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THE POSITIVSTELLENSATZ FOR DEFINABLE
FUNCTIONS ON O-MINIMAL STRUCTURES

F. ACQUISTAPACE, C. ANDRADAS, AND F. BROGLIA

Abstract. In this note we prove two Positivstellensätze for definable
functions of class Cr, 0 ≤ r <∞, in any o-minimal structure S expand-

ing a real closed field R. Namely, we characterize the definable functions
that are nonnegative (resp. strictly positive) on basic definable sets of
the form F = {f1 ≥ 0, . . . , fk ≥ 0}.

1. Introduction

A classic Positivstellensatz, proved by Stengle [St], states that a polynomial
g is nonnegative over the semialgebraic set {f1 ≥ 0, . . . , fk ≥ 0} if and only if
it verifies an equation of the form p1g = p2+g2m, where p1, p2 are polynomials
in the positive cone (or preordering) generated by f1, . . . , fk and the sums of
squares. Positivstellensätze have since then been the object of further studies,
giving rise to various formulations in different contexts, as analytic germs,
analytic functions on compact manifolds, etc., which in general can be seen
as the geometrical counterpart of the “abstract” version in terms of the real
spectra, as given in [BCR].

A significant variant is what is now called Schmüdgen’s theorem, which
states that if the semialgebraic set F is compact and g is strictly positive on
F , then no denominators are needed; that is, p1 can be chosen as 1 in the above
expression. Moreover, Putinar [Pu, Lemma 4.1] showed that under some more
restrictive hypotheses g has a representation of the form g = v0 +

∑k
i=1 vifi,

where the vi’s are sums of squares; that is, g belongs to the module generated
by the fj ’s over the sums of squares, rather than the positive cone generated
by them. In other words, the products of the fj ’s are no longer needed.

Recently the authors showed that Schmüdgen’s theorem (in fact, Putinar’s
result) holds also in the analytic setting without any compactness assumption;
see [AAB]. In Section 2 of this paper we establish the Positivstellensätze for
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Cr functions on a differentiable manifold M , for 0 ≤ r ≤ ∞. In Section 3 we
show that the same results hold for definable functions of class Cr, 0 ≤ r <∞,
in any o-minimal structure S expanding a real closed field R. Notice that the
case r = ∞ does not have a good behaviour in this setting and therefore is
not allowed. In both cases we prove that a function g that is nonnegative
on F = {f1 ≥ 0, . . . , fk ≥ 0} verifies an equation p2g = v2

0 +
∑
v2
i fi with

{p = 0} ⊂ {g = 0}, and that if g is strictly positive over F , then we have an
equation g = v2

0 +
∑
v2
i fi. This shows, in particular, that Putinar’s theorem

still holds in this setting.
Finally we remark that denominators are necessary. More precisely, we

prove that for any F with non-empty interior we can find definable functions
that are nonnegative over F and do not belong to the precone generated by
f1, . . . , fk; i.e., the denominator p in the equation above cannot be omitted.

2. Differentiable Positivstellensatz

Let M be any differentiable manifold of class Cr, 0 ≤ r ≤ ∞. We start
by showing that Hilbert’s 17th Problem, that is, the characterization of non-
negative functions over M , has a simple solution in this setting. In fact, we
have:

Proposition 2.1. Let ϕ : M −→ R be a nonnegative Cr function, 0 ≤
r ≤ ∞. Then ϕ is the square of a quotient of Cr functions.

Proof. First observe that the function ξ : R+ → R
+ defined by

ξ(x) =
{ √

x exp(−1/x) for x 6= 0,
0 for x = 0

is C∞ and flat at 0. Now, given ϕ : M −→ R
+, the composition u = ξ ◦ ϕ =√

ϕ exp(−1/ϕ) is Cr and we have (exp(−1/ϕ))2ϕ = u2. �

Remark 2.2. It is not true that any Cr nonnegative function is a square;
see [BCR]. In the last section of this paper we give a specific example for r
large enough.

To continue further we need the following elementary result:

Lemma 2.3. Let f, ϕ be continuous functions on M and assume that ϕ is
strictly positive on a closed set Ω ⊂ M . Then there is a continuous function
ε, strictly positive on M , such that εf < ϕ on Ω.

Proof. Define ε(x) = ϕ(x)/(1 + f(x)) over the open set U0 = {ϕ > 0} ∩
{f ≥ −1/2}. Set F = {f ≥ 0} ∩ Ω and U1 = M \ F . We have ε > 0 on U0

and we consider a partition of the unity {ϕ0, ϕ1} subordinated to the covering
{U0, U1}. The function ε̃ = ϕ0ε+ ϕ1 is a continuous function that is strictly
positive on the whole set M and coincides with ε over F . Then ε̃f < ϕ on Ω,
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since by construction the inequality holds on the set F = {f ≥ 0} ∩Ω, and it
holds trivially outside this set. �

Our next lemma will be used to reduce the strict Positivstellensatz to the
principal case, i.e., the case of a single inequality. Let f1, . . . , fk ∈ Cr(M)
and set F = {x ∈M | f1(x) ≥ 0, . . . , fk(x) ≥ 0}. We assume that F 6= ∅. We
denote by M =M(f1, . . . , fk) the module over the sum of squares generated
by 1, f1, . . . , fk, i.e., M = {f ∈ Cr(M) | f = s0 +

∑
sifi}, where s0, . . . , sk

are sums of squares of Cr functions.

Lemma 2.4. For any open set U ⊃ F there is h ∈M such that F ⊂ {h ≥
0} ⊂ U . Moreover, h can be taken to be of the form h =

∑
sifi with si > 0

over M .

Proof. Set U0 = U and Uj = {fj < 0}, j = 1, . . . , k. Then {U0, U1, . . . , Uk}
form an open covering of M . Let {ϕ0, ϕ1, . . . , ϕk} be a Cr partition of the
unity subordinate to this covering. Then ϕ =

∑k
j=1 ϕjfj is a Cr function

which verifies ϕ < 0 on Ω = M \ U0. In particular, {ϕ ≥ 0} ⊂ U0. We claim
that we may assume that ϕj > 0 for all j = 1, . . . , k. Indeed, by Lemma 2.3,
for each j = 1, . . . , k there is εj > 0 on M such that εjfj < −ϕ/k on Ω. Thus
on Ω we have

ϕ+
k∑
j=1

εjfj < ϕ+ k(−ϕ/k) = 0

and we can replace ϕ by the function

ϕ+
k∑
j=1

εjfj =
k∑
j=1

(ϕj + εj)fj

whose coefficients ϕj + εj are strictly positive on M .
Thus we assume that ϕj > 0, j = 1, . . . , k, and we approximate these

functions in the Whitney topology by Cr functions aj such that aj > 0 and
h =

∑k
j=1 ajfj verifies {h ≥ 0} ⊂ U0.

In fact, again by Lemma 2.3, for j = 1, . . . , k, there exist functions δj >
0 on M such that δj |fj | < −ϕ/2k on Ω. Therefore, taking aj such that
|aj − ϕj | < min(ϕj/2, δj), we have aj > 0 and

|ϕ− h| =

∣∣∣∣∣∣
k∑
j=1

ϕjfj −
k∑
j=1

ajfj

∣∣∣∣∣∣ ≤
∑
|ϕj − aj ||fj | <

∑ ϕ

2k
=
ϕ

2

on Ω, so that {h ≥ 0} ⊂ U0. This completes the proof of the lemma. �

Now we are ready to prove our main result.
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Theorem 2.5 (Positivstellensatz). Let f1, . . . , fk be Cr-functions on M ,
0 ≤ r ≤ ∞, and assume that {x ∈ M | f1 ≥ 0, . . . , fk ≥ 0} 6= ∅. Let g be a
Cr-function on M . Then:

(i) g ≥ 0 on {x ∈M | f1 ≥ 0, . . . , fk ≥ 0} =⇒ p2g = v2
0 +

∑
v2
i fi,

(ii) g > 0 on {x ∈M | f1 ≥ 0, . . . , fk ≥ 0} =⇒ g = v2
0 +

∑
v2
i fi,

where p, v1, . . . , vk ∈ Cr(M) \ {0} and {p = 0} ⊂ {g = 0}.

Remark 2.6. The condition on the zeroes of p is important in order to
avoid “trivial” expressions in (i), since otherwise we could take p to have zero
set M \ {g = 0} and set all the v′is equal to zero.

Proof. Step 1. We start by proving the statement for principal sets, i.e.,
the case k = 1 of the result. Thus we have two differentiable functions f, g ∈
Cr(M) such that g is positive on the nonempty set {f ≥ 0}.

Let us assume first that g is strictly positive on F = {f ≥ 0}. We want
to find s, t ∈ Cr(M), strictly positive on M , such that g = s + tf . Set
G = {g ≤ 0}. The sets F and G are closed and we have F ∩ G = ∅. We
consider the function v defined by

v =

 g/(f + g) over F,
(f + g)/f over G,
1 elsewhere.

Clearly v is continuous and strictly positive on M . Also, an immediate inspec-
tion shows that g− vf > 0 on M . Moreover, by Lemma 2.3 there exists ε > 0
on M such that εf < g− vf on M . Thus, taking a suitable approximation of
v in the Whitney topology t ∈ Cr(M) such that |t− v| < min(v/2, ε), we get
t > 0 and s = g − tf > 0, as claimed.

Assume now that g ≥ 0 on F and set X = {g = 0}. We repeat the above
argument for the open set M \X. Thus, we define

v =

 g/(f + g) over F \X,
(f + g)/f over G \X,
1 elsewhere,

which is C0 over M \ X and satisfies v > 0 over this set. Also, we have
g − vf > 0 over M \ X. We approximate v over M \ X in the Whitney
topology by a Cr function v′ so that g − v′f > 0 over M \X. Now, by [To,
Lemma 6.1], there is a nonnegative C∞ function q : M → R, that is flat over
X, with q−1(0) = X, such that qv′ extends by 0 to a Cr function over Rn.
In particular, we have u0 = qg − (qv′)f ≥ 0 on M . Thus qg = u0 + u1f with
u1 = qv′ ≥ 0 and {q = 0} ⊂ {g = 0}.

Step 2. Consider first the case when g > 0 on F = {x ∈ M | f1 ≥
0, . . . , fk ≥ 0}. By Lemma 2.4 there is a function h =

∑
tifi such that
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F ⊂ {h ≥ 0} ⊂ {g > 0}, and by Step 1 we have

g = s+ th = s+
∑

sifi.

This proves (i).
Assume next that g ≥ 0 on F and let Ui be the open set {fi < 0}, i =

1, . . . , k. Then the function ϕi = exp(−1/f2
i ) is positive over Ui and can be

extended by 0 to a C∞ function on all of M . Since the Ui’s cover M \ F , the
function f = ϕ1f1 + · · · + ϕkfk is strictly negative on M \ F and identically
zero on F . So g ≥ 0 on {f ≥ 0} = F , and by Step 1 we have

qg = u0 + u1f = u0 +
∑

vifi

with {q = 0} ⊂ {g = 0}, as claimed. �

3. O-minimal Positivstellensatz

In this section we show that the Positivstellensatz proved in Section 2 can
be extended to the general setting of definable functions on an o-minimal
structure. We first need to introduce some notations.

Let R be a real closed field. We consider an o-minimal structure S expand-
ing R (see [Dr] and [Co, Definition 1.4]), and we denote by Dr the ring of
definable functions of class Cr, 0 ≤ r <∞ (see [DMi] for a precise definition).
In particular, D0 stands for the ring of continuous definable functions. Finally,
we let Φr be the set of all odd increasing Dr bijections of R that are r-flat
at zero, i.e., all of whose derivatives or order less than or equal to r vanish
at 0. The following results appear in [DMi] (see Lemma C8 and Proposition
C9). In fact, there they are only stated for the case R = R, the real numbers,
because the authors work over analytic geometric structures, but the proofs
carry over word for word to the case of any real closed field.

Proposition 3.1. Let g : A→ R, f1, . . . , fl : A \Z(g)→ R be continuous
and definable with A locally closed in Rm. Then there exists ϕ ∈ Φr such that
ϕ(g(x)) ·fi(x)→ 0 as x→ y, x ∈ A\Z(g), for each y ∈ Z(g) and i = 1, . . . , l.

Proposition 3.2. Let f, g : Rn → R be continuous definable Dr functions
on Rn \ Z(g), with Z(f) ⊂ Z(g). Then there exist ϕ ∈ Φr and h ∈ Dr(Rn)
such that ϕ ◦ g = hf .

In other words, singularities of definable functions contained in the zero
set of a definable function can be killed by multiplying by a suitable power of
the latter. A consequence of these results is the existence of Dr partitions of
unity subordinated to a finite definable open covering (see [Es, Theorem 4.2]).
These results constitute one of the tools needed to extend the arguments of
Section 2. Also, we have the following extension result:
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Lemma 3.3. Let g be a Dr–function on Rn and set X = g−1(0). Let
v : Rn \X → R be Dr. Then there exists q ∈ Dr with q−1(0) = X, r-flat on
X, such that qv extends to a global Dr-function that is r-flat on X.

Proof. By Proposition 3.1 we can find θ ∈ Φr such that f = θ(g)v extends
continuously by 0 to all of Rn. By the same result there also exists α ∈ Φr

such that α(g) · σ extends continuously by 0 to a function over X, for each
σ ∈ {f,Dif}, where i ∈ Nn, |i| ≤ r. Since α(g) is of class Cr over Rn and
vanishes exactly on X, we obtain that for k large enough α(g)kf belongs to
Dr and is r-flat on X. Thus, taking q = α(g)kθ(g) proves the result. �

The other tool we need is the approximation of definable functions. In Dr
we consider the Cr-Whitney topology, in which a neighbourhood of a function
g is given by all functions f such that ‖Dαf(x) − Dαg(x)‖ < ε(x), where ε
is a continuous strictly positive definable function on Rn and α ∈ Nn with
|α| = α1 + · · · + αn = 0, . . . , r and, as usual, ‖x‖2 =

∑
x2
i . We will express

this by saying that |f − g| < ε or that f approximates g up to ε. We have
the following approximation theorem, which will be used in the sequel:

Theorem 3.4 ([Es, Theorem 4.4.1]). Let f ∈ Dr and let ε be a continuous
definable strictly positive function. Then there exists an approximation f̃ ∈
Dr+1 such that |f − f̃ | < ε.

In particular, a repeated application of this theorem shows that Dr is dense
in D0. Now, let Σ be the set of sums of squares of Dr and let f1 . . . , fk ∈ Dr.
As above, we denote by M[f1, . . . , fk] (or just M if no confusion is possible)
the Σ–module generated by f1, . . . , fk, that is,

M = Σ + Σf1 + · · ·+ Σfk.

The results in Section 2 extend, almost word for word, to o-minimal structures.
In particular, the characterization of nonnegative definable functions is rather
simple, and given by the following result:

Lemma 3.5 (Hilbert’s 17th Problem). Let ϕ : Rn −→ R be a nonnegative
Dr function. Then ϕ is the square of a quotient of Dr functions.

Proof. Consider the definable function ξ : R+ → R+ given by

ξ(x) =
{
xk
√
x for x 6= 0,

0 for x = 0.

The function ξ is obviously definable, of class k, and k-flat at the origin. Now,
given ϕ : Rn −→ R+, the composition u = ξ ◦ ϕ = ϕk

√
ϕ is Cr for k large

enough and we have (ϕ)2kϕ = u2. �

Replacing partitions of unity in the proof of Lemma 2.3 by definable par-
titions of unity we get the following analogue of this result:
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Lemma 3.6. Let f, ϕ be continuous definable functions on Rn and assume
that ϕ is strictly positive on a closed set Ω ⊂ Rn. Then there is a continuous
definable function ε, strictly positive on Rn, such that εf < ϕ on Ω.

We also have the following definable versions of the Positivstellensätze:

Theorem 3.7 (Definable Positivstellensatz). Let f1, . . . , fk be Dr-func-
tions on Rn, 0 ≤ r < ∞, and assume that the set F = {x ∈ Rn | f1 ≥
0, . . . , fk ≥ 0} is not empty. Let g be a Dr-function on Rn. Then:

(i) g ≥ 0 on {x ∈ Rn | f1 ≥ 0, . . . , fk ≥ 0} =⇒ p2g = v2
0 +

∑
v2
i fi,

(ii) g > 0 on {x ∈ Rn | f1 ≥ 0, . . . , fk ≥ 0} =⇒ g = v2
0 +

∑
v2
i fi,

where p, v0, . . . , vk ∈ Dr(Rn) and {p = 0} ⊂ {g = 0}

Proof. The proof is identical to that of Theorem 2.5, with the necessary
auxiliary results replaced by their definable analogues and Tougeron’s lemma
replaced by Proposition 3.3. �

Recall that Dr denotes the ring of definable function class Cr. Let R̃def

be the real spectrum of Dr (see [BCR]). Notice that for any point x ∈ Rn
there exists a unique point x̃ ∈ R̃def , namely the prime cone of all functions
f ∈ Dr such that f(x) ≥ 0. Thus we have a canonical inclusion Rn ⊂ R̃def .
Now, given any set S̃ = {α ∈ R̃def | g(α) 6= 0, f1(α) ≥ 0, . . . , fr(α) ≥ 0},
we can consider its restriction S = S̃ ∩ Rn, which is the definable subset of
Rn defined by the same inequalities. A natural question (usually referred to
as the Artin-Lang property) is to decide whether S̃ 6= ∅ implies S 6= ∅ (the
converse being immediate). Using the Positivstellensatz above we show:

Corollary 3.8 (Artin-Lang for Dr functions).

(a) S̃ = {α ∈ R̃def | g(α) > 0, f1(α) ≥ 0, . . . , fr(α) ≥ 0} is not empty if
and only if S is not empty.

(b) S̃ = {α ∈ R̃def | g(α) ≥ 0, f1(α) ≥ 0, . . . , fr(α) ≥ 0} is not empty if
and only if S is not empty.

Proof. Assume that S̃ is empty. Then by the abstract Positivstellensatz
(see [BCR]) we have an equation p1(−g2) = p2 for some p1, p2 in the positive
cone generated by f1, . . . , fr; that is, pi = aoi +

∑
aεf

ε1
1 · · · fεrr , where the

coefficients are sums of squares inDr and {p1 = 0}∩{x ∈ Rn | f1 ≥ 0, . . . , fr ≥
0} ⊂ {g = 0}. Assume now that there exists some point x ∈ S. Evaluating
the above expression at x we see that the left hand side of the equality is
strictly negative, while the right hand side is greater than or equal to zero, a
contradiction. Thus, S must be empty.

Conversely, assume that S is empty. Then by the Positivstellensatz (The-
orem 3.6) we have an equation p2(−g2) = q with {p = 0} ⊂ {g = 0} and
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q ∈ M(f1, . . . , fr). By the abstract Positivstellensatz this means that S̃ = ∅.
This proves (a); part (b) is shown analogously. �

Remark 3.9 (About denominators). It is well known that denominators
are necessary in Hilbert’s 17th Problem in the algebraic case (see [BCR]). One
of the first explicit examples was given by Motzkin [Mo] with the polynomial
f(x, y) = 1 + x2y2(x2 + y2 − 3). The set of common zeroes of all possible
denominators is called the bad points set of f (see [Br], [De]) and has been
an object of study since then. The homogenization of Motzkin’s polynomial
shows also that denominators are necessary for expressing it as a sum of
squares of analytic germs at the origin, as well as a formal power series, and
therefore also as a sum of squares of C∞ functions in any neighbourhood of
the origin.

In fact, any homogeneous nonnegative polynomial f with a bad point at 0
cannot be written as a sum of squares of smooth functions in any neighbour-
hood of 0, since otherwise, by considering the homogeneous initial part of the
Taylor series of such a representation, we would get a representation of f as a
sum of squares of polynomials, contradicting the assumption that 0 is a bad
point for f .

Moreover, for any definable set of the form F = {f1 ≥ 0, . . . , fk ≥ 0} ⊂ Rn,
n ≥ 3, with nonempty interior and fi ∈ Dr with r suitably large, there are
definable functions f which are nonnegative over F and do not belong to
the cone generated by f1, . . . , fk and the sum of squares. Therefore such a
function requires a “true” denominator in the Positivstellensatz (Theorem
3.7). Indeed, consider the following example, which uses an idea similar to
that of C. Scheiderer [Sche].

Assume that the origin is an inner point of F and take any polynomial
f which has a bad point at the origin, for instance, Motzkin’s homogeneous
polynomial

f(x, y, z) = z6 + x2y2(x2 + y2 − z2).

Now, if f belongs to the preordering generated by the functions f1, . . . , fk, we
would have a representation

g =
∑

αIf
i1
1 . . . f ikk ,

where I = (i1, . . . , ik) ∈ {0, 1}k. Since fj(0) > 0, these functions are squares
of Cr functions in a neighbourhood of the origin, and considering the Taylor
polynomials at 0 on both sides of the equation we would get a representa-
tion of Motzkin’s polynomial as a sum of squares of polynomials, which is a
contradiction.
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[Schm] K. Schmüdgen, The K–moment problem for compact semi–algebraic sets, Math.
Ann. 289 (1991), 203–206.

[St] G. Stengle, A Nullstellensatz and a Positivstellensatz in semialgebraic geometry,
Math. Ann. 207 (1974), 87–97.

[To] J. C. Tougeron, Ideaux de fonctions differentiables, Ergeb. Math. Grenzgebiete, vol.

71, Springer-Verlag, Berlin, 1972.

F. Acquistapace, Dipartimento di Matematica, Universita di Pisa, 56127 Pisa,

Italy

E-mail address: acquistf@gauss.dm.unipi.it

C. Andradas, Dpto de Algebra, Facultad de Matematicas, Universidad Com-

plutense, 28040 Madrid, Spain

E-mail address: Carlos Andradas@mat.ucm.es

F. Broglia, Dipartimento di Matematica, Universita di Pisa, 56127 Pisa, Italy

E-mail address: broglia@gauss.dm.unipi.it


