ψ̃(x)

)]
is a minimal Lagrangian immersion in CHn, where ψ̃ : N → H

2n−1
1 is

the horizontal lift of φ with respect to the Hopf fibration Π : H2n−1 →
CH

n−1.
(c) Given ρ > 0, a minimal Lagrangian immersion η : Nn−1 → C

n−1 of
a simply connected manifold N and a function f : N −→ C satisfying
<f = |η|2 and v(=f) = 2〈η∗v, Jη〉 for any vector v tangent to N , the
map Υ : R ×N → CH

n defined by

Υ(s, x) =
[
eiAn+1(s)

(
r(s)η(x),

1 + r(s)2(f(x)− 1− 2iAn+3(s))
2r(s)

,

1 + r(s)2(f(x) + 1− 2iAn+3(s))
2r(s)

)]
,

where An(s) = ρn
∫ s

0
dt/r(t)n and r(s) = ρ cosh1/(n+1)((n+ 1)s), is a

minimal Lagrangian immersion in CHn.

We observe that if we take the map η : Rn−1 → C
n−1 in Proposition 3(c)

to be the totally geodesic immersion η(x) = x, then =f is constant and it is
easy to prove that the corresponding immersion is congruent to that given in
Theorem 3.

It is interesting to note that the totally geodesic Lagrangian submanifolds
of CHn can also be described in a form similar to the examples given in
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Theorems 1, 2 and 3. In fact, we can give three different descriptions of the
totally geodesic Lagrangian submanifolds of CHn:

(s, x) ∈ R+ × Sn−1 7→ [(sinh s x, cosh s)] ∈ CHn,

(s, x) ∈ R × RHn−1 7→ [(sinh s, cosh s x)] ∈ CHn,

and

(s, x) ∈ R × Rn−1 7→
[
es
(
x,
|x|2

2
,
|x|2

2

)
+ (0,− sinh s, cosh s)

]
∈ CHn.

In all three cases, the curve used is the geodesic [(sinh s, cosh s)] of CH1

passing through the point [(0, 1)]. As in Proposition 3, this idea leads to new
examples of minimal Lagrangian submanifolds of CHn.

Proposition 4.

(a) Given a minimal Lagrangian immersion φ : Nn−1 → CP
n−1 of a

simply connected manifold N , the map

Φ : R+ ×N → CH
n

(s, x) 7→
[(

sinh s φ̃(x) , cosh s
)]

is a minimal Lagrangian immersion in CHn, where φ̃ : N → S
2n−1 is

the horizontal lift of φ with respect to the Hopf fibration Π : S2n−1 →
CP

n−1.
(b) Given a minimal Lagrangian immersion ψ : Nn−1 → CH

n−1, the
map

Ψ : R ×N → CH
n

(s, x) 7→
[(

sinh s , cosh s ψ̃(x)
)]
,

is a minimal Lagrangian immersion in CHn, where ψ̃ : N → H
2n−1
1 is

the horizontal lift of φ with respect to the Hopf fibration Π : H2n−1 →
CH

n−1.
(c) Given a minimal Lagrangian immersion η : Nn−1 → C

n−1 of a simply
connected manifold N and a function f : N −→ C satisfying <f =
|η|2 and v(=f) = 2〈η∗v, Jη〉 for any vector v tangent to N , the map

Υ : R ×N → CH
n

(s, x) 7→ [es (η(x), f(x), f(x)) + (0,− sinh s, cosh s)]

is a minimal Lagrangian immersion in CHn.

The examples described in Propositions 3 and 4 are unique in the following
sense.
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Proposition 5. Let γ = (γ1, γ2) : I → H
3
1 be a Legendre curve.

(a) Given a Lagrangian immersion φ : Nn−1 → CP
n−1 of a simply con-

nected manifold N , the map Φ : I ×N → CH
n defined by

Φ(s, x) =
[(
γ1(s)φ̃(x), γ2(s)

)]
,

where φ̃ : N → S
2n−1 is a horizontal lift of φ with respect to the

Hopf fibration, is a minimal Lagrangian immersion if and only if Φ is
congruent to one of the examples given in Propositions 3(a) and 4(a).

(b) Given a Lagrangian immersion ψ : Nn−1 → CH
n−1 of a simply

connected manifold N , the map Ψ : I ×N → CH
n defined by

Ψ(s, x) =
[(
γ1(s), γ2(s)ψ̃(x)

)]
,

where ψ̃ : N → H
2n−1
1 is a horizontal lift of ψ with respect to the

Hopf fibration, is a minimal Lagrangian immersion if and only if Ψ
is congruent to one of the examples given in Propositions 3(b) and
4(b).

(c) Given a Lagrangian immersion η : Nn−1 → C
n−1 of a simply con-

nected manifold N and a function f : N −→ C satisfying <f = |η|2
and v(=f) = 2〈η∗v, Jη〉 for any vector v tangent to N , the map
Υ : I ×N → CH

n defined by

Υ(s, x) =
[
(γ2(s)− γ1(s))

(
η(x),

f(x)
2

,
f(x)

2

)
+ (0, γ1(s), γ2(s))

]
is a minimal Lagrangian immersion if and only if Υ is congruent to
one of the examples given in Propositions 3(c) and 4(c).

Proof. In order to illustrate the idea, we will prove (a); (b) and (c) can be
proved similarly.

By the properties of γ and φ, Φ is always a Lagrangian immersion. After
a very long but straightforward computation, we arrive at the horizontal lift
H∗ of the mean curvature H of our Lagrangian immersion Φ, given by nH∗ =
a(s)Jφ̃s + (n− 1)(γ1H

∗
φ, 0)/|γ1|2, where

a =
〈γ′′, Jγ′〉
|γ′|4

+ (n− 1)
〈γ′1, Jγ1〉
|γ1|2|γ′|2

.

If we suppose that Φ is minimal, then necessarily φ is also minimal since Hφ

must be zero and, in addition, a ≡ 0. We use this last equation to obtain an
explicit expression for γ as in the proof of Theorem 1. A similar reasoning
then shows that the only possible solutions for r(s) are the solution of equation
(1) and the trivial solution r(s) = s. �
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Remark 1. It is interesting to note the analogy between the above cons-
tructions of minimal Lagrangian submanifolds of CHn and those given in the
papers [CU2], [H] and [J1], where the ambient space is the complex Euclidean
space Cn. In fact, we can summarize some of the results in these papers as
follows:

Proposition A ([CU2], [H], [J1]). Let γ : I → C
∗ be a regular curve and

φ : Nn−1 → CP
n−1 a Lagrangian immersion of a simply connected manifold.

Then the map Φ : I ×N → C
n defined by

Φ(s, x) = γ(s)φ̃(x),

where φ̃ : N → S
2n−1 is a horizontal lift of φ with respect to the Hopf fibration,

is a minimal Lagrangian submanifold if and only if φ is minimal and γn has
curvature zero.

Thus, up to rotations in Cn, the curve γn can be taken as γn(s) = (s, c)
with c ≥ 0, i.e., = γn = c, where = denotes the imaginary part. Hence, up
to dilations, there are only two possibilities: c = 0 and c = 1. In the first
case, the examples constructed in this way are cones with links φ̃, and in the
second case they are the examples given in [CU2, Remark 1], [H, Theorem A]
and [J1, Theorem 6.4].

The ideas developed in Proposition 5 and Proposition A allow us to con-
struct a wide family of Lagrangian submanifolds that are not necessarily mini-
mal. This class of Lagrangian submanifolds has been thoroughly investigated
in [RU] for the case when the ambient space is Cn, and in [CMU] for the case
when the ambient space is CPn or CHn. Among other results, the class can
be characterized by the existence of a closed and conformal vector field X on
the Lagrangian submanifold satisfying σ(X,X) = ρ JX, for a certain function
ρ.

5. A geometric characterization

As we pointed out in Section 3.1, the examples of minimal Lagrangian sub-
manifolds of CHn given in Theorem 1 are foliated by (n−1)-geodesic spheres
of CHn centered at the point [(0, . . . , 0, 1)]. In a similar way it can be checked
that {Ψρ({s}×RHn−1) , s ∈ R} defines a foliation on the minimal Lagrangian
submanifolds given in Theorem 2 by (n− 1)-tubes over hyperplanes. Finally,
{Υρ({s} ×Rn−1) , s ∈ R} defines a foliation on the minimal Lagrangian sub-
manifolds given in Theorem 3 by (n− 1)-horospheres. In the following result
we show that the examples described in Theorems 1, 2 and 3 are the only
ones admitting such foliations.

Theorem 4. Let φ : M → CH
n, n ≥ 3, be a minimal Lagrangian im-

mersion in CHn.
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(a) If φ is foliated by (n − 1)-geodesic spheres of CHn, then φ is either
totally geodesic or congruent to an open subset of one of the examples
described in Theorem 1.

(b) If φ is foliated by (n − 1)-tubes over hyperplanes of CHn, then φ is
either totally geodesic or congruent to an open subset of one of the
examples described in Theorem 2.

(c) If φ is foliated by (n − 1)-horospheres of CHn, then φ is either to-
tally geodesic or congruent to an open subset of one of the examples
described in Theorem 3.

Proof of (a). Our submanifold M is locally I×Sn−1, where I is an interval
of R with 0 ∈ I, and for each s ∈ I, φ

(
{s} × Sn−1

)
is an (n − 1)-geodesic

sphere of CHn. It follows (see Section 2.2) that there exists a Lagrangian
subspace

RH
n
s = {[zX(s)] ∈ CHn, z ∈ Cn+1, z = z̄},

where X(s) ∈ U1(n+ 1), and there exists Y (s) ∈ SO1
0(n+ 1) such that

φ(s, x) = [(sinh r(s)x, cosh r(s))Y (s)X(s)] .

Setting A(s) = X(s)Y (s), we obtain

φ(s, x) = [(sinh r(s)x, cosh r(s))A(s)] ,

with A(s) ∈ U1(n + 1). Thus, [(0, . . . , 0, 1)A(s)] and r(s) are the center and
the radius of the (n− 1)-geodesic sphere φ({s} × Sn−1).

If we set
φ̂(s, x) = (sinh r(s)x, cosh r(s))A(s),

then φ̂ is a lift (not necessarily horizontal) of φ to H2n+1
1 . But since (locally)

Lagrangian immersions in CHn have horizontal lifts to H2n+1
1 , there exists a

smooth function θ(s, x) such that φ̃ = eiθφ̂ is a horizontal lift of φ to H2n+1.
In particular, (dφ̃(s,x)(0, v), φ̃(s, x)) = 0 for any v ∈ TxS

n−1, which means
that dθ(v) = 0, and so θ(s, x) = θ(s). Thus our horizontal lift is given by

φ̃(s, x) = (sinh r(s)x, cosh r(s))B(s),

where B(s) = eiθ(s)A(s). Moreover, as (φ̃s, φ̃) = 0 and B(s) ∈ U1(n+ 1), we
obtain

(sinh r(s)x, cosh r(s))B′(s)SB̄t(s)(sinh r(s)x, cosh r(s))t = 0

for any x ∈ Sn−1.
From the relation B(s)SB̄t(s) = S we deduce B′(s)SB̄t(s)+B(s)SB̄′t(s) =

0. Thus, B′(s)SB̄t(s) = V (s) + iU(s), where V (s) and U(s) are real matrixes
with V (s) + V (s)t = 0 and U(s) = U(s)t. Hence the last equation becomes

(sinh r(s)x, cosh r(s))U(s)(sinh r(s)x, cosh r(s))t = 0,
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for any x ∈ Sn−1. From this equation it is easy to see that there exists a
smooth function a(s) such that the matrix U(s) can be written as

U(s) = a(s)

(
In

− tanh2 r(s)

)
,

for any s ∈ I.
Now, we write V (s) as follows:

V (s) =

(
V0(s) −vt(s)
v(s) 0

)
.

Let Z(s) be the solution to the equation

Z ′(s) + Z(s)V0(s) = 0, Z(0) = In.

Since V0(s) + V t0 (s) = 0, we have (Z(s)Zt(s))′ = 0 and so Z(s)Zt(s) =
Z(0)Zt(0) = In. Thus Z(s) is a curve in O(n), and reparametrizing our
immersion by

(s, x) ∈ I × Sn−1 7→ (s, xZ(s)) ∈ I × Sn−1,

we obtain
φ̃(s, x) = (sinh r(s)x, cosh r(s))C(s),

where

C(s) =

(
Z(s)

1

)
B(s).

Now, C ′(s)SC̄t(s) = W (s) + iU(s), where

W (s) =

(
0 −w(s)t

w(s) 0

)
,

with w(s) = v(s)Zt(s).
We now use the minimality of our immersion. To this end we first construct

an orthonormal basis for our submanifold. For any x ∈ Sn−1, the vectors

z(s) = tanh−1 r(s)w(s)− (tanh−1 r(s)w(s)xt)x ∈ Rn

are in TxS
n−1. It is easy to check that, for any s ∈ I, the vector (1,−z(s))

is a tangent vector to M and orthogonal to (0, v) for any v ∈ TxSn−1. Thus,
an orthonormal basis of the submanifold M = I × Sn−1 at the point (s, x) is
given by

e1 =
(1,−z(s))
|(1,−z(s))|

, ei =
(0, vi)

sinh r(s)
, i = 2, . . . , n,

where {v2, . . . , vn} is an orthonormal basis of TxSn−1. As H = 0, we have, in
particular,

〈
n∑
i=1

σ(ei, ei), Jφ̃∗(0, v)〉 = 0
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for any v ∈ TxSn−1. But it is easy to check that

〈σ(ei, ei), Jφ̃∗(0, v)〉 = 0

for i = 2, . . . , n. Thus the above equation becomes

〈σ(e1, e1), Jφ̃∗(0, v)〉 = 0.

Using the definition of e1, we obtain

〈φ̃ss, Jφ̃∗(0, v)〉 = 2〈(φ̃s)∗(0, z(s)), Jφ̃∗(0, v)〉

for any v ∈ TxS
n−1. Using the properties of the second fundamental form

of Lagrangian submanifolds, the definition of z(s), and the fact that C ′(s) =
(W (s)+iU(s))SC(s), it is now straightforward to prove that the last equation
becomes

a(s)
cosh2 r(s)

w(s)vt = 0,

for any s ∈ I, v ∈ TxSn−1 and x ∈ Sn−1. Thus we have a(s)w(s) = 0 for any
s ∈ I. Hence, setting

I1 = {s ∈ I | a(s) = 0}, I2 = {s ∈ I | w(s) = 0},

we have I1 ∪ I2 = I.
We first consider the open set I − I2, where U(s) = 0 and thus C ′(s) =

W (s)SC(s). This implies that the matrices C(s) are real and hence are in
O1(n + 1). Therefore φ((I − I2) × Sn−1) lies in RHn, and so φ is totally
geodesic on this open subset.

We next consider the open set I − I1. On this set we have W (s) = 0
and thus C ′(s) = iU(s)SC(s). Using the definition of U(s), we integrate this
differential equation to obtain

C(s) =

 exp
(
i
∫ s
s0
a(r)dr

)
In

exp
(
−i
∫ s
s0
a(r) tanh2 rdr

)  .

This shows that, in this case, our immersion is invariant under the action of
SO(n). Hence the map φ, defined on the open set (I − I1) × Sn−1, is one of
the examples described in Theorem 1.

Finally, since the second fundamental forms of the examples given in Theo-
rem 1 are non-trivial and the set I is connected, the case when both Int(I1) 6= ∅
and Int(I2) 6= ∅ is impossible. This completes the proof of part (a).

We omit the proof of (b) because it is quite similar to that of (a).

Proof of (c). In this case our submanifold M is locally I × Rn−1, where
I is an interval of R with 0 ∈ I, and for each s ∈ I, φ({s} × Rn−1) is an
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(n − 1)-horosphere of some manifold RHn
s embedded in CHn as a totally

geodesic Lagrangian submanifold. As in the proof of (a), we obtain

φ(s, x) =
[
φ̂(s, x)

]
= [f(x)A(s)] ,

where

f(x) =
(
x,
|x|2

2
,
|x|2

2
+ 1
)
.

Thus φ̂ is a lift (not necessarily horizontal) of φ to H2n+1
1 . But since (locally)

Lagrangian immersions in CHn have horizontal lifts to H2n+1
1 , there exists a

smooth function θ(s, x) such that φ̃ = eiθφ̂ is a horizontal lift of φ to H2n+1.
In particular, (dφ̃(s,x)(0, v), φ̃(s, x)) = 0 for any v ∈ TxS

n−1, which means
that dθ(v) = 0, and so θ(s, x) = θ(s). Thus, our horizontal lift is given by

φ̃(s, x) = f(x)B(s),

where B(s) = eiθ(s)A(s). Moreover, as (φ̃s, φ̃) = 0, we obtain

f(x)B′(s)SB̄(s)tf(x)t = 0,

for any s ∈ I and any x ∈ Rn−1.
As in the proof of (a) we conclude from this that B′(s)SB̄(s)t = V (s) +

iU(s), where V (s) and U(s) are real matrixes with V (s) + V (s)t = 0 and
U(s) = U(s)t. The last equation therefore becomes

f(x)U(s)f(x)t = 0,

for any s ∈ I and any x ∈ Rn−1. From this equation it is easy to see that the
matrix U(s) has the form

U(s) = a(s)

 In−1

2 −1
−1

 ,

for certain smooth function a(s).
Now, define

V (s) =

 V0(s) −v1(s)t −v2(s)t

v1(s) 0 −ρ(s)
v2(s) ρ(s) 0


and let Z(s) be the solution to the differential equation

Z ′(s) + Z(s)V0(s) = 0, Z(0) = In.

Since V0(s) + V t0 (s) = 0, we obtain (ZZt)′(s) = 0, and so Z(s)Zt(s) =
Z(0)Zt(0) = In. Thus Z(s) is a curve in O(n−1). Reparametrizing our
immersion by

(s, x) ∈ I × Rn−1 7→ (s, xZ(s)) ∈ I × Rn−1,
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we obtain
φ̃(s, x) = f(x)C(s),

where

C(s) =

(
Z(s)

I2

)
B(s).

It is easy to check that C ′(s)SC̄t(s) = W (s) + iU(s), where

W (s) =

 −wt1(s) −wt2(s)
w1(s) −ρ(s)
w2(s) ρ(s)


with wi(s) = vi(s)Zt(s) for i = 1, 2.

We now use the minimality of our immersion. To this end, we first construct
an orthonormal basis in our submanifold at (s, 0). It is easy to check that
the vector (1,−w2(s)) is a tangent vector to M in (s, 0), and orthogonal to
(0, v) for any v ∈ Rn−1. Thus, an orthonormal basis of the submanifold
M = I × Rn−1 at the point (s, 0) is given by

e1 =
(1,−w2(s))
|(1,−w2(s))|

, ei = (0, vi) , i = 2, . . . , n,

where {v2, . . . , vn} is an orthonormal basis of Rn−1. As φ is a minimal im-
mersion, we have, in particular,

〈H(s, 0), Jφ̃∗(0, v)〉 = 0

for any v ∈ Rn−1. But it is easy to check that

〈σ(ei, ei), Jφ̃∗(0, v)〉 = 0

for i = 2, . . . , n. Thus the above equation becomes

〈σ(e1, e1), Jφ̃∗(0, v)〉 = 0.

Using the definition of e1, we obtain

〈φ̃ss, Jφ̃∗(0, v)〉 = 2〈(φ̃s)∗(0, w2(s)), Jφ̃∗(0, v)〉

for any v ∈ Rn−1. Using the properties of the second fundamental form of
Lagrangian submanifolds and the fact that C ′(s) = (W (s) + iU(s))SC(s), it
is now straightforward to prove that the last equation becomes

a(s)(w1(s) + w2(s))vt = 0,

for all s ∈ I and v ∈ Rn−1. Thus a(s)(w1(s) + w2(s)) = 0 for any s ∈ I.
Hence, setting

I1 = {s ∈ I | a(s) = 0}, I2 = {s ∈ I | w1(s) + w2(s) = 0},

we have I1 ∪ I2 = I.
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We first consider the open set I − I2 where U(s) = 0 and so C ′(s) =
W (s)SC(s). This implies that the matrices C(s) are real and hence are in
O1(n + 1). Therefore, φ((I − I2) × Rn−1) lies in RHn, and so φ is totally
geodesic on this open subset.

We next consider the open set I − I1. On this set we have

W (s) =

 −wt1(s) wt1(s)
w1(s) −ρ(s)
−w1(s) ρ(s)

 .

If w(s) is a solution of w′(s) + ρ(s)w(s) − w1(s) = 0, we can reparametrize
our immersion as

(s, x) ∈ (I − I1)× Rn−1 7→ (s, x+ w(s)) ∈ (I − I1)× Rn−1,

so that the immersion is given by

φ̃(s, x) = f(x)D(s),

where

D(s) =

 In−1 wt(s) wt(s)
−w(s) 1− λ −λ
w(s) λ 1 + λ

C(s)

with λ = |w(s)|2/2. Now it is easy to check that

D′(s)SD̄t(s) = W 1(s) + iU(s)

with

W 1(s) =

 −ρ(s)
ρ(s)

 .

Now let

Y (s) =

 In−1

cosh
∫
ρ(s) − sinh

∫
ρ(s)

− sinh
∫
ρ(s) cosh

∫
ρ(s)


and set F (s) = Y (s)D(s). Note that

Y (s)−1 =

 In−1

cosh
∫
ρ(s) sinh

∫
ρ(s)

sinh
∫
ρ(s) cosh

∫
ρ(s)

 .
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It is easy to check that F ′(s)SF̄ t(s) = iF (s)U(s)F̄ t(s). Thus, we arrive at
the linear differential equation F ′(s) = G(s)F (s), where

G(s) = ia(s)

 In−1

1 + cosh 2
∫
ρ(s) 1 + sinh 2

∫
ρ(s)

−(1 + sinh 2
∫
ρ(s)) 1− cosh 2

∫
ρ(s)

 .

The solution of this equation can be written as F (s) = e
∫
G(s). Therefore

D(s) = e
∫
G(s)Y (s)−1, and it can be easily checked that the immersion is

invariant under the action of SO(n−1) ∝ Rn−1. Hence the map φ, defined on
(I− I1)×Rn−1, is one of the examples given in Theorem 3. Finally, since the
second fundamental forms of the examples given in Theorem 3 are non-trivial
and the set I is connected, the case when both Int(I1) 6= ∅ and Int(I2) 6= ∅ is
impossible. �

6. Minimal Lagrangian submanifolds in CPn

As we mentioned in the introduction, in this section we state (without
proofs) the corresponding results when the ambient space is the complex pro-
jective space CPn.

If U(n + 1) is the unitary group of order n + 1, then PU(n + 1) = U(n +
1)/S1 is the group of holomorphic isometries of (CPn, 〈, 〉). We consider the
special orthogonal group SO(n) acting on CPn as a subgroup of holomorphic
isometries via the map

A ∈ SO(n) 7−→

[(
A

1

)]
∈ PU(n+ 1),

where [ ] stands for the class in U(n+ 1)/S1.
The unit sphere Sn can be isometrically immersed in CPn as a totally

geodesic Lagrangian submanifold in the standard way:

x ∈ Sn 7→ [x] ∈ CPn.

This immersion projects in the totally geodesic Lagrangian embedding of the
real projective space RPn in CPn. Moreover, up to congruences, RPn is
the only totally geodesic Lagrangian submanifold of CPn. It is interesting to
note that the totally umbilical submanifolds of CPn (which were classified in
[ChO]) are either totally geodesic or umbilical submanifolds of totally geodesic
Lagrangian submanifolds. Thus, up to congruences, the (n − 1)-dimensional
totally umbilical (non-totally geodesic) submanifolds of CPn are the umbilical
hypersurfaces of RPn embedded in CPn in the above manner. In this case,
the umbilical hypersurfaces of RPn are the geodesic spheres. We will refer to
these examples as (n− 1)-geodesic spheres of CPn.
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Theorem 5. Let φ : M → CP
n, n ≥ 3, be a minimal (non-totally geo-

desic) Lagrangian immersion.
(a) φ is invariant under the action of SO(n) if and only if φ is locally

congruent to one of the immersions in the 1-parameter family of mi-
nimal Lagrangian immersions {Φρ : R × Sn−1 → CP

n | ρ ∈ (0, π/2)}
given by

Φρ(s, x) =
[(

sin r(s) exp
(
−ia

∫ s

0

dt

sinn+1 r(t)

)
x,

cos r(s) exp
(
ia

∫ s

0

tan2 r(t) dt
sinn+1 r(t)

))]
,

where r(s), s ∈ R , is the unique solution to

(5) r′′ sin r cos r = (1− (r′)2)(n cos2 r − sin2 r), r(0) = ρ, r′(0) = 0,

and a = cos ρ sinn ρ.
(b) φ is foliated by (n − 1)-geodesic spheres of CPn if and only if φ is

locally congruent to one of the examples described in (a).

Remark 2. In this case, r(s) = arctan
√
n gives a constant solution to

equation (5). The corresponding minimal Lagrangian immersion Φ : R ×
S
n−1 → CP

n is given by

Φ(s, x) =
[

1√
n+ 1

(√
ne−is/

√
n x, ei

√
ns
)]
,

which provides a minimal Lagrangian immersion Φ : S1 × Sn−1 → CP
n

defined by

Φ(eit, x) =
[

1√
n+ 1

(√
n e−it/(n+1) x, eint/(n+1)

)]
.

If h : S1 × Sn−1 → S
1 × Sn−1 is the diffeomorphism h(eit, x) = (−eit,−x),

then Φ induces a minimal Lagrangian embedding (S1 × Sn−1)/h → CP
n,

which is a very well-known example studied by Naitoh (see [N, Lemma 6.2]).

Remark 3. By studying the energy integral of equation (5) given by

(r′)2 +
sin2n ρ cos2 ρ

sin2n r cos2 r
= 1,

it is easy to show that, in the case when r is not the constant solution, the
orbits s 7→ (r(s), r′(s)) are closed curves. Hence, all solutions of equation
(5) are periodic functions. However, not all of the corresponding minimal
Lagrangian submanifolds are embedded. In fact, in [CU1] minimal Lagrangian
surfaces that are invariant by a 1-parameter group of holomorphic isometries
of CP2 were classified, and as particular cases the versions of the examples
given in Theorem 5 with n = 2 were obtained. Since the solutions of (5) for
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n = 2 are elliptic functions (see [CU1]), it is not difficult to check that, except
the Clifford torus, the examples given there do not provide embedded minimal
Lagrangian tori. It may be interesting to point out here that Goldstein [G]
recently constructed minimal Lagrangian tori in Einstein-Kaehler manifolds
with positive scalar curvature.

We now give a method to produce examples of minimal Lagrangian sub-
manifolds of CPn.

Proposition 6. Let φ : Nn−1 → CP
n−1 be a minimal Lagrangian im-

mersion of a simply connected manifold N , and let φ̃ : N → S
2n−1 be the

horizontal lift of φ with respect to the Hopf fibration Π : S2n−1 → CP
n−1.

(a) Given a solution r(s) of equation (5) in Theorem 5, the map Φ :
R ×N → CP

n defined by

Φ(s, x) =
[(

sin r(s) exp
(
−ia

∫ s

0

dt

sinn+1 r(t)

)
φ̃(x),

cos r(s) exp
(
ia

∫ s

0

tan2 r(t) dt
sinn+1 r(t)

))]
is a minimal Lagrangian immersion in CPn.

(b) The map

Φ : (0, π/2)×N → CP
n

(s, x) 7→
[(

sin s φ̃(x) , cos s
)]

is a minimal Lagrangian immersion in CPn.
(c) Let γ = (γ1, γ2) : I → S

3 be a Legendre curve. The map Φ : I ×N →
CP

n defined by

Φ(s, x) =
[(
γ1(s)φ̃(x), γ2(s)

)]
is a minimal Lagrangian immersion if and only if Φ is congruent to
one of the examples given in (a) and (b).
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