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RANDOM PERTURBATIONS OF TWO-DIMENSIONAL
PSEUDOPERIODIC FLOWS

RICHARD B. SOWERS

ABsTrACT. We consider a random perturbation of a pseudoperiodic
flow on R2. The structure of such flows has been studied by Arnol’d;
it contains regions where there are local Hamiltonians, and an ergodic
region. Under an appropriate change of time, we identify a reduced
model as the strength of the random perturbation tends to zero (along
a certain subsequence). In the Hamiltonian region, arguments of Frei-
dlin and Wentzell are used to identify a limiting graph-valued process.
The ergodic region is reduced to a single point, which is “sticky”. The
identification of the glueing conditions which rigorously describe this
stickiness follows from a perturbed test-function analysis in the ergodic

region.
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1. Introduction

An important technique in the analysis of many physical systems is the
circle of ideas known as model reduction; i.e., the development of rigorous
methods to replace, often in some limiting regime, a complicated system by
a simpler; or lower-dimensional one. We study here a problem of model re-
duction for a diffusively-perturbed pseudoperiodic flow on the 2-dimensional
torus.

Arnol’d [Arn91] (see also [SK92]) identified the general structure of such
flows; he showed that there is a partition of the torus into an ergodic region,
and a collection of traps. Inside each of the traps, the flow can be described
via a local Hamiltonian. Our interest is how small diffusive perturbations
cause transitions between the traps and the ergodic class.

Since our interest is the effect of small noise, we have a separation of scales.
The fast variable is the position within orbits of the dominant dynamical sys-
tem; an angle. The slow variable distinguishes between orbits; an action. The
theory of averaging (in this case, stochastic averaging) suggests that we look
for closed dynamics of the action variable. The effective coefficients of these
closed dynamics are given, informally, by fixing the slow variable and taking
long-time averages in the fast variable. In the simplest cases, when all orbits
are periodic, the space of action variables is usually diffeomorphic to a line,
and is formally given by taking the quotient with respect to the action of
the fast orbits. When there are bifurcations in the topology of the orbits, the
notion of chain equivalence is the correct way to include the effect of small per-
turbations; then the action variable in general takes values in a graph, or more
generally, a stratified space [FW94], [FW98], [FW99], [NPRO5], [Sow02]. The
formal asymptotic goal is to show that when the trajectories of the original
randomly perturbed dynamical system are projected onto the space of action
variables, i.e., the space of chain-equivalent classes, they asymptotically (un-
der an appropriate change of time scale), tend to a Markov process (on the
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space of chain-equivalent classes). The interesting part is the effect of bifur-
cations, which create different strata; at the chain-equivalent set representing
these strata, gluing conditions must be imposed.

The focus of this paper is the effect of the ergodic class. Sooner or later,
the diffusive perturbations will push the randomly-perturbed trajectory into
the ergodic class. The ergodicity will then take the particle everywhere in the
ergodic class, and eventually it will exit back into a trap. A quantification of
this effect was conjectured in [Fre96, p. 74]. Chain equivalence collapses the
whole ergodic class to a single point, and the conjecture is that the limiting
process is sticky at this point, with a computable stickiness coefficient. Our
goal is to show that in a certain weak sense, this is true.

2. Problem statement and main result

We wish to construct a diffusively-perturbed pseudoperiodic flow on the
two-dimensional torus. To do so, let’s start with a pseudoperiodic Hamiltonian
on R2. Let (-,-)p. be the standard inner product on R?.

AsSSUMPTION 2.1. Let H € C*°(R?) and w = (wy,w2) € R? be such that:
firstly, H is Morse, secondly, w; and wy are incommensurable (i.e., (w, K)g. #
0 for all K € 72\ {(0,0)} C R?), and thirdly, H(z + K) = H(z) + (w, K)g-
for all z € R? and K € Z? C R2.

Define® the vector field
def [ OH Op  OH Op
1 qe = U
1) (L)) (22 - TR 20 ) o)
for all ¢ € C*°(R?) and = = (x1,72) € R? (i.e., Y, is the symplectic or skew
gradient of H).
We now want to add diffusivity, albeit in a periodic way.

NoTATION 2.2. Define for notational convenience

CX(R?) € {f € C®(R?): f(z + K) = f(«) for all z € R? and K € Z°}.

Note that OH/dx; and OH/dx, are both in Cp°(R?). Thus YCr(R?) C
C>(R?).
P

AssuMPTION 2.3 (Diffusion Generator and Bracket) . Let £, be a second-
order partial differential operator of the form

def 1 @ 9*f W) () 9F
(L)) = 5 > ai7j(I)M(I)+ > af (I)%(I)

ije{1,2} ie{1,2}

1 We shall attach the superscript e when referring to the Fuclidean space R?, which we
endow with the standard metric and symplectic form; see Subsection 3.2.
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for all f € C2(R?) and z = (21,2) € R, where the a{%’s and a{"’s are in

4,J
Cgo(Rz). We require for simplicity that .Z, be strongly elliptic; i.e., that
@,.,0f, [ 0f
2 <) —J
©) > @@ @ >0

i,5€{1,2}

for all z = (x1,72) € R? and all f € CY(R?) with df(x) # 0.

Then £C°(R?) C Cp°(R?).
Since the OH/0z;’s, a,gl)’s, and afj)’s are all in Cp°(R?), we can now move

to the two dimensional torus T % R2/Z2. Let t : R2 — T be the standard
covering map; i.e., t(z) = x + Z2 for all * € R?. We then define the vector
field Y and the second-order operator . by requiring that

3) (p)(t(x)) = (Ye(pot))(z)  and  (Lp)(H(z)) = (ZLe(pot))(z)

for all ¢ € C°(T) and all z € R?.
We will consider the Markov process on T whose generator is

K7l B

(with domain 2(£¢) D C?(T)). We will construct this Markov process in a

canonical way, via the martingale problem [EK86], [SV79]. Define the event

space 2 e C(]0,00); T). Define the coordinate functions X;(w) ef w(t) for

all t > 0 and all w € Q. For each t > 0, define .%; def o{Xs0 < s <t}

and define a sigma-algebra on Q by % def V>0 % We can now define our

principal objects of interest.

DEFINITION 2.4 (Original Martingale Problem). Fix z, € T. For each
e >0, let P° € Z(C([0,00);T)) be a solution to the martingale problem
with generator #° whose domain contains C?(T) (as a dense subset), and
initial condition d,,. Let E® be the corresponding expectation operator. This
means the following. Firstly, that P*{X, = 2.} = 1. Secondly, that if we fix
FECHT),0<r <ry <mr, <s<tand {pj;j =1,2...n} C Cp(T),
then

E° {f(Xt) - s - | t(«i”f)(Xu)dU} E[mxr,» 0.

In other words, IP¢ is the law of the stochastic differential equation

1 .
(4)  dYf = U )dt + ao(Yy)dt + > @Y odw;  t>0
i€{1,2}



PSEUDOPERIODIC FLOWS 857

D¢’s

FIGURE 1. Pseudoperiodic Flow

where W and W? are two independent standard Wiener processes, and where
ag, a1, and ag are smooth vector fields on T such that (in Hérmander form)
% Zie{l,Q} ELZZ +ao=2.

The generator Z¢ is, of course, a speeded-up version of the operator Y +
£2.% (to get the corresponding stochastic differential equation, change (4) as
follows: remove the 1/¢2 from the Y term, put €2 in front of Gg, and ¢ in front
of a; and ds). The operator U + £2.& represents a combination of motion
along the integral curves of Y and small random perturbations. The change
in time scale stems from a desire to see how diffusive perturbations cause
motion across the orbits of Y.

Let now 3 be the flow of diffeomorphisms of T defined by

jule) € UG(@),  t20,
30(z) = .

The novelty of our problem comes from the structure of 3, which Arnol’d
[Arn91] identified. There is a partition of T into a finite collection {Dy; £ € A}
of closed traps (A is simply the index set) and an open ergodic set E. Both
E and each of the Dy’s is invariant under 3. The interior of each trap is
diffeomorphic to the open unit disk in R?, and D, is a homoclinic orbit of 3
with fixed point gy. Furthermore, for each trap Dy, there is an Hp, € C*°(T)
(a Hamiltonian) such that Hy, = 0 on 0D, and such that Y is the symplectic
gradient of Hz, on D, (i.e., Y(t(x)) = Tt(Ve(Hr o t))(z) for all z € t~1(Dy);
see Subsection 3.2). In E, the orbits of 3 are dense. See Figure 1.

We want to use this description of 3 to understand the asymptotics of the
Pé-law of X. In particular, we want to understand the effect of the ergodic
class E and conversely ignore the nature of the Hp’s within the D;’s. For
each n > 0 and ¢ € A, let 9,D; be the connected component of {z € Dy :
[Hr¢(z)| < n} which contains g,.

zeT

(5)

DEFINITION 2.5. Let A > 0 be such for each £ € A, 0;D; contains only

one fixed point of 3, namely r,. Define then D, def OrD \ 0Dy for all £ € A (see
Figure 2).
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We now define the set S and stopping time e by

SYEUUD,  and e inf{r>0; X, £S°).

LeA

We are then interested in the P¢-law of X up to time e.

A general tool is considering small diffusive perturbations of conservative
systems in the notion of chain equivalence relative to 3 (see [Con78] and
[Rob99]). We note that S is invariant under 3 of (5). For a positive inte-
ger N, 6 € (0,1) and T € (0,00), we say that there is an (N, §)-chain of time
T from x € S to y € S if there is a sequence (z;; j = 1,2,...,N) of points
in S and a sequence 0 = tg < t1--- < ty = T of times such that zyg = z and
zy = y and such that ||3;, ¢, ,(zj-1) — 2| < ¢ forall 1 < j < N. We say
that x = y, where x and y are in S, if there is a positive integer N such that
for each § € (0,1) and T € (0, 00), there is an (N, §)-chain of time 7" € (T, c0)

from = to y. We say that x ~ y if x = y and y = x. We note that « ~ x for

each z € S, and that ~ is an equivalence relation on S. Define M df g / ~

and endow M with the quotient topology defined by ~. If z € S, we let

[z] def {y € S: y ~ x} be the equivalence class of x (the chain components of

S) and we define m(z) e [z]. Then

(6) M=JTuEu e

LeA LeN

where I'y = m(Dy) and &, = m{z € 0Dy : |Hyp(x)| = A} for all £ € A, and
[E] is a single point (we note that [E] = E). It is easy to see that for each
¢ e A, Ty is a one-dimensional open C* manifold (diffeomorphic to (0,1)),
and the points [E] and ®, are the limits of points in T'y. This makes M into
a stratified space [GMS88] if we enforce the ordering [E] < T’y and &, < T
for all £ € A (see also [Sow02] for another example of a Markov process on a
stratified space resulting from averaging). We note that (6) represents M as a

disjoint union of open manifolds and a collection of boundary points; the set

I Urea Te consists of the open manifolds. Note that T'x = m~(S°\ E),

and that S°\ E = (J,c, D7.
We also note that there is a homeomorphism between I' and a “wye” (see
Figure 2). Let {vy; £ € A} be a collection of unit vectors in R? such that for

each distinct pair £ and ¢’ of elements of A, v, and v, are linearly independent.
Define J: M — R? by

™ (e {'H”m'” if 2 € B for £ € A

0. ifxeE
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F1GURE 2. Chain Equivalence Reduction

where 0, is the origin of R%. The image of Jis the “spider” {0, }UUJ,c 5 (0, 1] ve.
Since J is a homeomorphism into R?, we can define the metric

def
®) d'(m(z),m(y)) = |I(z) -2yl wyeS

where | - || is the standard metric on R2. It is now easy to see that M is in
fact Polish.

Define now XM e [Xtne for all t > 0 and define the probability measure

Pi(A) WP (XM e A}, Ae B(C([0,00),M)):;

i.e., P>T is the law of the projection of the process t — X, onto C([0, 00), M).
It will not be hard to show

PROPOSITION 2.6 (Tightness). The P=1’s are tight in the Prohorov topol-
ogy on Z(C([0,00); M)).

The proof will be in Section 4. Thus it is appropriate to investigate the
existence and uniqueness of the limit lim._ o P, this limit being in the Pro-
horov topology. We want to show that in certain cases, this limit exists along
a subsequence, and can be identified as a certain Markov process. We note
that since [X] records only part of the location of X, P! is not Markovian
for € > 0. Our goal is to show that as € — 0, the limit is Markovian (and
thus that the discarded information can be replaced via effective coefficients).

As long as XM stays in I'y, it should tend to a process with averaged
coefficients. We define a linear averaging operator A : C(S° \ E) — C(Ty).
For ¢ € C(S°\ E), define

S 9(2)[E() |71 (d2)
Joe THG) T2 (d2)

for all [z] € [y, where || - || is the standard metric on 7T and where " is
standard 1-dimensional Hausdorff measure on T (we will later need to average

9) (Ap)([z]) =
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in E, but we will develop the notation for that later). If ¢ € C(S°\ E), then

T
(o)) = Jim 7 [ pla@)ds.  aes\E

Define an averaged diffusive operator (Zaef)([z]) o (A(L(f om))) ([z])

for all z € M\ E and f € C?*T5) (since I'y is a C*° manifold, fom €
C?(S°\ E)). We then expect that the limiting dynamics of X will be given
by the generator %, as long as it remains in I"y. It will be killed at the ®,’s,
so we should also impose the requirement that (ZLyef)(®¢) =0 for all £ € A.

The remaining, and most interesting, question is the limiting behavior at
[E]. The following was conjectured in [Fre96, p. 74|. Since L. is a nondegen-
erate elliptic operator on C?(T"y) we can consequently define the nonnegative
bilinear form (-,-), . on T"T'x by

(df,dg) o ([7]) = (Lave(£9)) ([2]) = f([2])(Laveg) ([2]) — 9([2]) (Lave /) ([x])

for all f and g in C?(T'y) and all [x] € Ty. We next define area functions for
each I'y. Let 572 be the standard 2-dimensional Hausdorff measure on T. For
each £ € A and each [z] € Ty, define

(10) De([a]) &

We then define the glueing operator 4, f def limg)— (], [w)er, (df, dDg>$}ave ([=])
if this limit exists.

Az €Dy [Hro(2)| < |Hre(z)|}

LEMMA 2.7.  Fiz f € C?(Tp) such that lim(,)_(g](Lave f)([2]) exists. Then
[z]el
4, f is well-defined for each £ € A. !

Proof. Same as that of [Sow03, Lemma 1.5]. O

DEFINITION 2.8 (Limiting Domain and Generator). Define

- {(f,g) €CM)x C(M): feC*Tr), g=Zavef on Iy,

2g([E]) A% (E) = Z%f, and g(®;) =0 for all £ € A} i
ten

The requirement that
(11) 29([ENA2(E) =D _%f
Len

is called the glueing condition. It means that [E] is “sticky” (see [HL81]); i.e.,
that, asymptotically, X* spends positive time at [E]. See also Remarks 2.13
of [Sow02] and Remark 1.7 of [Sow03] for some motivational comments.
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To formalize the theory surrounding 27T, let’s next make the usual setup on
the event space QF of C([0,00); M). Define the coordinate functions X (w) of
w(t) for all t > 0 and all w € Qf. For each ¢ > 0, define .7, & ¢{XT;0< s <
t} and define a sigma-algebra on Qf by ZT <" \/,_ .7/,

PROPOSITION 2.9. The operator /1 generates a strongly continuous, pos-
itive, contraction semigroup on C(M); i.e., there is a unique PT € 22(Qf)
which solves the martingale problem with generator <% and initial distribu-
tion d(,,). In other words, there is a unique P € 2 (1) such that IP’T{Xg =
[z0]} = 1 and such that for (f,g) € T, 0<r  <ry--- <1, <s<t, and

{ehi=1,2...n} cC(M),
) wt|{roeh - s [ otxd du}H o

where B denotes the expectation operator associated with PT.

The proof will be in Section 4.
To properly state our results, we need some restrictions on the ratio
def W1

b
w2

which is by assumption irrational. First, let’s construct the continued-fraction
expansion of g. Set

(13) |z] 4 ax {j€Z:j<z} and i(z) Lt |2]

def

for all z € R. Set lkl ,Q and recurswely define® k1 = for all n € N.

(k )
For each n € N, we then define k, % |kn |. For each j € N, define [[5]] ef 7,

and if we have defined a number [[j1,j2...jn]] > 0 for all (ji,jo...jn) € NV
for some N € N, we then define [[j1, 2. .. jns1]] = 1 + 1/[[j2.- .. jns1]] for
all (j1,42...-JN+1) € NN+ this will of course be positive. We then define

(14) ON déf [ﬂ_{17ﬂ_€2...ﬂ_€1\[]

for each nonnegative integer V. This is the continued-fraction expansion of p.

We can write gy of (14) as oy = 35\7)/3%) where 35\7) and ag\‘?) are relatively

prime integers; then ag\(,i) /" o0o0. For each positive integer N, define also for

future reference

def .
VUN = 0— 0ON;

N0
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then for all positive integers N,

1
(15) vl < <@
Ay ani1

Our main theorem is

THEOREM 2.10. Fiz v > 0. Assume that o is such that

721/14+~
(16) Jim (&)™ 40, ) o
Define
105/4+~/2
(17) ey (1 agg>)

for all N € N. Then limy_ o Pe~NT = PT,

Some of the reason why complicated exponents appear is given in Remark
9.6. We can in fact consider sequences other than that given by (17); see
Lemma 9.5 and Remark 9.6. Finally, we admit that the set of p’s for which
(16) holds is very small, and that the sequence of &’s for which we can get the
desired result is also very small. New approaches will probably be needed for
the full result.

Not surprisingly, the proof is a bit complicated. Our thoughts are orga-
nized as follows. First, we will prove the tightness and uniqueness claims of
Proposition 2.6 and 2.9. Both of these results are straightforward. The hard
part is convergence, which takes up most of our efforts. This starts in Section
3.

Dolgopyat and Koralov [DK] have a different approach to a related problem.

3. Notation

Here we collect some useful facts.
For A and B subsets of some topological space, we adapt the usual notation
that A CC B if A is a compact subset of B°.

3.1. Brackets. We first note that the generators .7, and . define brack-
ets—sections of T*R? @ T*R? and T*T ® T*T—by requiring that
(dfdg). (x) = (Ze(f9) (@) — f(2)(Leg) (@) — g(z)(Lef)(),
f,9 € C*(R?), z € R?,
(df,dg) (z) = (ZL(f9))(x) — f(x)(ZLg)(x) — g(x)(L f)(x),
f,ge C*(T), z .
Then (df,dg) (t(z)) = (d(f ot),d(got)), (z) for all fand g in C*(T) and all

z € R? and (df,dg),,. ([z]) = (A{d(f om),d(gom)))(z) for all f and g in
CY(Tp) and all = € Usea Pe. The brackets naturally appear when applying
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%, or £ to compositions of functions; e.g., for f € C%(T) and ® € C*(R),
we have that

ZL(@o f)(z) = d(f(2)(L)(x) + %‘i’(f(ﬂﬁ)) (df, df) (x)

for all z € T. We also note that the nondegeneracy assumption of (2) is exactly
that (df,df), (z) > 0 for all x € R? and f € C*(R) such that df(x) # 0.

3.2. Euclidean notation. Let’s also recall some PDE notation about
functions on subsets of Euclidean spaces.

DEFINITION 3.1. Suppose that F is a subset of some R?. For any fixed
nonnegative integer k, we say that ¢ € C*(F) if ¢ has all derivatives of order
k and less in F° and all of these derivatives are uniformly continuous on F*°
(in the relative topology inherited from R?); this is tantamount to requiring
that the limits of all of these derivatives exist at each point in OF.

Let’s next develop some Euclidean tools, keeping in mind the notational
convention set down in footnote 1. We let 0, = (0, 0) be the origin of R? (as
we did in (7)). Let (-, ). be the standard Euclidean metric on TR?, let V. be

the standard Euclidean gradient operator, let w, def dx1 Adzs be the standard
symplectic form on T*R2, and let V. be the standard Euclidean symplectic
gradient operator; e.g., Y, = V.H. Also, define ||z, o Va2 + 23 (as we did
in (8)) and n(x) dof 22+ 23 for all x = (21, 22) € R%. We have already defined
the Hausdorff measures 7! and #2 on T. Similarly, let JZ! and 72 be,
respectively, 1- and 2-dimensional Hausdorff measure on R?; i.e., then for any
open O of R? on which t|,, is a diffeomorphism, 7" (t(A)) = #."(A) for all
subsets A of O and n € {1,2}.

The natural Riemannian metric (-,-) and symplectic form w(-,-) on T are
defined from (-,-). and w, by requiring that (TtX,TtY) = (X,Y). and
W(TtX,TtY) = w.(X,Y) for all X and Y in T,R? for any z € R% Thus
w(4,X) = XHpy on Dy for any vector field X on T. Secondly, for any
z € t71(Dy) and any V € T,R?

w(Ut(2)), TV) =TtVHp, = V(Hreot) = we(Ve(Hr o H)(z),V)
= w((TtV.(Hr o t))(z), TtV),
so YU(t(z)) = TtV (Hr o t)(z), as we claimed in the discussion following (5).

3.3. Graph-valued notation. First, note that the D,’s can be divided
into two types, wells and peaks. We will call D, a well if Hr , is negative in
b. Conversely, we will call D, a peak if Hr ¢ is positive in Dy. Let Ay be the
collection of indices in A such that D, is a well, and let Ap be the collection
of indices in A such that B, is a peak.
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It £ € Ap, define 7, % (0,%), and if £ € Ay, define 7, % (—h,0). Fix

f € C(T'p). Then for each £ € A, we let f, € C(Z;) be such that f([z]) =
fe(Hro(2)) for all = € Dy.
Let now o and 3 in C°°(T) be such that

(18) o(t(x)) = (dH,dH) (z)  and  Btx)) € (LH)(2)
def

for all z € R?. We then define o) and B, in C(T'y) as oy = Ao and
B = AB (using (9)). If [ € C*(Ty), define (Z £)(h) = Jorare(h)fo(h) +
Base(h)fe(h) for each h € Zy. Also, define

def a(2) 104,
(19) o= /a @)

for all £ € A. Define also G, def apif £ € Ap and Gy def —apif £ € Aw.
It is fairly easy to see that if f € C(M), then (f, g) € &/ for some g € C(M)
if and only if
(ai) for each ¢ € T, f, € C(Z;) and f,(0) T im o fe(h) is the same for
heT
all £ € A, '
(a.ii) fo € C*(Zy) for each £ € A,

(a.ii) for each ¢ € A, D?;fg € O(Zy), and lim|h|_,h.$;fg(h) = 0, and
heZ,
def

(.,%ng)(O) = limp_o .,?;fg(h) is the same for all £ € A,
] heIl,
(a.iv) we have that '
T 2 _ a, 13 G
2L F)([E)A*E) =) a lim fe(h),
LeA heZ,

where (ZTf)([E]) is the common value of the (;f;fg)(O)’s.

Lemma 2.7 tells us that if (a.i)—(a.iii) are true, then the limits in (a.iv) exists;
thus the requirement (a.iv) simply asserts that these limits are related in a
certain way. If (a.i)-(a.iv) are true, then (f,g) € &/f, where g is uniquely
defined by requiring that g([z]) = (D%ng)(HT}g(l‘» for each z in each Dy; we
note that (a.iii) ensures that g is well-defined at [E] and the &®,’s.

3.4. Covering of T by R2. We define the usual metric on T; for 2 and
y in R2, define dp(t(z), t(y)) < infyeze ||& — y — kf|ge. Define &, : T — [0,1)2
by setting to((z1,22) + Z2) < (u(z1), (z2)) for all (z1,22) € R2. Then to i,
is the identity map on T. For each ¢ € A, define r§ &f to(xe).

We next lift Hp , back to H.

LEMMA 3.2. Let O be a connected component of t~1(D9). Then H(x) —
H(y) = Hr(t(x)) — Hro(t(y)) for all x and y in O.
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Proof. For any x € O and V € T,R?,
(20) VH = w.(V.H(2),V) = w(TtV H(z), TtV) = w(YU(t(z)), TtV)
= w(vHTvg(t(I)), TfV) = TfVHTj = V(HT,Z (¢] t);

thus dH = d(Hr o t) on O. Since D} is diffeomorphic to the open unit disk
in R2, it is arcwise connected.

Fix now z and y in O. Since Dj is arcwise connected, there is a piecewise
differentiable continuous map v : [0,1] — D$ such that v(0) = t(y) and
(1) = t(z). Since t : t71(D7) — DJ is a covering map, there is a lift 7* :
[0,1] — t71(D§). By definition of O, it is fairly easy to see that in fact
7v¢([0,1]) € O. By (20), we then have that

1

H(z) — H(y) = /t:o dH(5f)dt = /t:O dHr ¢ (Ye)dt = Hro(t(x)) — Hr o (t(y)),

which is the desired result. O

LEMMA 3.3.  There is a disjoint collection {Dy, £ € A} of open subsets of
T such that for each £ € A, Dy CC Dy and such that t is evenly covered over
Dy.

Proof. We start by collecting together some ideas from Arnol’d [Arn91].
Fix ¢ € A. Let Of be a connected component of t~*(D?). By Lemma 3.2,
we see that H is bounded on Of, so by the proof of [Arn91, Lemma 3|, Of
is bounded. Since D is locally connected, t(Of) = Dg, and hence t~(Dg) =
Of + Z2. Since the open unit disk and hence Dj is retractible to a point,
all of the OfF + k’s are disjoint. Since the D,’s are disjoint, OF and Of +

k must be disjoint for all distinct ¢ and £ in A and all £k € Z?. We next

claim that the constants d; = minge, distge (OF, (Of + Z2) \ 0F)) and ds def

ming, ¢rep, e ¢ distge (O,?f, 05 + Z2) are positive; as usual,
distg2 (A, B) e inf {||]z — y|lgz : z € A and y € B}
for any two subsets A and B of R%. Recall that the Of’s are bounded. Also
note that 0§ C t1(dDy), and thus that 0OF must be contained in the set
of critical lines of H. If d; = 0, then O§ N (00§ + k) # 0 for some ¢ € A
and k € Z?\ {0}. If do = 0, then 90§ N (0% + k) # 0 for some distinct
¢ and ¢ in A and some k € Z2. In either case, two critical lines of H must
intersect, contradicting the Morse assumption, and thus proving that d; and
do are positive.
Take now 6 < § min{dy,d>}, and define

D 1 (0§)° = {x € R? : ||z — y||g> < § for some y € OF}

and set D, def t(Dg). Clearly the D,’s are open and disjoint, and, since Dy is
open and contains Dy, D, CC Dy. Also, t : Dj — D, is surjective and t is a
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local diffeomorphism on Dg. To show that t is evenly covered over each D,
we need to show that t is injective on Df. If t(z) = t(y) for some distinct z
and y in D§, then x € D§ N (D§ + k) # @ for some k € Z%\ {0}. But then
dist(Oy, (95 + k) < 20 < d1 This contradicts the positivity of di, finishing
the proof. O

Finally, for ¢ : T — R, define
d(pot)

IDe(t)| ' max |Z252 ()|,
2 def 82(@0")
D p(t(x))|| = i v )

for all x = (21, 22) € R? such that ¢ is C* at t(x).

3.5. Local coordinate?. Let’s now construct some coordinate charts near
the t’s. Define H(xq,x2) I | (71, 2) € R2.

LEMMA 3.4. Fiz £ € A. There is a connected open neighborhood U of 0,
(in R?) and for each £ € A, a map ¢[ : L{ — ’JI‘ such that

(bi
( ) Les

o ~e ot — H is locally constant on t’l(q@g(l:l)),
o(U) cC Dy and U cC (—1,1)%.

Proof. Since tis a covering map, there is a connected neighborhood Oy of ¢y
and a connected component Of of t~1(Oy) o 18 a diffeomorphism.
4

Let &, : Oy — OF be its inverse, and define Hy(x) o H(te(z)) — H(te(ze)) for
all z € Oy. By Lemma 2.8 in [Sow05], there is a connected neighborhood
V, of r, which is contained in O, and a map & : V, — R? such that & is a
diffeomorphism from Vy to £ (Ve), &e(xe) = Oc, & o't is orientation-preserving,
and such that Ho & = H, on V,. The commutative diagram is thus

. H—H(t
fg(Vg) C RQ (—Z(H); R

e
ty t H
Ve C T—gZ)&(Vg) c R2

Since V, C O, t71(Vy) = t(Vy) + Z?, this being a decomposition of t~1(V,)
into disjoint components. For any z € t,(V,) and any K € Z2,
H(&(t(z + K))) = H(z + K) = H(&(H(@))) — H(z) = (@, K) g
= He(t(2)) — H(@) — (0, K)go = —H(te(re)) — (W, K)pe
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proving that Ho & ot — H is locally constant on t (V).

To complete the proof, let U be a connected neighborhood of 0, such that
U C (=1,1)2 N0 Nyen E(Ve N Dy) and set ¢y e &' on U. Since ¢,(U) C
Vi C Oy, tis evenly covered over ¢y ). O

. def ~_ def = o .
For convenience define ¢, = on Yon Uy = ¢u(Uh); ie.,

be
U c R2 U CT .
o]

Let’s next push various things through the ¢,’s, using Euclidean geometry
on R? as a reference. Note that

(TR 1)) = 13- (0) -

for all z = (x1,22) € R? and all f € C'(R?). Fix next ¢ € A. Define the
second-order operators ,;22@ and ,27; on C? (Z;{) and the bilinear form (-, >Z on
T*U by the formulae (Zf)(x) L (L(f 0 60))(de(2)), (ZEf) (@) E (L5(f o
$0))($e()), and (df, df); (x) = (Lof?) (@) —2f (2)(ZLef)(x), which we require

to hold for all f € C*(U) and all z € Y. We also define
ﬁg déf —d(¢£w) on Z/N[

dw,
Then
(21) TérU(u(x)) = ﬁix) V@), el

Indeed, fix z € U and 2’ € t'(¢y(x)). Then t(z') = ¢u(x) € de(U), and
de(t(z')) = 2. Fix V € T/R?; then

we(TéeU(de(2)), THTHV) = —

w(M(t(z")), TtV)

Bg(x)
! Y, ! = Lu) vV H(z' = 1
= éé(x)w(TtVeH(x ), TtV) = 5 (0) (VH(2'), V) 50@) VH
1 - 1 -
= mV(H ogpot) = mTWTWH
e (VR(e(t(@)), TTE) = ——wo (Vo H(x), ToTEV).
Bé(x) Bg(l’)

Since T¢; and T't are full rank, T¢,TtT,,R? = T,R?, and we have (21). From
(21), we have that
. 1
(Zif) @) =

m(veH, Vef)e(®) + (Zf)(x)
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Cv CA

FIGURE 3. Cutofl Functions

forall z €U, e € (0,1), f € C2(U), and £ € A,

3.6. Useful functions. Next, let’s fix some cutoff functions. Let ¢\ €
C*(R; [0, 1]) be even and such that supp ¢, C (—2,2) and such that supp(1 —
cn) C R\ [—1,1]. We then define ¢ ) cps see Figure 3. Then ¢y (z) = 0 if
|z| <1, and ¢y (2z) = 1if |z| > 2. Note that ¢, = —¢5 and ¢, = —¢x, and that
both ¢, and ¢, have support in [—2,—1] U [1,2]. Thus, there is a constant
K95 > 0 such that

(22) en(2)| + [6A()] < Keamen ()

for all z € R. Define [(z) e In(e + |#|71) for all # > 0. Then [ > 1 and
((z) ~ In; when x — 0. Next, define z~ ' min{z,0} for all 2 € R,
For z € R, = < x. Thus, for z and y in R, z +y > = 4+ y~; since
x” +y~ <0, we in fact have that = +y~ < min{z +y,0} = (x +y)~. Since
1y~ = |ylx{y<oy < |y| for all y € R, we in fact have that

(23) 0<(z+y)” =2z —yl

for all z and y in R. Finally, define s(z) dof x/|z| for all z € R\ {0}, and for

consistency, define s(0) &f,

4. Tightness and uniqueness

4.1. Tightness. We first prove Proposition 2.6.

For each w € Q, {X;(w); t > 0} is a continuous path in T. Furthermore,
the map w — X (w) from § into C([0, 00); R?) is measurable (where we endow
C([0, 00); R?) with the topology of uniform convergence on compacts).

Let’s lift the process X to R2. Define Q, < {we Q: Xo(w) = o}
(the point z, was chosen in Definition 2.4), and note that Q, € .#y. Define

e LY (2,). For w € N, let {X¢(w); t > 0} be the lift of {X,(w); t > 0} to
T For w € Q\ Qo, define X7 (w) ef x¢ for all t > 0.

LEMMA 4.1.  The process {X¢; t > 0} is adapted to {F; t > 0}.

Proof. Fix T > 0. Tt suffices to show that the set Ags(o° def {w
[ X€(w)— ¢l (o, 1ym2) < 6} isin Frp for all ¢ € C([0,T];R?) and § €
(such sets are a base for the topology of C([0,T];R?)).

(0 1/2)
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If |of — x5l|gz > 0, then As(¢°) = 0 € Fr. Thus, we henceforth assume
that ||@§ — 2¢||lrz < §. Then As(¢°) = (As(p®) N Qo) U (As(p®) \ Qo). If
supo<i<r 9§ =25 [|r2 > 0, As(0®)\ Qo = 0, while if supy<,< [|0f —2§|rz < 6,
As(09)\ Qo = Q. In either case, As(¢°) \ Qo € Fr.

Set now ¢ %ef t(f) for all t € [0, 7], and define the set

Bs(6) ¥ Qo n{weQ: sup dp(Xi(w),p) < 6}
0<t<T
We claim that As(¢°) N Qs = Bs(p). Since dr(t(z),t(y)) < ||z — yl||gz for
all  and y in R?, As5(¢°) N Qs C Bs(p). To show the reverse inclusion, fix
w € Bs(p), and define

I(w) € {t e [0,T] : |Xf () — ¢ |lzz < 0}

Continuity implies that I(w) is an open subset of [0,7T]. If ¢t € [0,T] is such
| X7 (w) — ¢f||gz > J, then by continuity it is in the interior of [0,7]\ I(w).
Consider finally ¢ € [0, 7] such that || X§(w) — ¢¢||rz = d. Since § < 1/2, there
is an open neighborhood O of ¢ (in [0,7]) such that || X¢(w) — ¢¢||ge < § for
all s € O. For all k € 72\ {0},

e e e e 1 1 e e
1X5 (@) =it kllre 2 [lk]lre — I X5 (W) =¢lllre 2 1-5 = 5 > [1X3(w) ¢ ]lee,

50 || XS (w) — ¢Sllre = dr(Xs(w),s) < 6 for all s € O. We conclude that
[0,7]\ I(w) is open (in the topology of [0,T]). Since by assumption 0 € I(w),
the connectedness of [0,T] implies that I(w) = [0,T], and hence that w €
As(0°) N €, This implies that Bs(p) C As(¢®) N Qo, and hence finishes the
proof that As(p®) N Qs = Bs(p).

Clearly Bs(p) € Zr; collect things together, and the proof is complete. [

The main idea of the proof of tightness is that if X varies a lot, then so
must H(X¢), but we can control the variation of H(X®) by standard means.
Recall the metric on M defined by (8). Our first claim is the following.

LEMMA 4.2. Fiz T >0 and p > 0. Then there is a p/ > 0 such that for
any n € (0,1),

(24) quweQo: sup |H(X () (W) = H(X () (@) < pf
0|§S§|t<§T
s—t|<n

clweQy: sup d(XMw), XM(w)) <pu
0<s<t<T
[s—t|<n
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Proof. Assume not. Then for each n € N, there is an 7, € (0,1), an
wp, € Q and an s, and a t, in [0,7 A e(w,)] such that 0 < s, — t, < 7, and
such that

e € 1
sup IH(XS (wn)) = H(XG ()] < —,
0<s' <t/ <TAe(wn) n
(25) |s"—t"|<mn
4 (XM (), XM (w0)) > .
Since X, (w,) and X;, (wy,) are in the compact set S for all n, we can extract
a subsequence {ny; k =€ N} of N such that z} ECR T Xéwk (wn,,) and
2 limy o X! (wn,) exist. We note that by continuity df([z7], [z}]) > p.
The triangle inequality implies that max{d'([z}], [E]),d([z}], [E])} > u/2.
We now define the open set

o def .
= {2 € M:d'(z [x7]) < u/5}
Uf{zeM:dl(z[z}]) < pu/5}U{z€M:d(z]E]) < u/5}
Note that O is open and thus M \ O is compact. We cover M\ O. Fix
z € M\ O. Then z € m(Py) for some ¢ € A. It is easy to check that M\ m(Dy)
is a closed set which does not contain z. Thus there is a p, € (0, g—‘o‘) such
that 1. < dist” (z, M\ m(Dy)), where, as usual, dist(z, A) & inf,c 4 df (z,y)

for all points « € M and all subsets A of M. Define then O, < {z/ e M :
di(2',2z) < p./3}. By compactness there is thus a finite subset A of M\ O
such that M\ O C U, 4 O-

Now let k£ € N be large enough that

dNXY () i) < L5 and T (wa), [57]) <

10 e 10°
Then
dt(xM N > gt ([ Y _ (XM M 9£
(Xt,, (wny), [26]) = d'([za], [23]) — d"(Xe, (wn), lg]) 2 0= 15 = 15

Hence there is an 7} € (s, ,tn, ) such that df (XM ¢ (wny)s [23]) = p/4. Thus
AN (XM (wn, ) [23]) = p/4 > p/5 and

At (XY (on) [33]) > df (sl ) — df (XM (o, ) Tl 2 = B = 2
d' (X} (wn,), [E]) = d (2], [E) = d' (XY (wn,). [e]) > § =5 = B> £

Thus XY (wy,) € M\ O and thus is in O, for some z € A.
We consequently have that df (X,f\f(wnk) z) < B2, and since z € M\ O,
bR 2

dT(XtZV,LIk (Wny),2) 2 dT([xZL z) — dT( tny (Wny), [3]) = 510 = 10 > 3
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Thus there is an r5 € (r],t,,) such that d'(XM(wy,,),2) < 2% for all s €
[r1,75) and d (X} (wn,), 2) = 2= Let £ € A be such that z € m(D,), and
let z € B, be such that m(z) = z. Then

|HT,Z(X7“; (wny)) — Hr E(XT (Wnk))|

> [Hr (X3 (Wn,)) = Hre(@)| = [Hre(Xos (wn, ) — Hre(2))]
20 W 1
2 dT( (wnk)vz) ( N[(wnk)az) 2 32 32 2 gznéf;‘

We can now move back to H. For all s € [r],73),

dist’ (X (wn, ), M\ m(Dy))

> dist! (2, M\ m(®0)) — &' (X} (), 2) > p ~ 2% >0,

Thus XM (w,,) € m(Dy) for all s € [r},r3). Since m~1(m(D,)) = D, C DY,
Xs(wn,) € D} forall s € [r},r3). Let O be a connected component of t~1(Dj),
and let z° € O be such that t(z°) = z. Then necessarily X¢(wy, ) € O for all
s € [r,r3). By Lemma 3.2 and the continuity of H and Hyp g,

lim [HXS (@n ) = HOXS (@00))

k— o0
. 1
Z h_m !HT,Z(X’I‘; (wnk)) - HT,Z(XTI (wnk))’ Z § g
k—o00 Z
This violates the first claim of (25), proving that our assumption is incorrect,
and thus proving the lemma. (]

We now can give the

Proof of Proposition 2.6. From (24), we have that

(26) sup P*° sup dT(XsMaXtM) >
0<e<1 0<s<t<T
[s—t|<n

< sup P°q sup [H(XY,,) — HXP, )| = 1/
0<e<1 0<s<t<T
[s—t|<n
for each € (0,1) (use here the fact that P¢(Q,) = 1 for all € € (0,1)). We
now compute that

tAe

H(Xte/\e) = H(Xg) + ﬁ(Xs)ds + Mt/\e )
0
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where M is a P*-martingale with quadratic variation

(M), = /Ot o(Xy)ds, t > 0.

Standard results imply that

lim sup P* sup |H(XSA,) — H(X )| > w3 =0.
1—00<e<1 0<s<t<T
[s—t|<n

Combining this and (26), we get that

lim sup P=f sup dT(X;L,XtT) >pp =0,
n—00<e<1 0<s<t<T
ls—t|<n

which is the claimed tightness. O

2. Uniqueness. We next prove Proposition 2.9. As usual, we endow
C(M) with the topology generated by the || - [|ca) norm, and we define
P(/h) S : (.9) € ) and B~ ) £ (A —g: (f.9) € /).
According to [EK86 Theorem 4.2.2], we need to prove three things: that
P (/1) is dense in C(M), that /1 is dissipative, and that 2(\ — <) is dense
in C(M) for some A > 0. We begin with

LEMMA 4.3. The set P(o/T) is dense in C(M).

Proof. Fix f € C(M). We will kill the variation of f near [E] and the ®;’s
and replace the fy’s by smooth approximations. Note that smooth functions
which are flat near [E] and the ®,’s are in 2(/T). For each n € Nand £ € A,
let fi,.0 € C°(Z;) be such that |f;(h) — fn,e(h)| < 1/n for all h € Z; such that
1/(2n) < |h| < h—1/(2n). For each n € N, define

fulla]) % Z xp, () {fne(Hro(z))ey (nHro(x))ey (n(Hro(x) — R))

LeAp
+fe(R)en(n(Hre(z) — R))}
— Y X0, (@) {fue(Hre(@))ey (nHr o (2))ey (n(Hr () + 1)

LeAw

+fe(=h)en(n(Hro(x) + 1))}

{1 =Y xp, (@)ev(nHr(x ))}

leA
for each 2 € S and each positive integer n. Note that f,, € C?(I'y). Thus, we
define g, ([z]) def (Lavefn)([z]) if z € T and otherwise we set g, ([x]) = 0. It is
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fairly clear that (fn,g,) € & forall n € Nand that lim,, o || fn—f|lcou = 0.
This means that we have approximated an arbitrarily-chosen element of C(M)
by elements of Z(a/T). O

LEMMA 4.4. The operator </T is dissipative.

Proof. From [EK86, Lemma 4.2.1], it suffices to show the positive maxi-
mum principle. In other words, fix (f,g) € &7 and assume that z* € M is
such that f(x*) = maxgep f(x) > 0; then we must show that g(z*) < 0.

If 2 € Jycp ®¢, then by definition of @1, g(x*) = 0. Assume next that
x* € T'p. Since Z,ye is local and can be represented by a strongly elliptic
operator on the I'y’s, we must here too have that g(z*) < 0. Finally, assume
that «* = [E]. By assumption that f attains its maximum at z* = [E], we
have that 4, f < 0 for all £ € A (use the same argument as in the proof of
Lemma 4.4 of [Sow03]). Thus 2g([E])#" (E) = Y ,cp % f < 0, which gives us
the desired result. O

Finally, we prove
LEMMA 4.5. For each A > 0, Z(\ — /1) is dense in C(M).

Proof. Tt suffices to fix a ¢ € C(M) such that ¢, € C=(Z;) for all £ € A,
and a A > 0 and find an (f,g) € &/ such that

(27) 9([z]) = M ([z]) = ¢([z]) 2z eM

(we have reversed signs to make the ensuing PDE’s look more standard). We
separately consider several PDE’s on each of the Z,’s. For each £ € A, define
¢, ¢, ,, and ¢, , as the solutions of the PDE’s

L, — A, = e on Iy, lim ,(h) =0, and  lim ¢ (h) =0,

|h|—h
heT, heZ,

Ll =Moo =0 onTy limg,(h)=1 and lm ¢,,(h) =0,
heZ, heZ,

Ly, — My, =0 onIy, lim @, ((h) =0, and VHI_I)IH By o(h) = 1.
heZ, heT,

By standard results (see [Fel55] and [Fel57]), all of these PDE’s have solutions;
furthermore, by standard smoothness results [Eva98, Theorem 6.3.6], these
solutions are infinitely smooth. Also, by standard arguments (see Lemma 1.5
of [Sow03]), all of the (LZ(O)’S, (i)a7e(0)’s, and (i)M(O)’s are all uniquely defined
by continuity.

def

Let’s next define some constants. Set Cg, = —%w(h) for ¢ € Ap
def 1

and set Cg o = —x@i(—h) for £ € Aw. Next, define C’ & 2AH2(E) —
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Y e égci)a 2(0)' We claim that C” # 0. Indeed, consider the function

ZXDe b, o (Hre(z)) + x (g ([2]), x €8S.
ten

If ¢’ = 0, then (as one can easily check) (f,,\f.) € &T. By dissipativity,
0=[[Ao—=Afolleary = All folleay, so in fact fo = 0. Since clearly f, # 0, we
must conclude that C” # 0 We now can define the last constant; set

def 2_ten Gre(0) + 3 sep Co eSedy, ,(0) — 200([E])- 772 (E)
Lo & .

Co

Finally, define
=> xb,(@){t,(Hro(2)) + Cod, ,(Hre(2)) + Co ety (Hre(z))}

eA
+ Coxg ([])

for all [z] € M, and define § ¥ \f + ¢ We claim that (f,g) is in & and is
a solution of (27). We can easily check that f € C(M) and hence § € C(M).
Clearly f € C?(Ta) and Zyyef = §on T'a. Thirdly §(®¢) = A\Cs ¢+ @e(h) = 0
if £ € Ap and §(®¢) = A\Cg ¢ + we(—h) = 0if £ € Ay. Finally, we can check
that

2%(E) {ACo + @([E])} = > ard,(0) + Co > Grd, ,(0) + Y CaeGedh, ,(0),

LeA LeA LeA
which implies that the glueing conditions hold. O
We have
Proof of Proposition 2.9. Use the above results and [EK86, Theorem 4.2.2].

O

5. Outline of the proof of convergence

We next organize the proof of Theorem 2.10. Intuitively, there are three
things that we must understand:

(c.i) When the process is not near [E], we can use stochastic averaging.
(c.ii) The process “sticks” in [E] in some quantifiable way.
(c.iii) When the process leaves [E], it does so according to the stated glueing
conditions.

We want to analytically extract these behaviors via arguments which start
with Definition 2.4 and lead to (12). The hard work in proving Theorem 2.10
is in constructing various analytical characterizations of (c.i)—(c.iii). This will
take up the body of this paper. To organize our reasoning, we will in this
section simply state the main technical lemmas we need, and then put them
together to prove Theorem 2.10.
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Let’s now fix once and for all (f,g) € «/T. Then we have that

f(m(z)) =Y fe(Hre(2))xp, (x) + f([E]) xe ()

LeA

g(m(@)) =Y ge(Hre(@))xe, (@) + g([E]) xe ().

Le

By definition of &7, fomis C? on S\ [E].

r €S

REMARK 5.1. If fom € C?(S) (which in general will not occur unless the
fe(0)’s are all identically zero and hence ¢([E]) = 0), then

tAe

E° {f(Xi” )i — [

(2 (f om))(Xu>du} I]es%.)| =o0.
j=1

Thus

S

E° {f(XtM) — f(XM) - /tg(X%dU} f[lw(Xm)

= | [ (@ om)x) — gmx)}du ] ()

Ne

and we want to show that the right-hand side tends to zero as ¢ — 0. Away
from [E], this should be standard stochastic averaging (item (c.i) above). The
more interesting behavior is that near [E]. When X hits [E], how long does
it (asymptotically) stay there, and how does it (asymptotically) go back into
one of the I'y’s? These behaviors cannot be identified by functions f € C(M)
such that f om is smooth (similarly, one cannot distinguish between killed
or reflected Brownian motion by looking only at functions which are locally
constant near the origin). We need to look at more general f € C(M); in
particular, we need to look at f € C'(M) such that Zyef is well-defined and
continuous (particularly at [E]) but which may have discontinuities in the first
derivatives at [E] (for the general theory of diffusions on a bounded interval,
see [EK86, Chapter 8.1] and [Man68§]).

We will use a perturbed test function to make the above thoughts work.
We will see that the glueing conditions ensure that we can construct such a
family of perturbed test functions. The crucial result is the following. Define

FUED + D fe(0)Hr,e(x)xp, (2)

LeA

def

fouter ((E) =

for all x € S. As we will see, this is a good approximation of f om near E.
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PRrROPOSITION 5.2 (Corrector Functions). Assume that (16) and (17) hold.
Then there is a sequence (U%;e € (0,1)) of functions such that for each
N €N, U + fouter is in C?(S) and such that

4 EN —
i %Y les) = 0,

We will construct ¥¢ at the end of Section 9.

(28)
lim E°&V
N—oo

[ o) - e du}] =0

for all 0 < s < t.

REMARK 5.3. Neglecting complications, we should roughly have that

(29) M(f ,9) é (XJW) / (XM)d

/
{fom (Xene) + U5 (Xine)
[@oms W) ()| W5 (i)
N / T om) (X, — (g0 m)(X)) xs\e(Xudu

- (27 (X,) — g((E)xe(Xa)} du

Since f om is constant on E, Z°(f o m) vanishes there. The martingale
problem ensures that the term in braces is a martingale. The first claim of
(28) implies that ¥% should be asymptotically negligible. Stochastic averaging
should show that the third line is also small. Finally, the second claim of (28)
should imply that the last line is asymptotically nonnegative. Thus M (/+9)
is asymptotically a submartingale. Since 7T is a vector space, it contains
(—f, —g). Thus the exact same arguments show that M(—f—9) = _N(/:9) ig 5
submartingale, so M (/9) is asymptotically a martingale (cf. the submartingale
problem of [SV71]).

Notice that in contrast to standard applications of perturbed test function
theory, where the perturbed test functions primarily help us average, here
they also help to interpolate between a smooth state space and a singular
one. Notice also that the perturbed test functions need not be unique; they
need only exist.

To start to make the above thoughts precise, we would like to look at the
test function fom+ U5 To control the third line in (29), we need to average
Z(f om); to do so, we need Z(f om) to be twice-differentiable. Since the
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definition of 7T does not ensure that these higher derivatives exist, we first
need to approximate f (as we did in [Sow02], [Sow03]).

LEMMA 5.4. There is a collection {f2; £ € A,6 € (0,1)} of functions and
a constant K > 0 such that for each ¢ € A,
(di) f¢ € CY(Zy) N C*(Ty) for all § € (0,1),
(dii) f7(0) = f([E]) and f{(0) = fe(0) for all § € (0,1),
(diif) lims—o ||} — fello@,) =0,
(div) lims_o | L) 2 = gellcz,) =0,
and such that for all § € (0,1) and h € I,

df i i 7
ld_li(h) <K, d—,;m)\éwh% 0 <’“’—m
(30) d'ft
fi K

< .
dh? (h)’ = 52n

The proof, which requires some careful but standard mollification argu-
ments, is at the end of this section.

Fix now an exponent » € (0,2/9) and define the relaxation parameter

5. Y ex forall e € (0,1). For € in (0, 1), define now

Fo(2) < 37 12 (o) v, (@)cy (H%“)

leA
+ fouter(2) {1 > xe,(@)ey <HT5£E(IC)> } + U5 (2).

LeA

LEMMA 5.5.  We have that lim._q || f om — F¢|[¢(s) = 0.

Proof. Use the first claim in (28), (d.iii) of Lemma 5.4, and the continuity
of f at [E]. O

For all x € S and ¢ € (0,1), we then have
6
(ZF)(2) = g([a]) +)_ &5 (@),
j=1

where

6220 2 S {2 o)) (Pl e

LeA

< o(2) € (2°05) (@) — g([E])xe(z),
HT,g(JJ)

500 S (L howr)(@) = o) (P4 ) v, 0),

Le
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) -5 g (M
6550 ™ = 3 st (M) xou 0 {15 (o)) = fonal) (0,
ten TTE €
fol0) = = 3 e (M) v (o) {7 (o) e ) (0
ZEA g g

— (dfouter, dHT ) (1)} .

Let’s bound the various error terms. The whole point of Proposition 5.2 was
to bound &7 5. We will take care of &7 ; below in Lemma 5.11 by averaging.
To start to take care of the remaining error terms (which are all concentrated
near OE), let’s first state a residence-time result.

) 6000 {7 () = Fosee)} B2,

LEMMA 5.6. There is a K56 > 0 such that for all t > 0,

> E U_ e 2 (H”T(X“)> o (Xu)xp, (Xu)du} < Ks.6(141)4,

LeA

3 E [/L_ecA<H” )\/—xm du} < Ksg(l+4)V6

LeA
for all € and ¢ in (0,1).

The proof will be given in Section 8.
We can now prove

LEMMA 5.7. We have that

tAe
lim [E® [/ |&2 (X)) du} =0
e—0 w=0 ’

for all i € {4,5,6} and t > 0.

Proof. As in the proof of Lemmas 7.11 and 7.12 in [Sow03], we can {ind a
constant K > 0 such that

25 (Hre(@)) — fouter (z)] < K |Hro(2)[P1(|Hro(2)]),
|02 (Hr (@) — fo(0)] < K|Hpo()|I(|Hr,e(2)])

forall £ € A, z € Dy and € € (0,1). Recall (22). Thus there is a K > 0 such
that

65 (@) < KD.1(2),
i) < K10 Do (M5 ) (o), o),

Le
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2ol < K10 Y en (M55 ) e, 2)

LeA

forall ein (0,1), £ € A, and x € B,. We now use Lemma 5.6 to get the stated
results. 0

To bound &7 5, we need a slightly stronger bound on residence time near
OE.

LEMMA 5.8. There is a K > 0 such that for all t > 0,

o [ (B4

CeA =0

2/3
1
€anti19Nn

for all € and & in (0,1) and all N € N such that § > /3.
The proof will be given in Section 8.

LEMMA 5.9. We have that

tAe
lim E°V { / yg;g(xu)\du} _0

N—oo u=0

for all t > 0.

Proof. .2 fouter and g are bounded. Apply Lemma 5.8. Note that 6. > £2/3.
Also, note that

105/4+~—1 101 /4++
lim sNa(d) = lim L = lim L =0
N—oo N N—oo a(d) N—oco a(d) ’
N N

(d)\105/4+~/2—1 (d)\101/4++/2
Noeeyayiay’ Vo aNt1 Nmee aNt1
where in the second line we have used the fact that 101/4 < 721/14. O

Next, let’s average in the D,’s. For ¢ € C%(S\ E) and ) € (0, 1), define
O —/t e Mp(i(x))dt, weS\E
Then we have

LeMMA 5.10.  Fiz ¢ € C°°(T). Then there is a K > 0 such that
|92 — {p — Ap}| < KAI(|Hrl),
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K K K
P < — D3| < d D23 < ——
‘ e 1=\ H © H = )\2|HT,€| an || © || = A3|HT7Z|2
on By for all £ € A.
The proof will be given in Section 8.5.
LEMMA 5.11.  We have that
tAe
lim E2 [/ jl(Xu)du} —0
£—0 u=sAe
for all 0 < s < t.
Proof. For all € in (0,1) and z € T, we have that
(31)
Hro(x
a(o) = @ { (I e — b oo (P ) vo ),
LeA €
where
o/ def ; . Hro(x
£ Y {2 o Hra) - (o)} (T ) o, ()

LeA

for all x € S. We use (d.iv) of Lemma 5.4 to bound the second term on the
right of (31).
We now appeal to Lemma 5.10. For € € (0,1), define

X5(0) = 50 {7 ()85 () + 372 (e 855 () 20,0
LeN

for all x € S. Combining Lemmas 5.4 and 5.10, we have that for some K; > 0,

905 — { L} 0 Hro) = (4] £77) © Hire | < Krbal(Hr),

(32) Kil(e) K K
1§ < =2, DY) < e IDPYS) <
75| < 5. | il < 5§|HT,€|2 I ill < 5§‘HT,€|4

on By for all £ € A and all € € (0,1). For all € € (0,1), define now

130) 2 Y i (M) vo )

LeA

for all x € S. Thus for all z € S and € € (0, 1),

5

(Z°T5) (@) =1 (2) + Y v i(@)xo, (),

i=1
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where for all £ € A and = € Dy,

By 1 (7 Z{ Ui

LeA

5a(0) = ~5 YT in (M4 ),

€ teA

5 ol0) = 5 3 T (122 o),

€ LeA

EZ4 = EQZ gTE (HT;(I‘>> 3

éeA

Bg,5(® =——Z (dY5,dHr ) (z)in (H%;(x»

0c LeA

We now return to (32). We see that there is a K > 0 such that

e21(e) e21(e)
@) S KBl), e S Koo (e)] < oS
g2 g2 e2l(e
B <EaT )| <EoTp  and [Th)| < Ko
g £ €

for all z € By, £ € A, and € € (0,1). Thus there is a K3 > 0 such that for all
€ (0,1),

2[ 2[ 2[ 2 2
< Ks(1+1) {“"(Sﬁ +00(e) + & 525) + 2 5(5) + % + g—}

< 6K3(1 +1) {5€+5_j}[<5),

€

The requirement that s < 2/9 allows us to complete the proof. (]
We finally collect things together.

Proof of Theorem 2.10. Fix (f,g) € g 0<r <ryg---<r,<s<tand
{37 =1,2...n} C Cp(M) such that ||o;]lcan <1 for all j € {1,2,...n}.
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Then

Ef {f(XtM)—f(Xé”)— [ atx } H% (x2)
I tAe n +
| [ (@ ) - oKD i (me%)) ]

+

=sAe

= 2||F* — fomlcmn

> E° { /ut_A:M«fFf)(Xu)— (X, }du} (H% ﬂ

—2||F°—fo mHC(M)

=sAe

> E* { / e {(fFE)(Xu)—g([Xumdu} ]—2IIF€—f omfcan-

Let N — oo and use Lemmas 5.5, 5.7, 5.9, and 5.11 and the second claim of
(28). We get that

(33)
+

i |51 - e - /tg<xy>du} I[ex) | >0

N—o0

Since &/ is a vector space, (—f, —g) € &1, so the fact that (33) holds for all
(f,g) € &1 implies that

{f(XtM)—f(Xi”)—/s X“du}(ﬂ% ﬂgo

for all (f,g) € &/T. The combination of this and (33) implies that

lim [E®~
N—oo

+
t
. en My _ My _ M) _
Jim E {f(Xt )= i = [ o }(H% (X} ) ] 0.
This clearly implies the stated claim. O

5.1. Proof of Lemma 5.4. The proof heavily uses the arguments of Lem-
mas A.6, A.7, and A.8 of [Sow03].

Proof of Lemma 5.4. The proof is similar to that of Lemma 7.6 of [Sow03].
Fix ¢ € A. Define
r: B(2) 1
h) = / ———— " (dz),
B]W,f( ) 2€D, ||VHTK( )H ( )

Hr ¢ (2)=h
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~ o(2) 1

by 7%

oare(h) 2€0; [ VHyp(2)]] )
Hr ¢ (2)=h ’

Y d)
020 VRG]

for all h € Zy; then By o(h) = By e(h)/Te(h) and oare(h) = G ar,e(h)/Te(h)
for all h € Z,.

Let’s next get some bounds on o7, B M0 ’f}, and their first two deriva-
tives. Lemma 5.1 of [Sow03] gives bounds on 7; from above and below and
on the size of the first two derivatives of 7;. Note that o /||VHr | is bounded
and positive on T \ X. Arguing as in the proofs of Lemmas A.8 and A.9
in [Sow03], we can get bounds on & from above and below. Clearly
\,@Mj(hﬂ < IBllerZe(h) for all h € I, giving us a bound on the size of
BM’E. Directly using Lemma A.7 of [Sow03], we can bound the size of the

first two derivatives of 3 e and oy . Collecting all of this together, we can
find a K > 0 such that

1 - do e d?G e K,

— < h) <K ~(h)| < Kql(h —(h)| < —

S o < £, |G| < e, | C )| < 5
~ By, K, d*Byry K,

) < —_— < = e < =
|ﬂ]\/[,€(h‘)| = Kl[(h’)5 ‘ dh (h) = ‘h| ) dh (h) = |h|2a
(h) -~ o K, |7, K
- <L h Kil(h —(h)| < — —(h)| < —
Kl >~ E( )7 1( )7 dh( )‘ = |h|7 dh ( ) = |h‘2

for all h € Z,.
Combining things and using Lemma A.8 of [Sow03], we can find a Ky >0
such that

1 K2 dG'Mg K2
< h) < —= £ (R _
o <70 < G5 |G| <
dQO'M,Z(h) < K>
an? OIE

for all h € Zy. By calculating as in the proof of Lemma A.8, we can find a
constant K3 > 0 such that

1Bare(h)| < K3,

Brrs L
%<w§&{mmﬁﬂwm}

d*Bor e

AL ()| < K

1 (h) ((h)
—3{mww+ﬁmwv+ﬁmmw+wmm$
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for all h € Zy; thus there is a K4 > 0 such that

dBr e K,
ah ()|l

We finally define f{ as in the proof of Lemma 7.6 of [Sow03]. We can then
find a constant K5 > 0 such that

34) [ <Ks, 1PV <Ks, and  |f0P(h)] < Ksl(h)
for all h € Zy. There is then a constant Kg > 0 such that

5.03) (1) < K. LRSS S
and thus a constant K7 > 0 such that
K~

5,(3)
(35) [fe™ 7 ()] < ohl

for all h € Z,. From this, we can find a Kg > 0 such that
5,(4) <K i 1 1 1
e ()l < “m{ﬁ+Kth%wmw+Pwmwlw

{1 )

Ky

OIS

B e
a2 (h)

N

and

WMNM<K@‘ <w<

and hence there is a Kg > 0 such that
Ky
52| 2
for all h € Z,. Combine this, (34) and (35) to get (30). O

1170 ()| <

6. Relaxation of the Hamiltonian

We now construct a sequence of approximate Hamiltonians on R2. The
salient features of these will be that they generate a flow on T which (i) agrees
with Y on the B,’s, for which (ii) all of the r,’s are on the same heteroclinic
cycle, and (iii) the flow is periodic on E except on this heteroclinic cycle.

First, recall Lemma 3.3. For each ¢ € A, let D§ be the connected component
of t71(D,) which contains r§. Then t D is a diffeomorphism; we let t, be its

inverse. For each ¢ € A, we can find an open subset D; of T such that
D¢ CC D, CC Dy. Define D¢ % §(Dy) and Dy ' (D)) for all £ € A. For
each £ € A, let @, € C=(R?;[0,1]) be such that @, = 1 on D;° and w, = 0
on R?\ Df.

Next, fix £ € A. Since p is irrational, there are integers J ](\})e and J](\?)@ such

that
H(x7)
w2

Jho+ IS5, - < |vnl*
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def

Define now Jy = (Jj(vlfg, Jf\i)e) and Hy ¢ ey (z; — In,e). We note that thus

H e
v = H(EE) = Jwn — TP = wp {% Y-S, }

SO
(36) [riv,e| < fwollvn ],

Defining e; % (1,0) € R?, set

~ def
HN(J;) = W2 _<$7e1>R2+ E LTJZ(JJ—K) <Z‘—K—JN75,61>R2
Kez?
e
— E wz(m—K)w, r € R%
UN
Kez?
e

We then define a perturbed Hamiltonian and a perturbed frequency vector;
set Hy () def H(z) + VNHN(x) for all z € R? and set wy def woe VN =
(w20N,w2).

LEMMA 6.1. Fiz a positive integer N. For any x € R? and K € 72,
Hy(z 4+ K) = Hy(2) + (wn, K)ge. For any £ € A and any K € Z?, Hy =
H—rn —wovn (e1, In + K)o on Dy + K. In particular, Hy (£ —Jn ) = 0.

The proof will be given at the end of the section.

Analogously to (1), we now define the vector fields Y. n def V.Hy and
I:IE_N def mHN, and (similarly to (3)) we then define vector fields Yy and Yy
on T by requiring that (Une)(t(z)) = (Yen(p o t))(z) and (Uyep)(t(z)) =
(Uen(pot))(z) for all ¢ € C®(T) and = € R?. Then
(37) Uy =Y +vyUy

for all N € N.

LEMMA 6.2. For each £ € A and N € N, Uy = U on J,cp De. Fur-

thermore, SUpyey et |9 (2)|| < co. Finally, for N large enough, {z € S :
Uy(z) =0} ={z € S:Y(z) = 0}.

The proof will be given at the end of the section.
Let 3V be the flow of diffeomorphisms of T defined by

V(@) EUayGN@) t=0

N zeT
30 (v) =
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FIGURE 4. vy and Cyn

By Lemma 6.2, 3 = 3; on Usea De for all ¢ € R. Let now ~y denote chain

equivalence with respect to 3V, and let [z]x o {/ € T:2' ~n 2} for all
x € T. Since 3V = 3 in the B,’s and 3 is periodic in By, all points in all of
the By’s are chain-recurrent and {[z]y : € D} ~ (0,k] for £ € Ap and
{[z]n : © € Dy} = [—Hy,0) for £ € Ay. We next claim that {[z]y; x € E} is a
circle. Define

(38) ry 22
2@
N

for all N € N. For all K = (kq,kq) € Z2,

Hy (27 + K) =Hn(@f — Ine) + wzQN(JJ(vl,)g + k1) + w2(J1(\/27)g + ka)
=ox {0 I+ )+ (U0 + ko) |
hence
(39) Hn(xf + K) € rnZ.
For each N € N, next define the codimension-one sets
w & t{z et 1(E) : Hy(z) € Zry )

def

1
Cy = t{x ct 1(E):Hy(z) € (Z+ 5) rN};
see Figure 4.

LEMMA 6.3. For large enough N € N, vyw N (EU X) and vy are path-
connected and all orbits of 37 in E\ yn are periodic.

The proof will be given at the end of the section. Thus 7y is the unique het-
eroclinic cycle of 3V in S, and furthermore all points in E are chain-recurrent
under 3.

We next claim that there is a local Hamiltonian in S\ Cy.
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LEMMA 6.4. For each N € N, there is an HY%¢ € B(S) such that HY is
C> on S°\ Cn,
H 1 =
HC(t(2)) = Hy () — {M + —J v, z €t (E),

(40) N 2

Hiv (z) = Hr(2), z €Dy, L €A.

This tells us that {[z]n; « € E} is the circle of circumference ry. Since yn
contains the 0D,’s, which are limit points of the D,’s, we have that {[z]y; z €

S} is a whiskered circle, where one whisker is attached for each trap. Define
def

W = (—1/2,1/2); we thus have that Hi3® : E\ Cx = ryW.

REMARK 6.5. By removing Cpy, we have approximated E by a long and
thin ribbon. More precisely, the width of E\ Cy, as parametrized by HY,
is ry (the width of ryW). Since the area of E \ Cy is equal to that of E
(we have removed only the one-dimensional manifold Cy ), the “length” of the
ribbon should be of order 1/ry. This can be made more precise by using the
change-of-variables formula; the proof of Lemma 7.1 gives a related argument.

We note that HY¢ has a very nice form near the r,’s.
LEMMA 6.6. For each N € N,

Hi () = A(du(x)) — {M ; lJ o

rn 2
if © € Uy NE and HY (x) = H(pe(x)) if = € Uy N By
We will give the proof at the end of the section.
6.1. Omitted proofs.

Proof of Lemma 6.1. The function Hy consists of a linear part and a pe-
riodic part. Via this decomposition, we have that Hy(z + K) = Hy(z) —
wo (K,e1)ge for all z € R? and K € Z?. Thus Hy(z + K) — Hy(z) =
(w, K)ps —vnws (1, K)o = (wn, K)pe for all z € R? and K € Z?, giving us
the first claim.

If z € D}*, then

. HN ¢ H
Hy(z) = w2 {— (z,e1)ge + (x — I, €1)po —% = —wy (In,€1)pa——-,

so for all K € Z2,

Hy(z + K) — H(z + K) :uNHN(x—I—K)

HN ¢
=vnN {—wQ (TN, e1)ge — —— —wa (K, el>]R2}
Un



888 RICHARD B. SOWERS

= —vnwa Iy + K, e1)p. —uny.

This gives the second claim. We then calculate that Hy(zf — Ine) = H(x§ —
Jn.¢) — nne = 0, which gives us the last claim. O

Proof of Lemma 6.2. The first claim follows from Lemma 6.1. The second
claim is easy. Defining

v inf {”VEH(Z)”e iz e U Dy + ZQ} ,
LeA
K < sup {HVGHN(Z)He .2eR% Ne N} ,
we see that v > 0 and K < co. I N € N large enough that |vy|K < v, then
{r €8 :YUpn(x) =0} C Uy Dy- Lemma 6.1 implies that Hy — H is locally
constant on | J,c, Dy + Z2, so the final claim follows. O
Let’s now use a transversal. Arnol’d [Arn91] proves that there is a C*

map ¢ : R — t71(E) such that dH({(t)) = 1 and ((t + w2) = ¢(¢) + (0,1) for
def

all t € R. Define 7°¢ = ((R).

Proof of Lemma 6.3. We start by defining some curves in t~1(EU X). For
each z € t71(EUX), let {¥(z); t € R} be the unique element of C(R;t *(EU
X)) such that

M) & (x) =2,
(i) if Y (2) € C1(E), then I, (x) exists and | (x) = Zatle (Y (2)),

(iit) {t € R: ¥ (z) € t71(%)} is discrete.

It is easy to see that such a curve is uniquely defined. Indeed, the vector field
VeHN/||VeHn ||e is well-defined on all of t71(E \ X). Clearly t~!(9E \ X) is
invariant under this vector field, so 1 (z) is well-defined up to the time when
it reaches a point in t71(X) (this time may be o). Requirement (iii) means
that if we hit a point in X, we must immediately go back into E. Looking
at local coordinates and using the fact that V.Hy is hyperbolic at points
of t71(X), we see that the trajectory of 1Y must leave 1 along the unstable
manifold of Yy, and the requirement that it remain in t~!(EUX) (as opposed
to going into one of the t=1(9Dy)’s) specifies the direction along the unstable
manifold.

Fix now £ € A. We claim that

(41) v N (EUX) = (1 (xf))-
Note that by (39), Hnx(z§) = korn for some k, € Z.

To show the easy inclusion in (41), observe that for any ¢ € R, Hy (1Y (15)) =
Hy(x)) = kory € ryZ; thus t(tf (x)) € ynv N (EU X). To see the other
direction, fix z € t"}(EUX) such that Hy (x) = kry for some k € Z. Since ag\?)
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and ag\‘,i) are relatively prime, there is a (j1, j2) € Z? such that a%)jl +a§ff)j2 =

ko — k. Define & < z + (j1,j2); clearly t(Z) = t(x). Define also the two times

7o ©inf{t € R: V(S € 7} and 7 < inf{t € R : 1N (2) € T¢}; by

[Arn91] and perturbative arguments, we know that if N € N is large enough,
To and 7 are finite (independently of the = and ¢ we chose). We note that
Ha (tY (x5)) = Hy (x§) = kory and that

Hy (1Y (%)) = Hy(2) = Hy () + (Wi, (1, 42) g = kry + w2 {ongi + ja}
=ry{k+ a%)jl + agﬁ)jz} =korn.

Since {x € .7°: Hy(x) = korn} is a single point, which we shall denote by z*,
we see that lf.\i(z:Z) = z* = 1Y (). Since the flow 1 is unique, t(lﬂ_ﬁo (x9)) =
tt_s () = (&) = t(2); Le., t(z) € t(1) (r5)), finishing the proof of (41).

Since t +— 1Y (1§) is a piecewise-smooth continuous map, (41) implies that
vn N (EUX) is arcwise connected. Since each 9D, is a homoclinic orbit of Y,
the 0D,’s are arcwise connected. Since each one also intersects EU X, we can
conclude that yx = (yn N (EU X)) UJycp 0Dy is arcwise connected.

The periodicity of orbits on E\ vy follows from Lemma 6.2 and arguments
as in the proof of Lemma 2.5 of [Sow05]. O

We next want to prove Lemmas 6.4 and 6.6. First, we need a natural, but
technical, result.

LEMMA 6.7.  Suppose that O C R? is open and intersects t~1(0Dy). Sup-
pose further that both O and O Nt~1(0Dy) are arcwise connected. For each
N € N, there is a ky € Z such that Hr(t(x)) — Hy(z) = knry for all
x € ONtY(Dy). In particular, Hy(z) = —knry for all x € ONt~1(ODy).

Proof. We first claim that Hy is constant on O Nt~1(9D,). Let {y;t €
[0,1]} be a piecewise differentiable path in O Nt=1(dDy). For all ¢ € (0,1) for
which 4, exists, Tt} € Span Y(t(v)), so

0 = (T, (1)) = (T, T H()
= we(ﬁta ?eH('YtD = we(’%’ ?BHN(’W)) = _dHN(;yt>‘

Thus ¢ — Hx(7;) is constant on [0, 1]. Since (by assumption) O Nt=1(dD,) is
arcwise connected, Hy must indeed be constant on O Nt~1(9Dy).

Fix next N € N. We next claim that in fact there is a ky € Z such that
Hy = —knry on ONt~1(9D;). By assumption, there is an x € ONt~1(dDy).
Let {z;;0 < t < oo} be a solution of z; = V.Hy(z) such that zo = .
Then t(z¢) = 3(t(x)) for all ¢ > 0. Since lim;— o 3:(2) = to, Zoo def limy o0 Z¢
exists and is in t7!X. Keeping (39) in mind, we thus have that Hy(z) =
lim; oo Hy(z:) = Hy(2zoo) = —kntn for some ky € Z. Since Hy is, by our
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above arguments, constant on O N t~1(9D,), we must have that Hy(z) =
—kyry for all z € ONt=1(ODy).

Next, we prove that Hr, ot — Hy is constant on O Nt~}(Dy). Fix z €
O Nt 1(Dy). Since O is arcwise connected and intersects t~1(9Dy), there is
a plecewise differentiable path {7yt € [0,1]} such that vy = « and 1 €

ONt1(0D,). Let 7 L inf{t € [0,1] : 7, € O\ t"1(Dy)}. Then
Hro(t(v-)) — Hre(t(2))

-/ AT (t0). T s = [ w(d(t0)). T ) ds
0 :TO

- / (T H(y.), Tt )ds = / we(VeH(), s)ds
0 0

-/ " e(TeHy (7). 3u)ds = / " dHx (i) ds = Hy (37) — Hu(x).
0 0

Since Hr¢(t(y7)) = 0, Hre(t(z)) = Hn(z) — Hy(v:) = Hn(2) + Enry. This
implies the first stated claim. The second stated claim follows from the first,
by taking x in O Nt=1(dDy). O
Proof of Lemma 6.4. We first show that the right-hand side of (40) is well-
defined on E. Fix x € t"}(E) and K = (k1,k2) in Z2. Then Hy(z + K) =
Hy(z)+ry {ag\?)kl + ag\c,l)k:g}. Since 35\7) and agf,l) are integers, Hy(x + K) —

Hy(z) € rnZ, so
Hy(z +K) 1

Hy(z + K) — LT—FiJ rv = Hn(z) — {

HN(.T) 1 r
rn 2 N

Thus we can define H® : S — R by setting

R R

if 2 € t~1(E) and HI9°(t(z)) & Hyo(t(z)) if t(x) € Dy and £ € A.

To finish the proof, we need to show that H9¢ thus defined is smooth on
S°\ Cy. It is not difficult to see that it is smooth on (S°\ Cn) \ Uycp OPr-
To proceed, fix now £ € A and a* € dD,.

By constructing local coordinates (use the Morse lemma at r,; otherwise
use standard coordinates as in [Boo86, Theorem 3.14]), we can find an open
neighborhood O of z* such that t is evenly covered over O, and both O and
O N oD, are arcwise connected. Let ¢ be a connected component of t~1(0),
and let t be the inverse of t|,,. Then O¢ = {(0) and O°Nt~'(D,) = {ONDy)
are arcwise connected. From Lemma 6.7, we thus have that Hp,(t(z)) =
Hy(z) — Hy(f(z*)) for all z € $(O N D,) and Hy(#(z*)) € rnZ. Define
o {z € O : Hy(t(z)) — Hy(t(z*))| < rn/2}. It is fairly easy to see
that in fact H3°(z) = Hy(f(z)) — Hy(f(z*)) for all x € O’. Since t is a
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diffeomorphism, HII‘\}C is indeed smooth at each point in 0D, completing the
proof. O

Proof of Lemma 6.6. Let O be the connected component of t~(U, N Dj)
which contains tf — Jny . We have that H — Hy and H — H o ¢; o t are both
constant on O; thus Hy — H o ¢y o t is constant on O. Hence for x € O

(42)  Hn(z) — H(¢e(t(x))) = Hn (xf — In.e) — H(Ge((xf — In )
= —H(¢e(xe)) = —H(0.) = 0.
Thus, for x € O Nt~ 1(E),

HIg ((x)) = Pl () — {Lﬁ(x’” + %J x
while for x € O Nt~1(Dy), the combination of (42) and Lemma 6.7 implies
that
HY (t(2)) = Hiv () = Hy (¢ — Ive) = Hz) = H(¢e (()))-

Since t| o 1s a diffeomorphism with range U, N b}, the stated follows. O

7. Dominant analysis

We now want to use the machinery of [Sow05] to “glue” at ~y. We have
two questions to answer. First of all, if we start on x, what is the relative
likelihood of going into each of the B,’s, versus the relative likelihood of going
back to E? Secondly, if we start in E, how long does it (on average) take
to get to vy, where we are back to the first question. The first question is
one of glueing, and the second question should involve some sort of Poisson
equation (recall that one usually studies occupation times by solving Poisson
equations). The combination of the likelihood of going back to E and then
returning to vy at a later time should give the stickiness coeflicient of (c.ii),
and the relative likelihood of going into the different B,’s should give (c.iii).
Lemma 7.7 is the result which brings all of this into focus.

The long-term behavior of 3 in E should (and will) be important in our
calculations. For ¢ € C(E), define

def 1 2 .
ANED ™ Sy [ e1™(az)

then for any « € E,

lim l/:O ©(35(2))ds = (Ap)([E]);

this is an extension of (9).

Let’s first focus on . Recall that [Sow05] gives us a solvability con-
dition for correcting for a smoothness defect in certain types of test func-
tions near a homoclinic orbit. Let’s write down the function we wish to
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correct. Similarly to (18), define on and By in C*°(T) by requiring that
on(t(z)) = (dHy,dHy) (z) and By (t(z)) = (LHy)(z) for all 2 € R?. Recall
the ag’s of (19), and define

&N déf/ L(Z)%l(dz)_

ewne [N ()]

We can calculate the asymptotics of Gy. Define
(43) T (Ao)([E]) 2 (E).
LEMMA 7.1. We have that limy_.o0 rnen = 1.

Proof. Tt is sufficient to calculate locally. Since o n/||Yn| is bounded, we
can excise neighborhoods near the critical points of Yy in E (i.e., points in
X). Similar calculations allow us to excise neighborhoods of 0D,. Let O be
an open subset of E and let O° be an open subset of R? such that t(0¢) = O,
t|oe Isa diffeomorphism, and O¢ is a compact set which does not contain any
critical points of Hy. Then by continuity and change-of-variables formula
[EG92, Section 3.4.3],

: on(z) 1
lim rN/ ———= " (dz)
N=co " Joeyyneno YN (2)]]
o on(2) 1
=m0y [epor o % @)
Hn (2)ErnZ
= / o (2)H%(dz) = / o ()% (dz).
zet-1(E)nO° J2€ENO
This leads to the claimed result. (]
Now define
D S fg(())} Hio¢(z) if 2 € E and H2*(z) > 0
Pl 5 Zens szg(())} Hl9¢(z) if = € E and HI%(z) < 0
fg(O)Hlﬁc(x) ifzeby
0 if z € S and H(2) = 0.

This captures, to first order, the behavior of f om on the B,’s near OE. We
claim that we can find a small corrector function which compensates for the
loss of smoothness of F n across yy. To see this, we first decompose S\ v
into connected components (see [Sow05]). Note that

{x €S :HY(z) >0} = {zr € E: HY(2) > 0} U U by,
LeEANP

{x €S :HY(z) <0} = {z € E: HY(z) < 0} U U Dy,
teAw
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both of these being disjoint unions. We then have that

7N08{$€S:Hk}c(l‘)>0}={ (ywnNE)U U aDg}U U 0by,

teAw teAp

'yNﬁa{xGS:Hlj‘\}c(x)<0}={ wnEU aag}u U 0B

LeAp LeAw

We thus have that

3 a0 {GN+ 3 }{ 3 Gmw)}

(enp e tenw
~ Y afe0)+ Y anfi(0)
(ehp e
~ > arfe(0 {GN + ) Ge}{ > Gtzfé(o)}-
LeAw LeNp leEAP

This should allow us to glue as in [Sow05]. To make this precise, define

def D terw cefe(0) { rNGN TN }
1 — — T Gy B
LeAw

U+

ZﬁeAP G ]
6, def ZéeAP G@fi( ) 1— INGN _ I’ﬂ .
D tenw Gt J ] LEAP

TN
LS en, cof 0)} H¢(z)  if 2 € E and HI9S(z) < 0
{£0(0) + O HY (2) if z €Dy and £ € Ap
{£e(0) + U HISe () ifxeDyand £ € Aw
0

if z € S and H*(2) = 0.

?ZeeAw aefe(0) } Hloc(z) if z € E and H'9¢(z) > 0

Then we exactly have that

> ardfe(0 )+UN}+{GN+ > Ge} {ri[v > Gefe(o)}

LeEANP LeAw LeAw
=Y afe(0)+ Y cufe(0)
(enp tehw
= > affu0)+ Ty} + {éN+ 3 Gz} {%N 3 G@fg(())}.
LeENw LENP LeEAP
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By Lemma 7.1 and the fact that limy_.o ry = 0, we have that

: - 1 +1 =
(44) 1\}51100 Oy = ]\}Enoo |Ox| = 0.

PROPOSITION 7.2 (Glueing).  There are constants K72 € (1,00) and 079 €
(0,1) such that for each N € N and § € (0,97.2) and € in (0,1) such that € <

VO/Kro and € < r:]j\,/2/4, there is a function \II‘SD’E’N such that \I/%E’N +Fn€
C2(S\ Cy), and such that U35 (2)| < Kr.el(e) /)

HB%C(SZ)\/WH o (z)

|IU/N5 1 |: 1
> —Krod ———+ 57— l(e)exp | —
72{ 5/ 3/4\/5 (¢) exp Kq o

HV(?WH Jon@)

K [ 1
__ B =
/s P K

K7_2 |: ‘Hlﬁfc(m) :l K7,2€[(8)
_Ar2 _ on(z) — 20288
r?l’\,/4 Vo r%4\/3
1/2
K79 . 1 Vs K72 . 1 fiﬁ /
_ N A <p |- [ Iv_
5r‘%4 P Kro € £7/3\/8 P Kro \ €

for all z € S\ (Cn U~yn).

We will prove this in Section 10. The unspecified parameter ¢ comes from
the proof of Theorem 3.8 of [Sow05]. Using the calculations of the next section,
we will show that the terms which bound XE\I!%E’N from below are in fact
small. We will then optimize over § in Lemma 8.8. We will also later correct
for the difference between Fn and £ y.

REMARK 7.3. We would like the “ribbon” of Remark 6.5 to be asymptot-
ically wider than the boundary layer of the glueing corrector. This means
that the boundary layer does not interfere with itself across the ribbon. The
lower bound on XE\IJ%E’N tells us that the glueing corrector has a boundary

layer of size Hi%® = O (\/%) Thus we want that ry > \/%, or rather that

ry 3> £2/3. The requirement that & < ra/>/4 is a reflection of this.

Let’s now look inside E, i.e., at the issue of the Poisson equation. Here we
want to solve the PDE #“u ~ g([E]) such that F y captures the nonsmooth
behavior of u near yy. Since vy and [~ are both given in terms of Hlj‘\),c,
let’s look at the effect of #¢ on functions of H°. For convenience, define
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{n € Cp°(T) by requiring that

(45) §N(t(x)) déf %(?evaeHN)e(x) = (66H7veHN)e(l’)

for all € R If u(x) = U(HY(x)/rn) (this scaling turns E \ Cy into
a reference strip of wunit width) on some open subset O of E \ Cy, where
U € C%(R), then

(46) (Lfu)(z) = VN&N(%)U (HK){C(‘T>>

€2I’N rn
i UNEI)U (Hlﬁfc(x)) i 51\7(95)0 (le(\)fc(ff)>
2FN rn rn N

for all z € O. The first two terms are the dominant ones.

The theory of averaging tells us that we should replace the coefficients
in (46) by constants. The operator .Z° generates a drift of size 1/¢? in the
direction of Y; keeping in mind that we are using Uy as an approximation
of U, we have a drift along yy of size 1/¢2. Comparing this to the drift and
diffusion in the VHlI‘\}C—directiom we should have a separation of scales, and be
able to replace &x and o by their averages over the orbits of 3V (which is
an approximation of the average with respect to 3).

LEMMA 7.4. There is a function & € C*°(T) and a K > 0 such that
(ed) & =0 in each Dj,

(edi) [En(z) — & (a)| < Klyn| for all x € E,
(eiit) (AE)([E)) = e

Proof. Define

o OH
€7 (@) Fwage @)1+ 3 wlo—K)
KeZ
LeA
OoH 0wy
bund @) 3 Gt K) - K = dvens
"Ex

8H awZ
7781‘1 (x) E ] 78372 (z — K) <x — K- JN7K,61>R2
KeZ
LeA

for all * = (x1,72) € R? (i.e., we have neglected the contributions involving
ny,¢). From this we clearly see that £%* € C°(R?) and we then define £* by
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setting £*(t(x)) = £4*(z) for all z € R%. It is clear that £* = 0 on [J,c, D
since for each ¢ € A, @y =1 on Dj and more generally w; is locally constant
on (Jyep Dy- The stated bound on &y — £* is also easy to see (recall (36)).
Next, set

Gi(2) = N wiple — K)o — K — Iy, er)p
Kez?
for # = (z1,22) € R%. Then G, € C3°(R?) and
“*(x) oH (VeH, V. Gy)e(z
" (x ——w28$( +ws Y 0)e(x)

LeA

for all x = (x1,72) € R?. We compute that

OoH
/ (xlaxQ)dxldeQ
(z1,22)Et=1(E)N[0,1)2 0xo
H
:/ 0 (‘rlva)dl'ldl'Q
(21,22)€[0,1)2 OT2
OoH
B Z/ (xla-rQ)dxld.’EQ
re Y (x1,22)€t71(D)N[0,1)2 0o
1
B " d doydas —
»/11_0{ (xlv ) :If‘lv } Tr1 — Z/ZEDC ax2 $1,$2) r1dre = Wo.

LeA

The integrals in D7 are zero by the divergence theorem since H is constant on
dDy.

Next, note that supp G, C D§ + Z? and that (V.H,V.Gy)c(z) = g—g(x)
for all x = (21, 22) € D§ + Z2. Thus

/( Yet-1(E)n[0 1)2(6 el I, Y eGZ)e(Il, ig)dzlsz
T1,x2)EtT n[o,
/ (V_CH, CeGé)e(l'th)dljde
(z1,z2)€ED}
/ (V_e”, VeGi)e(r1, 22)dx1des
(z1,2)€Dg

- / (?CH,VCGZ)E(JJth)dZ‘ldQ}Q
(z1,22)€DY

OH
- / —(xth)d:ﬁld:ﬁg.
(z1,x2)€D¢

Since V.H has zero divergence and since G, = 0 on 9D¢, the first term is
zero. Since H is constant on 9D, the second term is also zero. O
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Define now

det (AE7)([E]) _ wo
(47) 1= ===
(Ao)([E]) T
and, for all N € N and ¢ € (0,1), une def Junry/e2. Combining (15) and
(38), we have that
|:I(.U2|
(48) lune| < D (D
e2aly) (ay)?
for all € € (0,1) and N € N. After we replace &y by £* and oy by o, then
UN.e is the ratio of the averaged drift to diffusion coefficients in (46). Note
that (46) now becomes

(19) (L)) = 5 { PR SNC (H‘i&C(:c)>

N 1 rn

Then (47) becomes (A(£*171)) ([E]) = (Ao)([E]). This helps us distinguish
between several important cases; viz., when pun,. is bounded, and when it
becomes large.

Let’s now get back to our Poisson equation in E. For N € Nand € € (0,1),

define

of 1 1-— -2 h

ue (n) {h— b 20w, ]}, heR.
KN, e 1—exp [_2NJN,5]

The importance of up™® is contained in the following
LEMMA 7.5. For each e € (0,1) and N € N, uy® € C2([0,1]) and

1
pun S (h) + §u§=€(h) =1, he(0,1),

(50) up (1) = up(0) =0,

ip (1) — i (0) =2
Furthermore, there is a K > 0 such that
(51) uﬁ’f(h)‘ <K  and ‘u}f’f(h)‘ <K

for all h € [0,1], e € (0,1), and N € N.

Proof. The PDE and boundary conditions can be directly checked. Note

that
1 2ex -2 h/
uN,s(h) p [ ,MN,E ]

_ . he(01).
KN e 1—exp [_2NN,£] ( )
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Note that u} is monotone, so SUPhe(0,1) ane (h)‘ < uge(())’ + uge(l)’
for all € € (0,1) and N € N. To get (51), it is sufficient to consider subse-
quences (ei; k € N) in (0,1) and (Ng; k& € N) in N such that lim;_,c e =0
and limg_,oo N = oo and such that limg_, pn, ¢, exists as an element of
[—00,00]. If limy oo fin, e, # 0, then clearly

Tim ugm)] and  Tim ug€<1)]

k—oo k—oo
are finite. Assume next that limp_. pn, e, = 0. By taking Taylor ex-
pansions of the exponential, we can verify that limg— o0 uﬁ (0) = —1 and

limy, o0 05 (0) = 1. The claimed bound on u} follows. Since u}*(0) =0,
the claimed bound on up® follows from the claimed bound on ™. O

Let’s now define two constants; set

) Ns
Ve {g(([E]) (1) -3 Z cofu(0 }rNJrU]J(,,

LeNp

o M_l ST
i _{ (Ao)([E]) :gw zfe<0>} N

forall e € (0,1) and N € N. Tn light of (44) and the bound on &'° in Lemma
7.5, we have that

~N,e

2 im [aV¢| = li —0.
(52) lim |07 ]\}Enoo G 0
E— E—

Finally, define

e e (HNJv(x))) el

+ ) 0V Hre(@)xe, () + Y 0V Hr(2)xe, (7)

leAp LeAw

forall z € S, e € (0,1), and N € N (where ¢ is as was defined in (13)).

LEMMA 7.6. For each e € (0,1) and N € N, UN® € C(S\ v5) N C(S).

Proof. Clearly UN* is C*° on Uy, Dr. Lemma 6.4 ensures that Hg® is
smooth on E\ Cy. Thus ¢(H9¢/ry) is smooth on all of E\ Cx except possibly
the set

Hloc
{er: 1\;(%) EZ}Z{er:HK}C(x)ZO}:WN.
N
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We proceed by checking that U]IX’E is continuous at yy. Since

: loc —
i (H<(e)/rv) =0,
xE

up “(1(07)) = up(0) = 0 = up“(1) = up“(1(07)),

URN® is continuous at vy NE. Similarly, since the common value of ufy®(:(07))

and ul*(4(07)) is zero, UM is continuous at the dD,’s.

Thus far, we have proved that Uﬁf is continuous on S\ Cxn and that it is
smooth on S\ (Cxy Uvn). It remains to show that Ug"s is smooth on Cy. For
any z € t~1(E),

() = ([ - ()

(since ¢(z + k) = 1(z) for all z € R and k € Z). Since ¢ is smooth at all points

of Z+ 1, ((H¢/rx) is smooth at all points of Cy. Since ¢ (Z+ 3) = 3 and

UN* is smooth at %, the claimed result follows. O

We also have

LEMMA 7.7. For each ¢ € (0,1) and N € N, U]IX’E — F N+ fouter i C at
IN -

Proof. Clearly UN® — F x4 fouter is continuous at vy since U, f n, and
fouter are all continuous at vyn.
Consider next differentiability at points of vy N E. We need to show that

g(E)  neq,  tw :
i (1) — = aofe(0)
(Ao)(E) P T g{ e

- Gy 0= 3 a0

LeNw

the first term is the transversal derivative of Ug“S — F N + fouter When we
approach vy N E from the direction where Hlji}c < 0, and the second term is
the transversal derivative of Ug’a —F N+ fouter When we approach vx NE from
the direction where H%¢ > 0. In light of (43), this is equivalent to showing

that

g((E) {ap= (1) — i =(0)} = f@ { 3 aeful0)— Gefe(())},

leAp LeAw

and substituting the last line of (50), this is in turn equivalent to showing

that
29([E)A#A*(E) = > cofe(0) = > cefe(0),

leAp leAw
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This is exactly the glueing condition (11).
Next, consider dD,. Here we use the facts that

9([E]) N, rn ; ~N,e ; + :
rvup (1) — = ) eefe(0) =037 — {f(0) + O} } + fe(0),
(Aa)(ED " R A
([ED . N,e rn ; ~N.,e ; — ;
rvup(0) — = aefe(0) = 02" = {fe(0) + Uy} + f(0);
(Ao)([E) " ] gw o DR
we use the first equality if £ € Ap, and the second if £ € Ay . (]

Since

Ug7€ + \II%&N + foutcr = {Ugﬁ - ﬁN + foutcr} + {\II%E’N + ﬁN}a

this lemma means that UNE + \I/(SE N4 fouter is C* at yn. In the proof of

Proposition 5.2 (at the end of Sectlon 9), we will use this to help construct
U¢ of Proposition 5.2; see (84).
We next want to study .2°UN°. Define

N,e def €XP [_2MN ah]
vp (h) = ——————————| h € 10,1],

o Hloc
Vg’e(x) def vg’e <L (—1\; (x))) , z € E.
N

By (49), we have

4
(Z°UN4) (@) = g([ED)xe(@) + g([E]) xe(x) Z EARIC)
+ 3 W B, (@) + Y iV B()xe, (2),
leANp LeAw

where
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53

| fiﬁ*%r) ey €W - O(E) (Lemma 0.4),
%@ g (@ €@} (Lemma 79),
5@ o ~ Gy V) Qemma03)
6 (2) ( Ao;([E]) {on(z) — ()} 2un)Vp(z)  (Lemma 9.2),
A% @) — e (O @)~ €@ V@) (Lemma 9.2),
&N () < mmug@ (L (Hlff;(:”) )> (Lemma 7.9).

We want to show that the effect of the £’b]\2’5’s is negligible. This is always
true for two of them.

LeMMmA 7.8. There is a K > 0 such that sup,cg |£b1\g€(L)| < Klvy| for
alle € (0,1) and N € N.

Proof. Use (e.ii) of Lemma 7.4. O

LEMMA 7.9. There is a constant K > 0 such that sup,cg |£’b%’5(x)\ < Kry
for all e € (0,1) and N € N.

Proof. Since limy_.o, ry = 0, the desired result follows from Lemma 7.5.
O

The remainder of the error terms will take some work to bound.

8. Residence time and averaging

Not surprisingly, the é"bj_\;’g for i € {1,3,4,5} are small due to the interplay
of (i) a bound on residence time near vy and (i) averaging. In this section,
we develop some relevant technical estimates. Our analysis of the error terms
of (53) will be completed in the next section.

For each N € N, define the set Ny def g \ (Cny U7yn); on N, 3V is periodic
and H%¢ is smooth.

The calculations in E will be fairly complicated, so to get warmed up, we
will start with the proof of Lemma 5.6. Lemma 5.6 is essentially a diffusive
bound; it shows that as long as X is in one of the B,’s, diffusivity prevents it
from spending too much time near OE.
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Proof of Lemma 5.6. Define

h
Ti(h) L 2/ (h—r)ea(r)dr,  heER,
r=0

5 (x) def Z(SzT(; (HT’é(J;)> xo, (z), x €8S.

LeA

Then Y§(0) = T9(0) = 0; thus T§ € C'(T). Furthermore, there is a K > 0
such that |Y¢(h)| < K and [Y¢(h)| < K|h| for all h € R. We can also calculate
that

(219w = o (M4 ) oo, (0145 Y 11 () Benne, (0

1)
LeA LeN

for all € and ¢ in (0,1) and all x € S\ OE. This fairly easily leads to the
first stated claim (one must use a smoothing argument as in [Sow02, Lemma
6.7] to approximate Y4 by elements of C?(T) before applying the martingale
problem). To get the second stated claim, we use Young’s inequality to see
that

S

—~ oz Vo
vo(x) < o +t5

for all z € S and § € (0,1). O
Let’s next construct a similar diffusive bound to control the amount of time
that X spends near 5. This bound does not restrict X to lie in one of the

D/’s, so we must contend with the fact that H'9¢(X) has a drift of size uy . /r%
in E (see (49)), which may be large. Note that |ry| < |wal.

LEMMA 8.1. There is a constant K > 0 such that
tAe Hloc Xu
g | (M) o] < w405 (04 e [ ncola:
u=0 (5[’]\] R
for all 5 and ¢ in (0,1), all N €N, all t > 0, and all n € C(R) N LY(R) such
that n > 0.

Proof. The proof is similar to that of Lemma 5.6. Fix §, ¢, N, ¢, and 7 as

required. Set
1/(26)
_ def
s = / n(z)dz,
2=—1/(26)

e h
T(ls(h) d:f77 <g) _57?5’ heRa
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Ti(h) % o / i (h— 5)T3(s)ds

—1/2

—2(h+1/2)/ (1/2 = s)Y(s)ds,  hER,

seW
loc
iV (2) 1) (LN (:v)>’ z€S.

rv
Then Y3 € C?(R) and

1 h _

h
T(h) = 2/ Y (r)dr — 2/ T5(r)(1/2 —r)dr,  hER,
s=—1/2 rew

1 1 . 1 . 1
Thus T3 € C1(S) N C%(Ny) and

(215w = (
for all z € Ny, where
A loc
Eé’g’N(JU) = —dison(x) + Tg <H]\r’N(x)> {LLN@ fN:fz) + rNﬂN(x)}

for all z € E. Note that |T3(h)| < 83[mll 21 (r) and |T3(h)| < 88|Inllrr(r)(|h] +
1/2) for all h € R. Set

Hie (@)
5rN

) on(z) + 55N (2)

Kdefsup{a (2), &V'J(' 2)| BN ()], z €8, NGN}

Then

625N (2)] < K6 {1+ 8lun.c| + 8w} nll 1 gy,

1

3@l <88 (| 2+ 2+ 5) Al < 8501+ loaD el oy
recall the assumption that ry < 1. Combine estimates to get the desired
result. O

Define now €(z) Lot exp [-v/22 + 1] for all z € R and note that

def C/\(Z)

54 K = su
( ) (54) Ze}g @(z)

is finite. Also note that since 1422 < (1+]z|)? for all z € R, |2| < V1 + 22 <
1+ |z| for all z € R, so

(55) e texp[~|z]] < €(2) < exp [~ [2]]
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for all z € R. We then have

LemMA 8.2 (Diffusive Bound). There is a constant Kgo > 0 such that

Ee [/lm ¢ <M> a-N(Xu)du} < Kgo(14+1)0 {1+ |pnc|},

u=0 5/’]\/‘
tAe Hloc

g | [ (M) Von ] < Kaalt+ 05 (14 )
u=0 N

for all § and € in (0,1), all N € N, and all t > 0.

Proof. The first statement directly follows from Lemma 8.1 by using 7 e,
To get the second claimed result, we use Young’s inequality to see that

S < \/—6{1 Flan e} 1
o{1 + [un.c[}
for all z € S. Using the first claim, we can now get the second. (]

U'N(l‘)

We now can prove our basic residence time result in E. As a preliminary,
we first state a somewhat technical estimate near the p,’s. This estimate is
like Lemma 5.3 of [Sow03].

LEMMA 8.3. There is a b € C°°(T), a collection {B%; ¢ € (0,1)} of
elements of C*°(T), and a constant Kg3 > 0 such that
(i) 0<bH <1, and =1 in a neighborhood of each of the y;’s,
(ii) supp B C Upep Us,
and such that H(z) < (L°BH°)(x) + Kg3{l(e)o(x) +¢}, |B*(z)| < Kg.3e2l(e),

and \/{dB*,dDB°) (z) < Kgse for all e € (0,1) and z € T.

We delay the proof of this result until the end of the section. Observe that

(56) vse) & inf {on () + b(z) €S, N € N}
is positive; thus
(57)
1 1+ K, K 1 e
1< —{on(@) +b2)} < ——=I(E)on (@) + —=e + —(£°B°)(2)
U(56) U(56) U(s6)  U(s6)

forall z € S and N € N.

PRrROPOSITION 84. There is a K > 0 such that for all t > 0,

(58) E° { /u t:: n (%) du}

<K(1+1) {61(1 T luwel) + 57%} ()
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for all 61 € (0,1/4) and € € (0,1) and N € N and such that

(59) }:EELLM:A<Hﬁ£X”>prXhM4

LeA =0
2/3
< K(1+1) {52 + \/5—5_2 + (W) } ®)

or all 02 and € € (0, an € N such that 0o > €“ and € < ry/8.
f Iné d 0,1 d N eN h that & 2 and 8

Proof. Fix 4, 0., and € in (0,1), N € N, and ¢ > 0. Define
o Hloc T Hloc T
hese (@) ¢ (MDY 0 @)+ en (B2 o)
oy Oef N

for all 2 € E (remember that according to Lemma 6.4, HI9¢ agrees with the
Hr¢’s on the Dy’s). By (57), we have that for all = € S,

(60)
K 1+ K !
c‘sd"SEfN(a:) < 83 4 + K383 E(lsd,E,N(x)+Egd751N(I)}+716d,5e,6’N($)7
U(56) U(56) V)
where
Hloc T
E‘id’s’N(x) = I[(e)en ( J\gd( )> o(z)xs\e(z),
Hloc T
w3 N (2) = 1(e)cn (?7”) on(z)xe(),
elN

Iéd’ée’E’N(a@) = (XEBE)(;U)C‘S“SE’N(QC).
From Lemmas 5.6 and 8.2, we have that
€ the daq,,N
E |:/ B (Xu)du] < K5_6(1 —|—t)(5d[(<€),
(61) u=0

tAe
E® |:/ Ege’a’N(Xu)du] < K(54)K8'2(1 + t)ée[(s) {1 + ‘,U,N’5|} .
u=0

Define next Y99V (z) Lo B (z)c4%N () for all x € S. If 6, € (0,1/4),
then Y%4:9<:5:N is smooth (in particular, it is smooth at Cx). Noting also that
Uy = Y on the support of B, we have that

(gsTéd,ée,e,N)(x) _ Iéd,ée,e,N + Egd’E7N(x)XS\E<x) + EimE,N(x)XE(x)
for all x € S, where

ey =N () = B (x) {éA (H%d(x)) %f) +in <H5€§d(x)> 02%) }

1 £ loc p Hllefc(x)
+5_d<d]5 ,dHN>(Z')C/\ (T y
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5 =0 fo (HW)) Bx@) (H%@C(m)) oxio))

Sel N v 0e Sel N 202r%;

6erN

1

* 6erN

(dB°, dHR®) (z)in (

forall z € T. It is easy to see that thereis a K7 > 0 such that [¢A(2)| < K1€E(z)
and [¢n(2)] < K1€(2) for all z € R; also recall (22). Thus, there is a Ko > 0
such that

646N Kse?l(e)  Kae?l(e) Hloe(z)
@ <
| s TS S e (55,0 )o@

Kye Hloe (z)
+ 5 c/\< 2%, o(x),

‘E(;“"’g’N(z)‘ < K»e2l(e) I K252[(€)€ (Hk}c(;ﬁ) on(2)

Sel v 62r% Ser v
Kae _ (HY%¢(z)
+ 5€rN€ ( . on(z)

and | 19495 N ()| < Koe?l(e) for all 64 and ¢ in (0,1), d, € (0,1/4), all
N € N, and all x € S. Combining and using Lemmas 5.6 and 8.2, we can find
a K3 > 0 such that

(62)
tne 2 21(2)s, 5
Ee / Iéd’ée’E’N(Xu)du < Ks(].—l—t) 52[<€) + € (E) + € (2) d + € ul7
u=0 5d 6d 5(1
L6 | PRt pwel) | /AT )
Oel N 92r3, del N

for all §4 and € in (0, 1), all §. € (0,1/4), all N € N, and all ¢ > 0. Combining
(60), (61), and (62), we have that there is a K4 > 0 such that

tAe
(63) E° [/ c‘;d"se’N(Xu)du] < Ky(141) {5 + 2404+ 041+ |punel}
u=0

2 2 n . /14 |pne
da  oq Oern el Voo

for all §4 and € in (0,1), all 6. € (0,1/4), all N € N, and all ¢ > 0.

Consider now the quantity in braces in (63). Since e and 4 are in (0,1),
g2 < e < e/V/d4. Since (1 + |punel)/rn > 1/ry > 1/|wa], the seventh term is
effectively smaller than the eighth. Since we are interested in showing that
residence time is small, we should also restrict our interest to d4 and d. such
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that

2
(64) 6q > €2 and Je >( > {1+ |punel}
rn

When this is so, the fifth term in braces in (63) is smaller than the sixth term
and the eighth term is smaller than the ninth. Thus, for all J4 and € in (0, 1),
and all 6. € (0,1/4), all N € N, and all ¢ > 0 such that (64) holds, we have
that

(65) [E° [ /u o c‘sd"sf’N(Xu)du}

=0

\f Voern

We first prove (58). If §; < (¢/rn)*{1 + |unc|}, then
¢ (Hlﬁzc> <1<5\/1+|MN,5| <5 eV1+ [pnel
"ow) T T Ve vV

If 61 < (e/rv)?{1 + |unc|}, we use (65) with 6, = &1 and 64 = diry. Note
that when 01 < (e/rn)?{1 + |unc|},

< Ky(1+1) {5d+5 {1+ |une

eV v } ©).
L [ el) +

2
dg = 01ry > f—{l +lpunel} > €2 (first requirement of (64)),
N

6d = 51[’]\/ < 51|w2| < 51{1 + |,UJN75|}|LU2| (USQ in (65)),

V1 c
o cw |1/2L|“N" (use in (65)).
\/_ o1rN

We can now get (58) from (65).
We next prove (59). If 1+ |une| > rn/e, then

Hl]s[c c 2/3 c c 2/3
<1< (Eq . <Oyt — 4+ (=11 5 .
o (M) <1< (Soviwed) <ot (S0rd)

If 1+ |une| < rnv/e, we use (65) with 64 = d2 and set

5_(i>2/3;
T\ Tl

When 1+ |une| <rn/e and e <ry/8,

- - 2/3
Iy (£ 1) e @)
rvyoe v )

s 2/3< 1 2/3_1
‘= \ry 8 Ty

Sefl+ unel} +
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e\? rn/e 4/3 £\?
56: - 1+ e PR Z - 1+ 5
(5) triah (FPe7) 2 (5) b

(second requirement of (64)).
We can now get (59) from (65). O
We finally give

Proof of Proposition 5.8. We use Lemma 8.4. First, note that if § > £2/3,
then § > 2 and /6 = §(¢/6%/?) < §. From (38) and (48), we have that
there is a constant K > 0 such that

1
{1+ anel} < K {Sv’ +—@ @ }
rn
faNt1eN

for all e € (0,1) and N € N. O

While this result gives us some control over the amount of time spent
near 7y, it is weaker than we need, particularly when |uy | becomes large,
and when we bound éabjé’a. To extend the bound on residence time near vy,
we average £* near yy. Note that we want to carry out this average along
the integral curves of 3V rather than 3, since the orbits of 3V are periodic
(while those of 3 are not). Hopefully, averages over integral curves of 3V are
sufficiently close to those of 3. Since the orbit time of Uy tends to infinity
near yy, we also need to average with respect to a speeded-up version of 3
(whose orbit time near vy stays bounded). Note that because 3 is ambiguous
at vy, we cannot average exactly on yy. For each N € N, define the vector
field

. def Un(2)
W0

, r€E\X

and let p" be the flow of diffeomorphisms of E generated by Uy; i.e., by
p; (z) = Un(p (z)), teR
N zeE
Py (z) ==z

(since E is invariant under 3V, p” is well-defined on E).

LeMMA 8.5. There is a Ag5 € (0,1) such that for each A € (0, \g5), there
is a constant K$°, an N5 € N, a collection {®%”; N € N, N > N$3} of
functions, and a collection {&%5(\,N); N € N, N > N§-5} of numbers such
that such that for each integer N > N5 &R* ¢ C2(Ny) and |®R  (z)] <
K35, || DO 2)|| < K83, and | D2O%(x)|| < K3 for all x € Ny and such
that

(66)  |[(UPR)(x) — {£7(2) — Jo(@)}| < 5 (A, N)or(w) + K3 ry



PSEUDOPERIODIC FLOWS 909

for all X € (0,)s5), all integers N > NP, and all x € Ny, and such that
lim)\*,o MNHOO (528'5()\7 N) =0.

Before proceeding, define

(67) EwE T B\

we will use £* in the proof of Lemma 8.5; we will also need it below. Note
that ¢* is bounded. Also, note that there is a Kgg) > 0 such that
(68) o < K@g)on

on S for all N € N.
We now have

LEMMA 8.6. There is a K >0 and an N%°® € N such that for all t > 0,

{ <Hloc . #N5|>U (X)) xe(X.)du
<

K(1+t){ N5|+1

for all e € (0,1) and all integers N such that N > N8,

{1+ 4
+rN{1+|uN,s|}+{rl“N’5|}}
N

Proof. Fix € € (0,1) and N € N. The relevance of this bound is clearly
when |un | is large; i.e., when 1/|un .| is small. As we shall see, it will
be convenient to focus on the case that |un.| > 2. If |une| < 2, then
L<3/(1+ |pnel), so

¢ (”lﬁc"““') < sup lonllom < sup flon] 5
—~———" |oy <supl|on < sup ||lon S
NeN M NEN cm1y [N el

N
1 2
< 3sup |lo + . .
el N'C“”{Hmm 2

Assume now that |un | > 2. For convenience, define

1 1/(20n,e)
5]\/75 déf — and CN e dgf /
N e ~1/(20x.2)

then 0 < Cy . < fseR E(s)ds < oo.
We first solve an averaged PDE. Set

h
€ e S
T17N( )df2/ @(6 )exp[—|/LN7E|(h—s)]ds
s=—1/2 N,e
€xXp [_‘,U/N,E

I—exp [—(;iLNiE)] Lot (W) o { e (1 - ﬂ s

&(s)ds;

+2
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h
e 20n,C 1
O R R (h+—>,
s=—1/2 1w e 2

15" (h) 5™ (s(unc)h)
for all h € W, and define

of Hloc T
TN (2) def r?\,T;’N <7]\rfN( )> Xe ()

+ 3BV 0 + TV (0 HL (@) } xe, (o)
LeA

for all z € S. Then TN € C>(W),

UN,e vpe, N 1 e, N _ h
LAY (h) + 575 (h)_e(ém

TV (-1/2) =15N(1/2) =0 and  TYN(-1/2) = 15V (1/2).

The true averaged PDE would have py . in place of py ./2; we allow for an
averaging error.
Note that

T;’N(h) = S(MN,E)T?N(E(MN@)}L) -

) _6N,8CN,5a hEW,

26N,5CN,E

, heW.
:|/~LN,5

Then for x € S\ v,

(1))~ e

where

N (2) = —ZCN’:[E(SN’E {gN](x) GN;x) } Xe(2),
e,N

By (2) = —CN 0N eo N (T)xe(T),

50 = o1 () et
N

eg () =Y rvB(@) Y5 (0)xe, (2).

LeA
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Let’s now bound TEN We first note that Ti’N is nonnegative and € is
bounded. Thus, there is a Ky > 0 such that

K
(69) 0< TN (h) < — = Kidn.
|NN,6|
foralle € (0,1) and N € Nsuch that |un | > 2 (note that 1—exp [—2|une|] >
1 —e* when || > 2). We then can find a Ky > 0 such that |75 (h)| <
Kby and |T5N (h)| < Kaody. for all h € W, e € (0,1), and N € N such
that |un,e| > 2. Thus, there is a constant K3 > 0 such that for all z € S,
€€ (0,1), and N € N such that |un.| > 2
_ K €202
o5 (@) < Kslunello] = g — ==

Al

for i € {1,2} and |52 (z)| < Ksdn. for i € {3,4,5,6}. Hence, there is a
K, > 0 such that

(70) E° UW ¢ (M> a-N(Xu)XE(Xu)du]

u=0 5N,e rn

"N 1R
+ E* |:/ . 1y’ (XU)XE(XM)duil < K4(1 + t) {5}\[75 + 77}
for all € € (0,1) and N € N such that |un | > 2.
We now need to bound 1§’N from below. We should be able to do this
by averaging. Fix \* € (0,As5) and an integer N®6 > N such that
E8S (A, N) < %l for all integers N > N86. Then

(9B ) (@) — (€ (@) ~ o (a))] < Dla) + K5 r

for all z € Ny and all integers N > N&6_ Then for all integers N > N&6 and
x € NN,

* ¢ pA* 8.6
6y B, o) IT:A* .
and hence
&)o@  (UORM)(x) KRS

- > - N

i 2 = i e
To carry out the calculations, we need to stay away from ~y and Cy, since
@I]i;’\ loses smoothness on these curves. Fix € and N as required in the claim.

Define 9 ] /1% .- Then (recalling the positivity claim of (69)) we have
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that ™ > 5™ + 15" — K362 /[7) on S, where

50 el g e (s ) Lo, (D)
('HIOCﬁN'Er‘NrN/Q)}xEu),
50 )Y 3 (g, ) £ (Wit
by (W)}xm),
N,el'N

o Hloc T Hloc T
E‘;N d: rN|,uNE|T (s(,uj\%) I\r[N( )) {cv< N( ))

IN el N
Hoc ()| — rn /2
—ca (—' Nl(? NI =rn/ )}XE(x)E
N,ef'N

the requirement that |un | > 2 implies that IZ’N is smooth; in particular, 0
is not in the support of h — cx (‘%_Tl/?’) It is easy to see that there is a
constant K¢ > 0 such that

(71) 57 ()] < Kolunclry
def

for all x € Ny. To bound IZ’N, use Lemma 8.1 with § = Jy . and n(z) =
ca(2)+en(z—1/(20n,¢)) for z € R. Recall (68) and that £* of (67) is bounded.
Thus there is a constant K7 > 0 such that

(72)

tAe
E* [ / Ig’N<Xs>ds] < Ko (14 8) i |0 0o (14 i) <
s=0

3Ky

(note that sup,-, *z = %) for all £, N, and t as required in the claim.

Finally, we average Fix € and N as required in the claim. Define

TN (h) < 15V (s, )h) { (i) e ( h—1/2 )} hew

ﬂN,s 19N,e

R o 62 o . . Hloc T
5N (@) SR () e 05 <]:N()) @), zeES.
Then
1 11 N
(205 ) = 5V (@) + e S0 )
1=8

for all x € S where

Hloc T .
e ):em,sw;”( V()
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2 . loc o *
o5 (0) = vl 1 (AU (106 0) 4 )} 95 ),

rN rn :l
2 loc
N € |HN, | 5 N HY(2)) < par
i (o) = Sl (PR 60 (o),
N

2 ol Hloc . .
i) = Sl pe () (g anie) ).
N rn

Note that

TSN (h) = 2¢ <5h

> - |NN,€|T?N(h)7

,E

.. 2 ./ h .
1700 = 52 (51 )~ a5

2 . ([ h h .
- —¢ —2lpnel€ [ =— ) + ux YTV ()
6N,5 6N75 6N75 ’

for all h € W. Use now (69). We can thus find a constant Kg > 0 such that
T3 (h)] < K,

e, N 1 IU’?VE
TPV 0] < Ky (5 + el +
N,e ‘:LLN,E

for all h € W and € and N as required. Thus, there is a K9 > 0 such that

> < 3K8|:LLN7€

T2 ()] < Ko {1 + } < 2Kyl

|MN,E|19N,5

1 1
e e Wﬁ} < 3Kl e’
E1Y N,e €

Y5 (h)] < Ky {

for all h € W and ¢ and N as required. Consequently, there is a K19 > 0 such

that
4

3
K N HN

eg ™ (2)] < K1oe?, les™ ()] < K10€2"ur2’6| , 25V (2)] < Ko r2,57
N 2

2
55 (2)] < Klosz%, 15 ()] < Kroe?

for all x € Ny and € and N as required. Hence, taking the largest of the
numerators and smallest of the denominators, there is a K71 > 0 such that

tAe 52 4
E° [ / 1§7N(Xs)ds} ad
s=0

<Kin(l+t)—5
for all € and N as required. Combine this, (70), (71), and (72), and again

N
take the largest of the numerators and smallest of the denominators. Again

using the fact that sup,s, 7= = 2, we have that oy < m O
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8.1. Proof of Lemma 8.3. To set up some notation, define X;(x) L

for all x = (1, 22) € R?, and define

|2l ) v,
w(z) :/ {e‘y /2/ e /de} dy
y=0 z=0

for all z € R. The properties of w are given in Lemma 5.2 of [Sow05]. In
particular, w is smooth and W(z) + 2w(z) = 1 and zw(z) > 0 for all z € R,
and there is a constant K > 0 such that

(73) W) < K2, ()| < o

d W <K
<p amd fi)<

for all z € R (the bound on w and w were given in Lemma 5.2 of [Sow(5]; the
bound on W comes from combining the bound on w with the PDE for w).

Proof of Lemma 8.3. Let » € (0,1) be such that = € U if n(z) < 2 (n
was defined in Subsection 3.2). Define b(z) e (%) for all x € R2. Then

0<b<1, bz)=1if |zl < /2, and supp b(z) C Y. Define the constants

def . 2 ~
= f : A
o =i N (o, dr)y (@)in(a) - W EH L E }

2
af (dxq,dx1), (x)

agdéfsup{ :xEZ;{,EEA};
in light of (2), a1 > 0, so ay is well-defined.

Define B (z) Cf 2h,w (rx1(z)/e) B(z) for all z € R? and £ € (0,1).
Note that B € C°(U). We then compute that (QZ}EPBE)(:L') = Aj(x)b(z) +
az{uf () + 5 5(x)} for all e € (0,1) and = € U and ¢ € A, where

A5 () def {alxl()x)w <Q1X1($)> 4 af (dxy, dxa); (J/’)W <Q1X1T(93)) } 7

e 2
c (@) def <a1x1£x) (V.H, V.

From the PDE and bounds of (73), it is fairly easy to see that there is a
K > 0 such that Aj(z) > 1 and [6f | < Ki{e + €®l(¢)} for all € € (0,1) and

x € U. To bound &5 |, we first note that (V.H, V.D).(z) is nonzero only when
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V7 < ||zfle £ V25 Since <d|:|,d|:|> (z) > 0 for all € U \ {0}; thus

(VA 9.5). ()]
sup — —
€li\{0.} <dH, dH>N (x)

is finite. Hence there is a K3 > 0 such that [r7 ,(z)| < Kal(e) <dl:|7 d|:|> (x)

for all € € (0,1) and = € Y. Combine things together to see that for some
constant K3 > 0,

B(z) < (Z5B)(@) + Ko {i(e) (af,dR) (2) +¢}
for all z € U and € € (0,1).
def

For all £ € A and = € T, define now H(x) = > ,c\ b(¢e(x))xy, (x) and

B (x) ef Y ven B (¢e(z))xu, () for all € € (0,1). The bound on B and
(dBE,dH*) are fairly easy to see; use Lemma 5.2 of [Sow05]. O

Finally, let’s state the lemma which will allow us to average &* in Ny away
from . This will be useful in bounding &,;°. For each N € N and = € Ny,
define

B2 @) [ e 6 (@)

LEMMA 8.7. There is a constant K > 0 and a sequence {&57; n € N} of
positive real numbers such that for A € (0,1) and N € N,

|aey — {6 - (A (EDY

<K {/\ + rv(HRS) + ] + 51%-7} ,

R K
\qﬁff* <K HD@WH <K
ST R
K
D2<I>‘"’1V’*H<—

on Ny, and such that limy_ ., 87 = 0.

We close this section by using the above results to bound the errors in
Proposition 7.2. Define

5o der (ALt livel} | Vel lavell)
€ rSJ)\/{4 ry 1+|,LLN75

(74)

1/2,3/4
€ e ery

= — _|_ [ S—
A2 {0+ el 2
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N,e def SN, E,EN

and then set U, vy

LEMMA 8.8. There is a constant Kgg > 1 such that for each N € N
and € in (0,1) such that € < rN */Kgs, we have that sup,cg |05 N)| <
Kg,g,zs[(g)/r‘?\,/4 and

([ rvetnaa |

1/2
> _Kg.g(l + t) ox B 1 i/Q
= 217/6 P Kss \ ¢

IEE

51/2 1+ 51/4 1+ 3/4
_K&S(Ht){ Ot e} , 710+ el
N ry
ALt )
+ 1171 £ [(e)
'n

for all 0 < s <t.

Proof. We can use Lemma 8.2 with § being either e/r%2 or e4/0Nc/rN; to

do so, we need that 5/r?]’\{2 < 1 and e\/onc/rn < 1. We get that there is a
constant K > 0 such that

([ rviounin

_K(1+t){ 3/i[(5) . exp [—L 5N75]
'n

EE

ONe Ery

1/2
L1 1 (2
_ 1 el N_
e7/3,\ /0N e P Kro \ €
KO+ lpnel | 1 £
r5/4 r3/4 O~ r?])\{Q

— K(1+1)

()

3/2{1 + |/1‘NE|}

1/4\/—
K(1+t)s,/5N5

o {1+ el
Ery
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1@]

1
K1+ ——exp|—
( ){&_r%4 p [ e

1/2
1 1 (2 /
+ 7/3— exXp _K7.2 T

ery /0N

C K+ DIy ie) — K(1 4+ T el

N

for all € € (0,1) and N € N such that (combining the requirements of Propo-
sition 7.2 and Lemma 8.2)

3/2 ) N ) ONe < 07.2,
(75) N —
e < O.c e 1
Ky’ 2 A

where for convenience we have defined

1] e , {1+ |unel}
IN75(5)=%{$+ r%4 + +\/_77/4

rn

for all § and € in (0,1) and N € N.
Bounding 0y from below by the first term after the last equality of (74),
we have that

1 1?1

- < - -
e fone €13\ € c17/6”

1/2 1/2
ONe e Y A5 11 r3/?
e et et € v we| \ €

for all € € (0,1) and N € N. Thus,

1/2
L1 A
ex — E—
€73\ /0N e P K72\ €
_ L ‘j’v
ox '~
=\ e(2/3)3 T e p K721+|w2|

1 1 %
< R
{53/2 + 517/6}6Xp K72(1+|w2| ( >
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1/2
< 2 1 r?]’f
= 2176 PN TR L0+ wal) \ e

for all e € (0,1) and N € N.
Since € and ry are in (0,1) and 1+ |un | > 1,

6/4
S e VR 2
%4 o/ L+ |pnel o/

Thus we have that

1+ |wo[?/2 i+ lpvel} | Vel Flunel)
\/51\[5 9/4 'n

/—{1+| Nel}
774

IN,E((sN,E) S

{1+ |pncl} {1+ [unel} {1+ |pnel}
+

< {3+ |waf*?}

11/4
r
N ry

1/2
. 1 2 1/2 1 3/2
{3+|w2|3/2}{s{ el L e}

11/8
r2
N v

1 1/4 1 3/4
164 2enl?) { 0t pvely | €L+ e}
for all € € (0,1) and N € N; the choice (74) of dn . makes both terms on the
right of the first inequality to have the same order.

We need to check that there is a K > 1 such that (75) holds when ¢ <

3/ 2 /K. We start by rewriting the constraints of (75) as

5<$ e eyt @ & “2_&“<5
4 T O e S e T 0T ez <

DR L+%
SEL O\ O eV

(the last requirement of (75) implies the first). These inequalities hold if

3/2 < <
N e B appa_ & b pan b
c 4 rl/2 2e2’ c N 262’ r1/2 27 c N 2
N N
13
52
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ie., if

€< min{r?\f/2 rEJ)V/G r}\{Q 5726\7/2 075 1 }
1 51/37 92/5° v 320 /2 (°
ARREET 2 an? K an
which in turn is true if
97 5 3/2
(K25 +4)(1+ |wal)® ™
In verifying this, note that if —3/2 < a < 3/2,
N e Nt (e

(T lw2)? M+ fw2)® =N (14 [we])? N

e<

(e}

L+ [wa])P2re =N
0

9. Error estimates in Ny

We now want to continue the bounds of Lemmas 7.8 and 7.9 and bound
the remaining &;°’s of (53).
We start with a useful lemma.

LEMMA 9.1. There is a Kg91 > 0 such that

loc

HY¢ (
|@un ) VS (@)] < Ko {1+ lunclte (%N)“N)

for all e € (0,1) and N € N and all z € E.

Proof. First fix h € W. We claim that

2,UN6|
76 ‘2 Ne(u(h (< 20, —2unohll.
1) P )| € g e (2]

Assume first that px > 0. Then
(77 N—exp[-2unc]l =1 —exp[-2une] =1 —exp[-2lunc|].
We also calculate that ¢«(h) =h > hif0< h<1/2,and v(h) =h+1> —hif
—1/2 < h <0, implying that

—2unct(h) = =2[uncle(h) < =2|un|[h] = =2|pn ch]-

Combining this and (77), we get (76).

Assume next that pn . < 0. We then rewrite Vg’E(L(h)) as
exp [2un,e(1 = ¢(h))]

exp2unc] —1

We then have that |exp[—2une] — 1] =1 —exp[2une] =1 —exp[—2|unc|]-
We also have that 1 —u(h) =1 —-h > hif0<h <1/2, and 1 —(h) =
(1=(h+1)) > —hif —1/2 < h < 0. This implies that

2un (1= u(h)) = =2[unel(1 = ¢(h)) < =2|unc|[h] < =2|un ch].

v S (u(h) =
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Thus we again get (76).
We finish the proof by noting that sup,.o{z(1+2)"*(1 —e*)"'} is finite
and by then using (55). O

We can now bound gb],\i’e and 517{\75’5 of (53).

LEMMA 9.2. There is a K > 0 such that sup,cg |é”b]\£€(x)| < Ke?{1 +
lune|}?/rn for all e € (0,1), N € N and i € {4,5}.

Proof. We first note that there is a K; > 0 such that |oy(z) — o(z)] <

Ki|lvn| and |En(z) — £*(z)| < Ki|vy| for all x € Ny. By combining this
with Lemma 9.1, we can find a constant K > 0 such that

K ¢
N
65" ()] < Klun[{1+ |unel} = —E\MN,eHl + el

Al
K &2
< = — {1+ |unel}? O
Al ry

We can bound cg’bjg,;g by combining Lemmas 8.2 and Lemma 8.5.

LEMMA 9.3. There is a K > 0 such that for oll 0 < s <,

d |

< KESS(A\,N)(1+1) {1 +rn{l+ |pne]} + (%) {1+ |,UN,5|}5}

V7 B 2/3
N

tAe
[ & e

L=s/\e

+ KEY (14 {1+ |pun e

for all X € (0, \s.5) and all integers N > N{° such that

f2
(78) L+ [pvel < 5

Proof. Fixe € (0,1), N € N, and = € E. We first write that

N,e _ 1 * N,e
&5 () = ~ A (E) {€"(x) —Jo(2)} (2un,)VE© (2).

Define now a relaxation parameter ¥y . o {1+ |unc |33 (e/rn)?/3; the re-
quirement of (78) is exactly that Jn . € (0,1). Then

€ def ]- £, g,
&5 (@) E — {7 (@) + 5V (@)},

(Ag)([E])
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where (recalling (67)),
loc T
550 @) - DV @ (55 ) o),

UNerN
def * Hloc T
SN (2) (e (2) — To (1)} 2w )V (@) ey ( ﬁzv())
N,efN
We now use (54) and Lemma 9.1. Thus there is a constant K; > 0 such
that

0 0] < K {1 -+ e (PR ) ¢ (VDY

INerN

Hloc
=Kol (552 ) o)
N,e'N

(note that ||€||c(r) = 1). Thus by Lemma 8.2, there is a K > 0 such that

(19) E° [ / _ £V (X,) xE<Xs>ds] < K401+ e [POns

o\ 23
— KO O{1+ a7 (N)

for all e € (0,1) and N € N.
We bound 57 by averaging. Fix e € (0,1), A € (0,)\s.5), an integer
N > N§®, and = € S. Define

loc x
TEAN () def 2% (1) (2un VS () ey (HL()> Xe ().

INerN
Then
4
(LT (@) = {I;Nm +5V (@) + Y Ef’*%)} (@)
where .
AN £p,A * N HE* ()
50) = {(998)(0) ~ () - Jo@) } Cr Ve (55120,
NelfN

£ ) = o {2 o)} { —uvae, (SE)

r3 YNl

o (SO v V)85 0),
) e, (1)

AN
INerN In e NN

loc T o
— i () )} (2pn WV (@5 (),

g\, €
) = g onlo) { e
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Hloc T
o5 0) = 2V e (550
N,elfN

2 Hloc
EZ,,\,N(m) _ & {—QALN,SCV ( N (CU)>

rn INerN
1 . < Hloc ()
on | A2

N e YNl N

) (@)

)} e oV (i, a88) (@)

for all # € E. Using Lemma 9.1, we can thus find a constant K; > 0 such
that®

62

|E§’/\’N| < K1 K3{1+ |NN’5|}3W
NY N,e

2/3
5 13 .
= KlKEO{]‘ + |/”LN-,€|}7/3 <a> ) 1€ {1727374}7
(80) P

0= < KRR {1+ el = KB {1+ el 5 oo
'NUNe

2/3
IS
< K K i {1 4 e} (—)

rn

on E for all € € (0,1), A € (0,As5), and all integers N > N$-°. Combining
Lemmas 8.6 and 9.1, we furthermore can find a constant K5 > 0 such that

d |

< Ko1Kgs) ¥ (A, N){1+ |un |}
tAe Hloc X -
o {/ ¢ (M) UN(Xu)XE(Xu)du:|

=sAe (Y
+ Ko Kgs) KX Prn {1+ |pune|}

tAe N
/ EMY (X, xe(Xu)du

=sAe

2
&
< Ky&%5(\, N) {1 +rn{l+ |un |} + (E) {1+ |uN,€|}5}

+ Kg,lK(ﬁs)K§'5rN{1 + N el

for all € € (0,1), X € (0,As.5), and all integers N > N§-5. Combine things to
get the stated result. (]

We finally bound &;°.

3The relaxation parameter Y n,e was chosen so that the errors in (79) and the first line
of (80) would be of the same order.
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LEMMA 9.4. There ts a K > 0 such that

E® {/um é"b{\’l’g(Xu)XE(Xu)du}

=s/e

<K(1+t) ﬁ{lﬂ }1/2+£{1+\ [12/3 8 1(e)

= 5/6 HUNe r2/3 KN e €
'n N

1
+K(1+1) {gr(g) + rvl(e) 4+ rnP(ry) + a2 <4) - @@}3-7}
1+ |.UN,E|

for all e € (0,1) and N € N such that

/2 A5/2
81 <N d 1 <IN
( ) € 128(1 ¥+ |(U2|) an + |pJN,6| ]

Proof. Fix a relaxation parameter ¢ € (0,1/4). For all € € (0,1), N € N,
and z € E, cg’bj\;’g(x) = =N () + 65V (2), where

loc T
157N,19(x) def {&(z) — (AE")([E]) }ev (ngz(v )> ’

19FN

loc T
60 (2) T (6% () — (AE7)([ED) e (”N ( )) :

loc
the requirement that ¢ € (0,1/4) ensures that cy (%) is smooth, particu-

9
larly at Cy. Using Proposition 8.4 on Ei’N’ﬂ, we have that thereis a K; > 0

such that
tAe NO
g { / N (X, XE(Xs)ds}
s=0
ev/1+ e
< Ki(1+1) {19{1 + [unel} + VAR + z—:} [(e)

rnvVY

for all e € (0,1) and N € N and all ¥ € (0,1/4).
To bound V7 we average. Fix ¢ € (0,1), 9 € (0,1/4), N € N, and
A €(0,1). For all z € S, define

Hloc T
YeAN D def 2 ( g’r](v )) 3N () xe(2);

then ;

(LEYIN ) (@) = {IEvNﬂ?(a:) +) Ej’A»Nﬂ(I)} Xe(2)
for all x € S, where -
500 e, (M) frua o) - 60 - (g},

19[’1\[
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) 2 e, (Hm( ) g

6

. def Hve (= . 3

s () < 19FN < pe. ><I>2* )\(m){/iN —NJ( )—l—r By (@ )}
2 oc

. of €2 .

) ( ) 22 @)t
2 loc

AN gy deF € (H N (@ )> <dH1°C d@%fﬁ*>(z)

ﬁrN A 19rN

for all € E. Use now Lemma, 8.7; there is then a constant K5 > 0 such that

s K |I/N|
[s5 M ()] < K {A v (Ory) + Yot &8

=K, {/\+ Ll + v (Iry) +é‘}§,~7},

I a2k
Ky &2 Ky &2
N9 _ 2 AN, 9 2
|m3 (z)] = pEI=RTEs By (z)| < N 19{1+|MN,5|}a
|E6,)\,N,’l9(x)| & 52 E )\ N 19( )‘ K2 82
> S ek = A2 ke

Kz e?
A rn

‘TE’)\’N’ﬂ(x” <

for all € and Xin (0,1), all 9 € (0,1/4), all N € N, and all « € E. Thus, there
is a constant K3 > 0 such that

for all € and A in (0,1), all ¥ € (0,1/4), and all N € N. Combining things,
we find that there is a constant K4 > 0 such that

d |

< K4(1+ t)Ine (X, 9)((e)
+ Ky(1+ t){el(e) + rn(9rn) + EF7)

tAe
/ VY (X)) xe(Xy)du

=sAe

{1+ MN,sI}}
A3r, 02

+ K3(14+ ) {ryC(ry) + 5T}

}§K3(1+t){A+

tAe
[ & e

=s/Ae

for all € € (0,1) and N € N and all real A and ¥ such that

1
(82) 0<A<1 and O<19<1,
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where we have for convenience defined
2
def \ |, 41+ |unel} eV1+ [pnel
(83) Ine(ND9) = A+ /\3192r?v +H{1+ [pnel} + PREIVE

for all A and ¢ in (0, o).
Fix now € € (0,1) and N € N. Define

1/3
(Em+ 62{1+|HN,5}) /
)
def

5/2 s
N N
)

)
e {1+ un o [y?/3

Ay e £ Y22 {1+ v}
76 - -
r2/ 491/ r?\f/4 (E\/l"rlH«N,s + 62{1+|,U'N,5|}>1/6

N N,e
5/2 2
YN N

We chose Ay to make both A-terms in (83) to be of the same order;

[SRV/ 1+ ‘,uN75|

51/2 1+ 1/4
INc(ANe,One) =2 d 5/4|,u1]/\/276|} T OINAL+ [N el + 172
v Un: WONe
3 ev/ 1+ |un, {1+
) VIt il | S+ el g
P r?V/Q "~

N,e
We then chose ¥y . to make both terms in the final expression of the same

order;

VIF] 21+ e}

€ N, € 7 .

IN,E()\N,5719N,E) §4 5/2 e + QMNE {14»|/LN,5|}1/3

ry 'n

c1/3 £2/3

<8 it+ e} + 8511+ w2,

"N "N

We now need to show that (81) implies that Jn . and Ay satisfy the
admissibility requirements of (82). Clearly Ay . and Yy are positive. We

also need that

1/3
e/1+ |pn e2{1+ 1 1
< |:u 7€| + { 2|MN,E|}> < Z{l + ‘,LLN,E|}2/3 (19N,5 < Z) ,

5/2 r
ry N

1/6
1/2 (E\/l + [N n 52{1 + [ne }> Owe < 1)
5 7 .

€ 7
5/4 {1+|IUN,8|} 12 < 5/2 r
ry r N

N
These are equivalent to the requirements that

e/ 1+ 2{1 € 1 L
VIt | e +2\MN, I} S e ly? (01\7,5 < Z) :

5/2 r
N N




926 RICHARD B. SOWERS

3 7/6 2
e {1+ c ev/ 1+ |un, €

b lme P2 SVAI*hvel | S e} e < D).
ry F N

These inequalities hold if (but not only if)

e/1+ 201 R 1
-— { VIt lave {1+ o, |}}<_

1
1 € 2 9 € R
Hliwel sl (o< ])

r N
N

3

£ eyV/1+ lpn,
ﬁ{1+|/14]v’5‘}7/6< TE ()‘N,s <1).
r]\?/ r]\{

The first of these inequalities is equivalent to requiring that both & < r?\,/z{l +

lune|}3/2/128 and € < ry+/1 + [un.c|/V/128. Since 1+ |un | > 1, this is true
if the first requirement of (81) holds. The second inequality is equivalent to

requiring that 1+ |un .| < r}\?/2/53.
Finally, we bound Yy ry from below by taking the second term in the
numerator of the definition of ¥y ; we have that

52/3r1/3
Inery > ——— N ;
T U P
thus, there is a constant K > 0 such that
1
(v <K<l [ | ———
(met) < K416+ 00+ ()
for all € and ry in (0,1) and all N € N. O

Define now the function \II%N and the constant K (gq) by

(84) WSV L uSN LUl and Keay 27+ Ky g+ 256(1 + |ws).

For each v € (0,2/7), let .7, be the collection of (¢, N) € (0,1) x N such that
105/ (4-147) /15/2

85 S — J<er—N d <1.
®) < e <O gm amd o

We then have

LeEMMA 9.5.  Suppose that {(ex, Ni); k € N} is a sequence of elements of
Sy such that limy_c e = 0, limp_oo N = 00, and limy_. rk[2(5k) =0.
Then limy_, o H\I/g“’Nk lces) =0 and

tAe -
Jim_ B H/ (ﬁgw%’“N’“)(Xu)du} ] =0
00 u=sA\e

forall t > s> 0.
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Proof. Collect together Lemmas 7.8, 7.9, 8.8, 9.2, 9.3, and 9.4. Recall also
(23). We have that there is a constant K > 0 such that

[ o)

52
> —K(1+1) {|VN| +ry+{1+ IuN,EI}QE}

(86) E°

2
— K& (A N)(1+1) {1 F {1+ e[ Porw + (%) {1+ |“Nx5|}5}

2/3
g
— KE$P(1+t){1 4 |un.c|}7/? (E)

~ (0] S o 12 4+ S 0 L)
r5/6 HN,e r2/3 KN e
N N

1
—K(1+1t) {6[(6) +rnlP(e) + rvP(ry) +ryl? (7> + c?f,j}
14 [un el

1/2
K(1+1) 1 (ri’f) /

exp | ——— | —
217/6 Ks s c

11/8 11/4
r/ I’/

N N

1/21+ . 1/41+ 63/4 1+ 52
_K(Ht){a Ot lwel) /10 el <0+l
N

K(1+t){z 0l + > ﬂN’E}
leAp leNw

for all € € (0,1) and N € N such that

/3/2 2 /572 15/2
N N N N
<N 1 <N e« —N ___ and 1 <N _.
F< Ry Tl =g e< ey ad Ll <=5

Fix now v € (0,2/7). Let .7 be the collection of (¢, N) € (0,1) x N such
that

r 1 r2
(Ut lunel? <5 Tt lunel <=, {14 |une]}® <75,
€ ry €
(2/3 (5/6
(Ut i Y72 < PP {1 luw e} <2,
(87) (2/3 r2
(el < 2P 55, (Ut luwely < €7 5
r11/8 r11/4
{1t lun [P < e 8, and {14 [y} < 72—

gl/4’ 5
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and such that

r3/2 r2 r5/2 15/2
N N N N
< 1 < X <—"=" _ — and 1 < A,
€ K8.8 + ‘MN~,€| — 52 € 128(1 + |w2|) 1 + |IU’N7€ 8‘3

Note that lim. _o&7l(¢) = limy_.o ry?(rny) = 0. Also note that if (¢, N) €
2, then

1/2
1 1 (2
_exp | — N
o178 P Kss \ ¢

P N {128(1 + Jwa[})?/P (2/5)3/4

= 173 P Kss o172
- {128(1 + |wo| }?/® 1
_517/3 B Kg,g ElT ’

Fix now a sequence (ex, Ni) in .77 such that limy .o ex = 0, limy oo Ni, =
00, and limy,_ o, rx[%(ex) = 0. The definition of Y,; implies that all of the terms
involving 1+ |pn | tend to zero. The second bound of (87) implies that there
is a K > 0 such that [(1/{1 + |unc|}) < K(ry) for all (¢, N) € 7. Thus
limy o0 rvI2(1/{1 + |unc|}) = 0. We also clearly have that limg o [V, | =
limp o0 ry, = 0. We use (52) on the terms involving |ﬁf’5| and [0™F]. We
also use Lemmas 8.5 and 8.7 to control the behavior of &%5()\, N) and &§7.
We get that

lim E°

k—oo

{/ut/\e (gE\IlngNk)(Xu)du}_] > —K(1+1t) Iim |6%°()\, N)|.

=sAe N—o0

We now take A — 0 to get the claimed result (recalling Lemma 8.5).
We now show that ., C 7. If ry < 1, then

5/2 3/2 5/2 15/2 5 152

o ry q vy
min , an <min{ ¥ N L.

Kxggy — Kgg 128(1 4+ |wal) g2 g2’ ¢3

Rewriting the requirements on 14 |un .|, we get that (¢, N) € (0,1) x Nis in
it
8!

; ; ; (L1/60 1178
Y mi v -~ v I N NN IN TN
(88) 1+ |une| <& min e Ty £2/57 g2/T0 2/30 o 120 (1737 12

andry <1,e< rE]’V/Q/K(M) and 1+ |pne| < r}\}r’/z/a?
Picking out the largest exponent of ry in the denominator and the smallest
exponent of ¢ in the denominator, in (88), we see that (¢, N) € (0,1) x N is
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in .7 if
[5/2 A5/2 11/6
N . N N
€< Ken’ ry <1, and 14 |un el <m1n{ 2 ’52/7—’1}'

Since v is by assumption positive, £2/7=7 > 2 for all € € (0,1), so (¢, N) €
(0,1) x Nis in .7 it

r5/2 r15/2
N N
< , <1, d 1+ < =
9 5) rn an |,[LN75| 22/7—

In order that the upper bound on 1+ |un | be non-vacuous, we necessarily
must have that r}\?/2/52/7_"’ > 1. Since K(gq) > 27 and v < 1/7,

(105/(4—147) (15/2 2 )
N PR N - 7™N1/7
e< W lmphes that (cJQ/T'Y Z K(84) Z (2 ) 2 2
(note that 12 /(2 — v) = 105/(4 — 14v)), in which case
1 5/2 15/2

N : : N
|/,LN,5| < im lmplles that 1+ |‘LLN75 < &*Q/T’Y

In other words, if
r?\{z r}\?5/(4_147)
{K<84> L Ksa
then (e, N) € .. Since v € (0,1/7), 105/(4 — 147) > 5/2. Also, K(sy4) > 2.
This allows us to see that .., C .77, finishing the proof. O
We finally have

Proof of Proposition 5.2. Fix ' € (0,1/7) such that
"< and _ 105 < 105 +
T 414y S a4 T

We want to show that (en,N) € ., for N large enough. We calculate that

105/4+/2—105/(4—14~")
EN _ 1 1
r}\?s/(4714«y') |wo|105/(4=147") a%) ’

1 572
N
}, rv <1, and |pwne| < 3237

[N e <|J||VN|"N5?V/7_7/<‘J‘ lvn|
e T
_ 17| (agg))13/2+12/7(1o5/4+»y/2)
= Jwo 1372 aggllag\?)
1| (ag\‘f))721/14+6v/7 i (ag\f[i))721/14+7
w1372 (d) = Jwo 1372 (d)

ANt1 aNt1
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Clearly ry < 1 for N large enough and limy_. o ryl?(en) = 0. O

REMARK 9.6. The origin of the complicated exponents in Theorem 2.10
is the expression on the right of (86), which must tend to zero. This of
course can happen for many other sequences {en; N € N} (not just (17)).
Similarly, we could probably slightly relax the requirements of (85). We have
already tested the patience of the reader (and author) enough to make any
such refinements ill-considered.

One can also see why we can only look at specific sequences of ¢’s, rather
than the whole continuum. If one starts with Remark 7.3 and requires that ¢ <

r?]’v/g, then one might like to take all ¢ such that r?\{il <e< r?jf; i.e., partition

(0,1) (and hence the choice of ¢) into intervals of the form [r‘?\{il, r:;\,/2). One

/

. . 3/2 e 3/2 N
must then consider e ~ ry 1. But if e = ry}; and |lUn| & ryryvy1, then

+
2 [5/2 15/2
~ N N ~ . N
[ e| & 2 > 37 22T
N+l Iy

(since r}\}fl <1 r]}u/ ?). Thus, if ¢ is at the left edge of the interval

[r?]’v/il, r?]’\,/Z), the second requirement of (85) is far from being satisfied.

It is important to note that we DO allow |un | to grow, but not too quickly.
Our calculations would definitely be easier (but our results much weaker) if
we forced |un | to stay bounded or to tend to zero; the separation of scales
in (49) would become even stronger.

Some of the complexity of the exponents in Theorem 2.10 comes from the
comments of Remark 7.3 that the glueing corrector along vy not interfere
with itself across My. To reduce this interference, we would like ry to be as
large as possible. On the other hand, the larger that ry is, the larger |un |
is. This competition restricts things.

Another perspective on the issue of separation of scales is suggested by
Figure 4. Our calculations hinged upon being able to first stochastically av-
erage in the small loop on the right-hand side of Figure 4, and then to solve
a Poisson equation on the loop and show that it had certain asymptotics. A
significantly different approach might be to follow calculations like [FW94]
and show that boundary layer calculations around OE reflect the fact that
the global invariant measure is Lebesgue measure. Perhaps the mixing cal-
culations like [SK92] might be useful in carrying out such a program. If one
would attempt to use [SK92], one would need to bound the effect of noisy
errors in the “special flow” (and to show some uniformity in the error bounds
of [SK92]).
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10. Bounds on the corrector function

Here we prove Proposition 7.2, which is the basic glueing estimate. This
will follow from the work of [Sow05], [Sow].

Let’s set up our problem in the framework of [Sow05], [Sow]. We start
by rewriting things in terms of the geometry defined by .. We start in the

usual way. For each f € C°(T), define (M rg)(z) ef (df,dg) (x) for all
g € C(T) and « € T. It is easy to check that M ¢ is a derivation of C*°(T)
(treated as an algebra over R; see [Boo86, p. 39]), so there is a vector field
Ms s on T such that (M rg)(x) = (M, ¢(z), Vg(x)) for all g € C°°(T) and
x € T. Furthermore, the map f — Ms s is linear in f and that M p2(x) =
2f(x)Ms s (x) for all f € C°(T) and = € T, so there is in fact a fiber map
M : TT — TT such that M, s(z) = MV f(x) for all f € C=(T) and z € T. Tt
is also easy to see that (MX,Y) = (X, MY) for all X and Y in any common
T, T, and by considering local charts, it is easy to see that M is smooth. The

nondegeneracy assumption of (2) also implies that M|zt > 0 for all z € T.

Define finally (X, V)¢ def (X, M’{Y) for all X and Y in any common T, T,

where M ~! is a smooth inverse of M; then (-, )¢ is a Riemannian metric on T.
We have that Vg f = MV f, where V¢ is the gradient operator with respect

to (+,+)g. Thus (Vaf,Veg)e = (df,dg) for all f and gin C*°(T). Next, define

the two vector field €; and €; on T by requiring that (&;f)(t(x)) = %ﬂ:t)(x)

for all x = (71,72) € R%, f € C°°(T), and i € {1,2}. Define the fiber map
J:TT — TT by 7X % (X,&,)&; — (X, &)é; for all X € T'T. Define then a

second fiber map Jg : TT — TT as JoX def MY2JM~12X for all X € TT,

where M2 is a self-adjoint and smooth square root of M, and M~1/2 is

its inverse. Finally, define wg(X,Y) def (X,JcY)q for all X and Y in any

common T, T. It is easy to check that wg is a symplectic form which is related

to (+,+)g. Define also m def dffujc and then define mg € C°(T) by requiring

that mg ot = ;. With this setup, for any € t=3(S\ Cy) and X € T,R?,

we (U (H(x)), TEX) = we(TEV Hy (), TEX) = ﬁwe(veHNw x)
= ﬁXHN = ﬁX(Hf’C ot) = mwG(vGHﬁc(t(l')),T{X)

so that Uy = ﬁ?g Hl%¢ on S\Cxn. Let Ag be the Laplace-Beltrami operator
defined by (-,-)¢ and define the operators bof © me{Zf — $Aqf} and

Zaf def T Agf +bgf for all f € C(T); then bg is a smooth vector field

on T and . = ;- %¢. Forall € € (0,1),

1 1_ v oA
ZF = —{E—QVGHIXIC—&-XGV} — 6—2(’11\7

bG
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(recall (37)).
Let V be the standard maximum operator on R. Define

_ def =, G def u
Gy = IH&X{(\/ Gg) , (6N + Z ar), (Gn + Z Gﬁ)}a uy = %N’

LeEAN LeNp leAw

2
My =y (%N > Gefz(@) (éN + Y Ge)

leAp LeAp

+ (%N 3 sz2(0)>2 <5N+ 3 Gz>

LeAw LeAw

1/2
+ Y (fe(0) + TR+ D (fel0) + Uﬁ)zGe}

leAp LeAw

+ max {KG\L
V

LEAW

)

fe(0) + UL — rTN > aufe(0)

LeAp

b

fe(0) + Uy — rTN Z G fo(0)

LeAw

> fe(0)ar— Y fe(0)a
LeAw LeAw

LeEMMA 10.1. There is a K191 > 0 such that oy < Krlzg-l, VIN/Ki01 <

»un < Kig1/TN, and My < Klo_l/r}\,/4 for all N.

'~
]

Proof. The dominant component of Gy is &y, which is of order 1/ry. This
gives us the first two bounds. The square root and V terms in My are both
of order 1. (]

For each N € N, define €} (z) ef exp [—%\/(%NZ)Q + 1} for all z € R

Also, note that for each N € N, §y of (45) is zero on (J,c, P} \ Cw, and that
supyen [En]lo(s\cy) < 00. We can also see that

inf{O'N(x):xGS\<CNUUD§>,NEN}

LeA
is positive, so there is a constant K > 0 such that
(89) [9n[l < Kon

on S\ Cy for all N € N.
The heart of the corrector functions lay in the following lemma.
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PROPOSITION 10.2. There are constants Kigo > 1 and 0102 € (0,1) such
that for each N € N, 6 € (0,610.2) and ¢ in (0,1) such that ¢ < \/S/Klog,
there is a function V5N such that V5N + € C2(S\ Cn), such that
(W8N (2)] < Koo aer *3/403* (Hiee(z)/e) and

(2w @)
Koz o (HY(@)\ | Kioolvn] . (HY(2)
= r3/4\/5€N< € " g2/t N £ o ()
N
Ko [ ‘Hﬁc(ﬂf) H Koz 1 Ve
+ exp |— oyn(x)+ exp | — —
et P eVs vi@) erf? P| Ko ¢
for all x € Ny, and such that
c Kio.2 Hio (2
(90 Ve @)l < e (FE)
N

for all x € S\ Cn such that |[H(z)| > «.

Proof. The proof essentially follows from [Sow]|. Namely, there is a constant
K’ >0andad, € (0,1) such that forall N € N, § € (0,d,), and ¢ € (0,1) such
that e < V/§/K1, thereis a function \I/gE’N such that \I/%E’N—f—ﬁN € C%(S\Cw),
(W55 N ()] < KeMyay €y (H9¢(2) /e) for all z € Ny, and such that

1 € £
(00 | (VeHRS, Ve a(@) + (Lo ™) (@)

loc/,
< KlMN_1/2 {193*1\, (HN (I))

N €
Hlgoe 1 1 V6
on(z) exp [_‘ N () } + Zexp __£
E\/S 9 K €
for all z € Ny. Note that in [Sow05]|, we never explicitly showed that
\IJ%E’N + [ n has continuous derivatives of order 2 and less (we did show
that e~ 2(VgHI®, VG\IJ‘E}E’N)G + fgkllg’f:’N is continuous). In fact, one can
easily see that derivatives of order 2 and less all exist and are smooth except
at the critical points (i.e. %) One can mollify at these points.
We now write that 0N () = 0N (1) Jme(z) + 855N (2), where

+

By (2) =

(2
1 c €
S (VeHR Vo Ve(a) + (Zove™")(a),

£ (@) = =2 (A, Vo )o(a).
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We bound E‘ls’e’N by using (91). From Lemma 6.1, we secondly have that
Uy is zero in a neighborhood of the t,’s, so from [Sow| and (89), we have that
there is a constant K9 > 0 such that

KoM Hloe
5] < N e () 50

= 22

on E\Cy. Combining our estimates and using Lemma 10.1, we get the desired
bound on XE\IJ%E’N.

The bound on VG\II%E’N follows from [Sow05, Lemma 4.10]; again, we use
Lemma 10.1. O

Recall next Lemma 8.3 and (57). Define

. HIOC(.’L’) KIO 9 Hloc(m)
goeN gy et | I ) \I!‘S"S’N(ac) + B (z)ey [ =) 6
B (%) A 51/26\{4 c vrss r%4\/_ N -

Proof of Proposition 7.2. Note that
1/2 \F(El/gruz;) 3/2\ 1/2
1/4 3 N N r
o ongren ()" O ()"
N

When /r3/2 < 1, c/\(Hllﬁ}C/(sl/2r%4)) is zero in a neighborhood of Cy.
We calculate that

e 0,6, N _ Hﬁc(l‘) 2 5,e,N d 5,e,N
(L0 M) (@) = en | Lo | D e (@) + ) w N (@),

1/4
el/2ey/

i=1 i=5
where
loc
8.8 N oy def ggq}ae N n Kw 2 (PR (1)@ (HN (x)) } 7
v () = {( )(x) T \/—( ) () €N .
5,e,N  + def Klo.ZBE( ) HY () [vn én(x)
By () = U(56)5FN \/—QEN ( - ) {6_2T +ﬁN(33)},

. of Kio2D(x) -, [(HR(z
e L2 (M) g,
2u(56)€2ry Vo €

def K. oc o (HE (@)
55N () 4 1—2/24\/_(VG’BE,VGHIN Ja(z)Ey ( NE ’
U(56)€I’N 1

seN, vdef 1. [ He(a) 5,e,N
B () = c e (o
57 (2) 51/2*%4 A (51/26\{4 ¢ (z)

KlO_QBg(I) " <HIJ§),C(I)> {V_NgN(ZC) }
+v(56)r§’v/4\/3€N £ 2y TAv@)y
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5,e,N def 1 - Hﬁc(x) d,e,N
Bg " (T) = 172 A (51/2r11\{4 Ve ()

2ery

Kip2B(x) <H§3C(x)>
+ ¢ on(x),
U(56) r%4\/g N e

c e 1 . HioC (2 oc €
e () m( N )> { (VaHie, Vave ™) @,

el/2el/t el/2e)/4
K Hloc
02 (VoHR®, VaBY) ; (2) )y (L (w))
’U(56)rN 1) €

Ki02B(z) . (Hlﬁc(ﬂs)>
+ &3 on(x)p.
U(56)5r?1’\{4\/5 N € N

By combining Proposition 10.2 and Lemma 8.3, we have that

09 5w 2 0 [ -1 e ()

i Vo Lvee)
Kialvn| . (HY(z)
B 2, 1/4 v NE on(@)
ery
_K1o.2 X {— Hlj‘\’,"(x) }UN(HC)—KMM exp | — ! ﬁ
5r%4 5\/5 5r%4 Koo € ’

and thus by (57), the first term on the right of (93) is bounded from below
by

(94) _KlO,Q(Kg.g, + 1)[(5) @}k\, (Hl]s]c(x)> a'N(a:) - K10.2K8.35

U(56) r%4\/3 ’U(56)r?j’v/4\/g.
We next calculate that

WIEN (2 4 K02 () e (Hlﬁzc(ff)>
¢ e €

. Km{ e | Ksae’l(e) } e <H1]36(x))

r?},\{zx U(56)r%4\/g €
< Kig.2¢l(e) 14 Ky 3¢ & ("%f@))
- r?]’\{4 U(56)\/5 o €

This immediately implies the first claimed bound on \I/%E’N.
Simple calculation shows that there is a K; > 0 such that

(95)

E()| <

K12y} (2) and

va(z)’ < K153,€%(2) for all z € R and N € N. Keeping



936 RICHARD B. SOWERS

(89) in mind, we thus see that there is thus a constant K5 > 0 such that

2 loc

B 5r%4\/3
Kig1Ksl(e)|v N Hloe (g Kio1Ks¢el(e
< Ko 1/24( )| N|@N( ~( ))UN(x)JF 1011/42 ( )7
Ery Ve Iy N}
. KyeU(e)»3, ., [(H9(z
e2ry N €
(96) 2 1/4 1
KoKz, l(e)r H9 (x
< 210\.}3()N€7V<N())UN(I)7
. Koesey ., (HY(x
Nl < S e () Vo
ery Vo €
KoK Hloe
S 12/4 10.1 @}ﬁv< N (.1:)) UN((L')
r Ve €

Next, note that (recall (92))
(HE@\| | (@ e (M@
A 51/26\]/4 A €1/26\{4 N €

. cl/2,1/4
< K(22)€y ( -

1/2,1/4 3/2\ 1/2
xN [ e/%ry 1 ry
k5 () o (2

forall z € S, e € (0,1), and N € N. Combining this with (95), we have that
there is a K3 > 0 such that

1/2
Kse'/21(e) £ lvn| 1 ¢/
é,e,N 3 N N
€5 14— 1 _ N
|E5 (33)| N { + \/g} { 52 + }exp 2K10‘1 c )

| 5,571\/( ) < Ksl(e) {1+ € } 1 r%Q 1/2
E x — texp | ——— | A
6 - rif/‘l Ve P 2K10.1 €

loc
Ife< rgj'v/2/4 (and hence ¢ < ri{z), then on the support of ca (L) we

1/2,1/4
el/2ry

+

IN

have that
|H5(\)[C(x)| > 51/26\{4 > 51/2(62/3)1/4 — 2/3 > ¢,

so we can use (90). Thus, when e < r%2/4, there is K4 > 0 such that
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K 1 €
d,e,N 4
|E7 (fE)| < 3/2[’1/4 { /4\/—

1/2
+%N€ [( ) exp | — 1 ﬁ
5r?1’\{4\/_ 2K10.1 €

Taking the worst of the different combinations (i.e., the smallest exponents of
¢ and ry), we get that there is a K5 > 0 such that

7 3/2\ V2
K 1 r
97 N (@) < — =5 exp |- [ 2
o SRl e | g (2

1/2
< K5 1 r?])\{Q /
exp | — N
CUEVY) P 2K \ ¢

for all z e S \ Cy and all e and ¢ in (0,1) such that ¢ < v/§/K1.2 and such
that £ < ra/2/4 (if £ < r/%/4, then £3/2r3/* > £3/2(£2/3)5/4 = £7/3),

Let’s combine things together There are exponentially small terms in (93)
and (97); these contribute a term of size

2
L ] B S 1 (R Y
e exp | VO . exp |
5r?;v/4 P Ko € e7/3/5 P 2Ki01 \ ¢

There are also constant terms in (94) and (96); these contribute a term of size

s g S v < VRl

Thirdly, there are terms in (93) and (96) containing both o and v y; these
combine to give a term of size

vn| W) | g (HE(2)
{EQr}\fM ! ar}\&\/g} e <NT> o)

- o oo ()

o) . (le%;(w)> () — 2ellE) g (Hlﬁ;(w‘)) o)

1/4 5/4
e2rl/ hifes

when ¢ < \/S/Kl().z (since by assumption Kjpo > 1, so \/S/Klo,g < 1if
0 € (0,1)). Next, we note that there are terms in (94) and (96) which include
o N, but not v; these give a term of size
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I(e) e/ ., [HY9e(2)
{r:?\[/4\/g+ \/51\] }€N< Ng )crN(x)

(&) Hige (2)
< —{1+I’N}€* (7 O'N(.%')
"31)\//4\/5 N €
((e) H ()
< {1+ |wa|} & ( on(z).
r%4\/5 N €
Lastly, we have the /o x term in (96) and the penultimate term on the right

of (93). We can now conclude the stated lower bound on fE\IJ%E’N.
Combine things together. Note that

¢ (z) <exp [—2_1|%Nz” < exp [—(2K10,1)_1|z|r%2}

for all z € R and NV € N. O

11. Stochastic averaging; the proof of Lemmas 5.10, 8.7, and 8.5

11.1. Proof of Lemmas 5.10 and 8.7. We appeal to [Sow].
First, for each N € N, define

loc
Bx(r) i ().
N
aot D?HI(VHiE (), VHIe () — D2HIgE (VHg (x), VHE (2)
[VHE @I

an(z)
for all z € Ny and all N € N.

LEMMA 11.1.  There is a K > 1 such that

IHY (@) 1 K
Un(@) 2 ——F——  [|Ex@) =2,  |lon@) < oo
K K IHY ()]
K
Ivan (@) € e [ Bvan(@)| € e
IHY ()] IHE ()]
[HR< ()]
loc >
IVHE (@) =

for all v € Ny and N € N.

Proof. From [Sow], we have that

1 2| D*HE (=)
IUn (@) = IVHN @), [En@)] = roimer  lon(@)] € Sorpe—
N IVHE|I IVHE ()]
D3H10c D2Hloc 2
an (@) < 2@ IDHE@I

IVHRS ()l IVHRS ()l
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IDHg @), |, ID*HE @)
IVHE G T VHg @)

Since ||[VHY¢||, || D?H%¢||, and ||D3HY¢|| are all bounded from above on Ay,
uniformly in N € N, there is a K > 0 such that

|EN04N<.’17)| S 2

(98)
1 K
[ @l = IVHE@L BY@I2 )] < o
Syay(@)] < L Brax ()] € o

S Siee 3 S Tonle it
IVHR ()]l IVHR ()|

for all x € Ny and N € N. ) )
Let W C R? be a neighborhood of 0, such that W cC . Then

vy & inf {||qN(g;)| cx e Ny \ | deOV), N € N}

LeA

is positive. Since \/|HW¢(2)| < max{,/rn,h} < \/h+ |w2| for all € Ny and
N € N, we thus have that

(99) [Un ()| > Vﬁ\/ Hige (x)|

for all x € Ny \ Ujen de(W). Now recall (21). Since Ty is full rank on U,
and By is positive on U,

|[VeH(2)]le

is positive. Secondly, note that

2 2
e WH@le e Vaitad . B m s

_z€R? ‘H( )‘ (r1,r2)€R2 VL1T2 (z1,22)ER? | T2 x
H(z)#0 z1227#0 12270

From Lemma 6.6, we can see that

[Un @) > vl VAG @) > 0272y (el
szﬂ A(u(x)) - {M —J | = vav/3yIHE (@)

N
for z € ¢;(W) and ¢ € A. Combining this and (99), we get that

vzf} [HR* ()]

Uy (x min
[Un ()] = {m
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for all z € Ny and N € N. This gives us the last claim. We can then use this
in (98) to get the remaining claims. O

Let’s first get our averaging estimate in the D,’s.

Proof of Lemma 5.10. We first note that on each Dy, 3 = 3' and VHy, =
VH°¢, Thus we can use Lemma 11.1.

Recall that ¢ is required to have bounded derivatives of all orders on S\ E.
Thus there is a constant K; > 0 such that [(Uyp)| < K1, |(U%p)| < K,
|(B1p)| < K1/||VHP?||, and [(E;Yyp)| < K1/||VHYPS|| for all 2z € S\ E. We
can also compute that
(V@HIIOCVHIIOC, VSD) + (VH110C7 V@Hllocv@)

[VHPe|2
(THE®, Vi) (Ve VHIES, VHE®)
[IVHPe||* ’
(Vlelochlloc, VSD) + (VH110C7 VVHIIOCVSO)
[VHPe|*
(VHE®, Vi) (Ve VHIES, VHE®)
[VHPe||S
for all z € S\ E. Thus there is a Ky > 0 such that |[UE;¢| < Ky/||VHP¢||?

and |E2¢| < K»/||[VHP¢||? on S\ E. Using the last claim of Lemma 11.1,
there is thus a constant K3 > 0 such that [Uyp| < K3, |U%p| < K3, |Ei1¢| <
Ks//[HY|, [E19g| < K3/\/[HYC|, [UE1p| < K3/V/[HP°|, and [Efg| <
Ks3/|H¢|3/2 on S\ E. Hence from [SOW], we have that there is a K4 > 0 such
that

(UE p) =

(Efp) =

[(U®LY) - {p — (Ap)}| < KAT

on S\ E, where 7 (z) & inf{t > 0: 3:(z) = «} for all z € S\ E, and such that

K4 K4 1 1 K4 1
<=2 DO < —
| = || @ || - { /Hloc /Hloc } )\2 |HlOC ’
K, 1 1 1
2532
||D (I) || = {|Hloc| ‘Hlloc|1/2+1/2 + |H110C|3/2}

K, 1 1 1
er |Hlloc‘1+1/2 + |H110C|2 + ‘H110C|1+1/2

K4{ 1 1 } 1 1 \
o4 + I O S . ) )8 SR
A3 |H110C|1+1 ‘Hlloc|2 /|H110C‘ |H110c| P
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on z € S\ E. Combine things to get the stated result, keeping in mind that A
and |H°¢| are bounded from above but can be arbitrarily close to 0. We also
use standard bounds on the orbit time 7 (see Lemma 5.1 of [Sow03)]). O

We next take up averaging in E. We can average £* along the flow of 3V
recall that Lemma 6.3 ensures that the orbits of 3V are periodic on S\ yy;
thus, for every N € N and z € S\ vy, we can define

v )@ 2 gim 1 [ e

LemMA 11.2.  There is a constant K > 0 such that for A € (0,1), N € N,
and

(o) — ¢ - <K,
e Il <
/\I’N )\2r§V|H1§}C|
K
D2op | < e

on Ny.
Proof. Since £* is identically zero on the Dj’s, we first note that
sup { By U4€" (@) :
x € Ny, N €N, and i and j in {0,1,2} such that i + j < 2}

is finite.
Now set Ay % Ary. From [Sow], we have that there is a K > 0 such that

(IO (x) — {€'(2) — (AnE)@)}| < K LEEL_ )
(o) TN @]
and
NHA K
B < 1
HD‘I)MA ’ 1 S S O K 1

’ - >\N Hloc( )| E‘Hlﬁc(x”’
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K 1 1

- + +1
Av | [HRY (2)] [Hloe ()|

+K{ 1 n 1 + 1 }
% UHR@P? " R @F i)

K{ 1 1 } 1 1 N
t<3 oc + oc + oc ”qu)ﬁ”j7 (.13)”
N U @R T HE@P S| e He @I

We note that by the change of variables formula,

‘ &G 1 - N
N/zeagu) ENCIS /ZGE 1€ (2)| 2 (dz)

Picking out the dominant terms under the assumption that A and H!9¢ are
both bounded from above but may be arbitrarily close to zero, we can fairly
easily conclude the claimed results. O

=0.

lim sup
N—oo zeNy

We next need to compare An&* with (AE*)([E]). We have

LEMMA 11.3.  There is a constant K > 0 and a sequence {&,; n € N} of
positive real numbers such that

w2

77 (E)
for all x € Ny and N € N and such that limy_ &, = 0.

(AnE)(z) - < KryP(HR()]) + &,

Proof. For each ¢ € A, let ¢, € C*(T) be such that supp(, C U, and

(¢ = 1 in a neighborhood of g,. We first define several quantities. Let 2 def

{Ry xRy, Ry x R_,R_ x Ry ,;R_ x R_} be the collection of quadrants in
R2. Define

(A€ (@) vy / LG4z, weNv, NeN,

ces¥ (@) [In(2)]]

TN (z) rN/ L #'(d2), zeNy, NeN,
s @) NG

TN défr / C@( ) %1 d ,

é«,Q(x) N ZEZ)R (a: ||qN( )H ( Z)
2E€he(QNU
xeNN,EeA,NeN,Qe,@,

5= [ . Ga)Ad2), (e Qe

2€¢e(QNU)
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N dﬁfr L ds
T (@) = N/zezrg'(ac){ -2l } [Un (2 )||<%ﬂ (2).

LeA
JTENN,NEN,
Too def/ I_ZCZ 2 dZ)
z€E e
. def o ox de .
Defining £ % sup, e vy [(A%€%)(2) — wal and 5 2 sup, cxr, [T (2) - T3

for all N € N, we have by the change of variables formula that limy_ ., el =
limN_>oo Eé\’ = 0
We can then write that
w2 (ARE)()  we
AN = S = Ty
{(ARE*) (2) — wa} H2(E) —wa {TN (2) — #*(E)}

TN () #7(E)
(AR ) — e
S (E)
77—]\[( { Z { £,Q %Q}+{TE TEOO}}
leA, Qe2

For N € N large enough that r) < 72°/2, we thus have that 7% (z) >
TN (z) > T£°/2, so
. w2 N 2wa| N
I [ e Rl
Anee) = 5| < et +

2|ws| N
—_ § T, 0(x) — T3]
%W%Q(E) v Q€£| Z,Q( ) Z,Ql

+

Let’s now set up some machinery for a local comparison of T r.q and 7,5,
Fix ¢ € C®°(U). Secondly, let P € C*(U) be such that

P(0c) = (0P/0x1)(0c) = (9P /012)(0c) = 0,

0*P
Z (07187 ja 8 (wlaxZ)

i,5€{1,2}
(a1,00) ER? 03 + a2 =1, (x1,29) GZ;I} > 0.

Note that thus

(100) it 2@ g,
veti\{o.} 1(z)
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Define then I1(z z)\/n(x)/P(x) for all z € U\ {0.}, and set
def h+krN dz
) ”VZ/Z J() S

or a € ry an enne = A2 x)azx. or eac Xe
for all b € ryW )\ {0}, and define T35, ' [ . o, (z)de. For each fixed
+

£ € A and Q € 2, we can find such a ¢ and P such that either T/\é(sc) =
Ty ([He(2)]) for all 2 € Ny N ¢e(Q NU) or T (x) = T3 (ry — H(x)) for
all 2 € Ny N ¢o(Q NU); thus either T, (x) — 7;0;5 = T (|He(x)]) — T2 for
all z € Ny Ne(QNU) or T () = 125 = Ty(ry — HgS(2)) — T for all
z € Ny Noe(QNU). Note that both |H9¢| and ry —Ho¢ take values in (0, ry)
on Ny.

Fix h € (0,ry). Define oy . df rn/z for all N € N and z > 0. Then

/ Zu(z —+k6NZ) On,=dz,

0 k=0

15 = / (2, u)dz du.
(z,u)EUNR?

Defining
*o def
/ / (z——i—u)dudz-/ / (2, u)du dz,
z2=0 Ju=0 z=0Ju=h/z
we then have that 73 (h) — 7% = {73 (h) — (h)} +{7Ty°(h) —T%}. Since
UNRZ c (0,1)?,

1 h/z
T - Tel < Wy [ [ dua:

1
h
~Wle [ 2 < 1leqahith).
To study T3 — T, we write that

Iy (h) =Ty °(h)

(k+1)dn,- h h
/ / { (z,+k5N72> H<z,+u>}dudz.
z=0 k=0 u= kon, » < <

Proceeding, we study the regularity of II. We compute that for all z =
(1‘1, 1‘2) S u,

b o) #®) FEEVAE)

e = 52 -
T n(x)P(z) 2 P3/2(x)

8562 (!L‘ 8562
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Recall (100) and note that the assumptions on P imply that thereis a K7 > 0
such that |g—£(1:)| < Ki||z||e for all € U. Thus, there is a constant Ky > 0

such that [(0L1/0x2)(z)| < Ka/+/n(x). Thus

T3 (h) = Ty ()

1 (k+1)0n,= pfu
g/ Z / / 8—H<z,ﬁ—|—r> drdu p dz
2=0 " u=kén, - r=kON,z 81'2 Z
1 (k+1)dn,- o911 h
< zZ,—+r k+ 10N, —7r}dr pdz
/z_O’;) {/T_kaN,z s ( z )‘ i o, J }

1 00 1 h
< Ko 5N,z/ —F———————X(,1)2 | %~ +7r | drdz.
z=0 r=0 , /n (Z, % + T) z

Consider now the requirement that % +r bein (0,1). The assumption that
h, r, and z are all positive implies that both h/z and r must be in (0,1). The
former in turn implies that h < z. Thus

|<K1I’N/ /
z=h Jr=0 5, /n h-l—’l’

h/z%+1/z
= Ker/ / dsdz,
z=h ? Js=h/z? 1+52

where we have used the substitution s = (h/z+7)/z (i.e., h/z+r = zs). Note
that (1 + s)? < 2(1 + s?) for all s > 0, that s — 1/(1 + s) is decreasing on
(0,00), and that 1/z < 1/h for z > h. Thus

[T (h) — T ( ——drdz

h/z +1/z
(T35 (h) — Toy° ()] < V2K 1ry / ds -
z=h ? Js=h/z?
1/h
<\/_K1rN/ / dsdz
z=h ? o 1+s

= V2Kiry {Inh~ 1}{ < )} < V2Kry P (h).

Thus there is a K > 0 such that |73 (h) — Ty (h)| < Kal?(h) for all h €
(0,rn). Combining this and Lemma 11.1, we can find a constant K3 > 0
such that |73 (h) — T2 (h)| < Kary {hl(h) + 2(h)} for all h € (0,ry) Note
that ry — Hlj\’,C > |H1]‘\),C| on Ny. Collecting things together, we have the stated
result. O
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Proof of Lemma 8.7. Combine Lemmas 11.2 and 11.3. To get the first
stated bound, we write that

(Ua)(x) — {€"(x) — (A€)(E])}
< | a2 M) (@) - {€7(@) - (Ane) @)}
(AN (@) = (AE)ED] + v [(An ) (@)]

We use Lemma 11.2 on the first term on the right, Lemma 11.3 on the second,
and the regularity of Lemma 11.2 on the third term. O

11.2. Proof of Lemma 8.5. For each N € N and x € E, define

B - [ T e NE N @), A0,
Wy L [ e, T

Lemma 114, For each N € N and )\ € (0,1), if‘v is smooth on E, and
fﬂvcff‘v is uniformly continuous on E for each j € {0,1,2,3}. Secondly, there
is a constant K > 0 such that

_ iy K
(101 b < X
forallz € E, N €N, A €(0,1) and j € {0,1,2,3}. Finally,

(102) [Ty 83 (o) 6" (0) = o @} < o) [ e A3 ) — 3 at

=0

forallz € E, N €N, and A € (0,1).

Proof. Standard calculations and the observation that the orbits of p?V are
periodic on Ny imply that <I>J>‘\, is smooth in E. We can also easily see that

(W) = = [ A )i
forall z € E, N € N, A € (0,1), and j € {0,1,2,3}. Note that £* is smooth
on E \ X and furthermore that it is identically zero in a neighborhood of the
points in X. For each N € N, the vector field Uy is smooth on E\ X. The
bounds of (101) and the desired uniform continuity are now fairly easy to see.
The bound of (102) follows from the calculations of [Sow]. O

We next claim that the error in (102) is small. Essentially, we construct
something like the “special flow” of Arnol’d [Arn91]. The important difference
is that this flow has no logarithmic singularities. We also must deal with
ambiguities arising at the points of X.
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LEMMA 11.5.  We have im7—, o0 Imn — 0o SUP,cp\yy (ANES)(z) =] =0.

Proof. For each x € E\ X, let {p(z); t € I,} be the maximal solution of
the ODE

pi(z) = —(pe(x)); t € I,

po(z) =

5 al.q

We now use the transversal of Subsection 6.1. If wy > 0, set | def [0, ws),

and if wy < 0, set | def (w2, 0]. For each h € I, define

v(h) L inf (£ > 011 € L, pe(¢(R)) € C(R) + (Z x {0})}

where we define inf( % co for consistency. Note that the set J & {h €
I; 7(h) = oo} of “jumps” of 7 (i.e., the bifurcation levels of p) is of cardinality
|Al; indeed, each element of J is of the form ¢ ((H(x§) + (K, w)g2)/w2) wo (recall
¢ of (13)) for some ¢ € A, where K is the unique element of Z? such that r§+ K
is in the “box” bounded on three sides by ((R) and the unbounded components
of H71(0) and H™!(w2), and on the fourth side by ¢(R) + (1,0) if wy > 0, and
C(R) —(1,0) if wy < 0 (if we > 0, the vector field Y macroscopically points
to the right, and if wy < 0, it points to the left). Note also that

(103) sup 7(h) < co.
hel\J
and that 7 is uniformly continuous on |\ J. Define A et {(t,h) :hel\J,0<

t < 7(h)} and define d : A — E by setting d(¢, h) % p,(C(h)) for all (¢,h) € A

Let’s next extend things by continuity. This cannot be done in a unique
way because of the bifurcations at the elements of X, so we enumerate all

ways. Fix s € {+,—}’. Define ¢ : | — R by setting 7<(h) o T(h) if hel\J,
and, if h € J, set Ts(h) déf hmh/\hﬁ/@\_] T(hl) if 85, = + and set Ts(h) déf
hmh//*h_’h/€|\~] T(hl) if Sp = —. Define A déf {(t,h) th e I,O <t< Ts(h)},
and define 3 : As — E by setting ds(t,h) % d(, h) if (¢,h) € A, and for all
t e [O,Ts(h)) and h € J, set 5S(t,h) déf hmh/\,h7h/€|\J 6(t,h/) if sy, = +, and
set 6S(t,h) déf 1imh//h’h/€|\J 6(t,hl) if Sp = —. Then 65(‘5) = E and 65 is a
measurable bijection from As to E. Lastly, define a flow on Ag. Let {; t € R}
be the unique flow on Ag such that for all (t,h) € Ag, f3i(¢t,h) = (¢t + s,h) if
0 < t+s < 7(h), and such that f3 .\ _,(¢,h) = (0,0 ((h — w1)/w2) w2) if wy > 0,
and 7 ) (t,h) = (0,0 ((h + w1)/w2) wa) if wy < 0. Considering all of these
flows together, and using (103), we can rather easily see that
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L[ e @)

(104) lim sup sup
T Jizo

T=00sef4,~} weas

1
— * h))dt dh
%Q(A) /(t,h)eA5 (6(]5’ L)) !

where £* is as in (67). We note that

=0,

1
- “(B(t, h))dt dh = 1
TR Jogpes €O

(use the change-of-variables formula; [EG92, Section 3.4.3]).
We now finish the proof and make sure that the limits and suprema are in
the right places. Fix now ¢ > 0 and Ts > 0 such that

T

L @) -1

< 0.
T Ji=o

sup sup sup
T>Ts se{+,—}) v€As

Fix next T > Ty, an increasing sequence {Ng; k € N} of elements of N, and
for each k € N, a point xy in E. Assume also that z* & limy_ o0  exists (it
will of course be in E). Then it is easy to see that there is an s € {4, -}’
such that
onr - 1 /T _
tim (Y€)= 7 [ € @)
k—oo T +=0
Combining this with (104), we thus have that
i sup |(AFE)(@)-3) <5,
N—oo zEE\YN

which gives the desired result. O

Recall that the point of averaging with respect to p?V was to average arbi-
trarily close to vy . Let’s identify the limits of iﬁ‘\, at yn. Note that these limits
depend on whether we are approaching vy from “above” (where H9¢ > 0) or
from “below” (where H'9¢ < 0). For each N € N and A > 0, we define

<i>f‘v+(r) et lim N () for all x € vy \ U 0Dy,
i/EEI LeANp
Hoc (2')>0
N _(z) ef lim Py (z')  forall z € vy \ U oby.
P teAw
Hv (2')<0

REMARK 11.6. We want to extend &3, and &} _ back into Ny in a
way which allows us to efficiently compute derivatives. This is not too hard
away from X; starting at any point not too near any of the r,’s, we can simply

follow along integral curves of VH¢ until we hit vy, and evaluate <I>f‘\,7 4 and
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&), _ at that point. This is essentially what we shall do in (114). The more
corﬁplicated part is near the points of X; if we try to do the same near the
re’s, we are faced with the fact that VHIIS,c degenerates at the r,’s, and the
integral curves of VH' undergo a bifurcation. Competing against this is the
regularity of (i’?v 4 and é?v7_; if these functions are sufficiently flat near the

te’s, the singularities in the integral curves of VH9¢ will have no effect.

To get started, let’s locally consider <i>f‘v+ and CTDZAV_ near the r,’s. For each
def

¢ € A, define @57 ,(2) B, (de(x)) and I3 () E Y _(d¢(x)) for all
x € ds(UsNyN), A€ (0,1), and N € N.
LEMMA 11.7. There is a constant K > 0 such that
((9eRa3) @) < Tlel? and [((TR2052,) @) < el
foralls e {+,-}, NeN, z € ¢(Us Nyn), and all X > 0.

Proof. Define &(x) f o (¢¢(x))Be(x) for all 2 € Y. Then Lemma 11.4
tells us that there is a constant K > 0 such that

o~ o~ 2
HY\ . K HY
((Vf )@E@) (@<~ and (Ve ) P32 | @) <
oy 35, )\ 35,

oy
for all x € ¢p(UsNyN), N € N, A € (0,1), and s € {+, —}. Using some simple
calculations, we have that

= 1) H~A ~ ?el:l ¥~ A
(VeH) ‘I)N,s,z =0y ( P ) (I)N,s,l’

> =

oy
2 AN v.A
(v.R) éz:?,ﬁ&?( 5 > é%g,ﬁ(veH,ve&ne( = )%Ae

We also note that there is a constant K > 0 such that |64(z)| < K| z||? and
’(?eﬁ, Ve&g)e(a:)‘ < K||z||? for all 2 € Y. Combine things to get the stated
result. ]

Let’s next construct the extension from vy to Ny. We will ~do this ~in
two ways, depending on whether or not we are close to the sets ¢y{x € U :
IF(z)| = 0}. Define I(z) %' {2} — 21} for all z = (21,22) € R?, and note
that

(105) A1%(x) + 2H?(2) = 2} + 23

for all x = (x1,x2) € R2. Thus there is a d > 0 such that the set ¢ def

{x € R?: [I(z)| < d and |H(z)| < d} is contained in U. Next, define iy o
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F1GURE 5. Hyperbolic Regions

{az ed:|Hx)| < %N} See Figure 5. This starts to formalize some of the

thoughts of Remark 11.6. By “near” X, we mean in one of the @(@)’s. The
set "My allows us to further decompose & as O = (<~> \ >%N) U»Hy; in the set
8¢ N, we are “very near” a point in X, while in o \ 52 N, we are “not very near”
a point in X.

We first consider points which are “very near” X; i.e., points in "My. Define

‘o o =
N e(21,0) + QN7 (0, 5"3) — ®N (0
e () def if # € ¢p(Ny NUg) NMEHy and HYE(z) > 0
(106) - (@) = Y (x1,0) + S ¢>~,AN
N o(z1,0) + N,f’Z(O,x?)— N2 .(00)
if £ € ¢o(Ny NU) NEy and HYE(z) < 0.

forall A € (0,1), N € N, and ¢ € A.

LEMMA 11.8. There s a K > 0 such that

2 &~ A€
0 Ny

¥~ e
0PN,
&ri&nj

&ni

> =

K
max (@) < —|lz|le and ()] < 5y

max
1€{1,2} i,j€{1,2}

Jorall N €N, z = (z1,72) € dpo(Nn NUp) Ny, and \ € (0,1).

Proof. Fix o = (x1,22) € ¢o(Ny NU) N Ey. Let s = + if HY(z) > 0,
and let s = — if HI9¢(x) < 0. We have that

L 0PN, 1oy

-~ = 25 (21,0) = —((VeH)RN 2 ) (21,0),
B T (@1,0) = = (VH)BRZ )(w1,0)
oPNe 9P 1 .

ML () = (0, 20) = —— ((VeH) Y2 )(0, 22),

81'2 (9.%‘2 X9
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S Y o
P a . (21,0) = —x—%((VSH)QNiS,Z)(x17O)
L e g~
+ P((VSH)QQNZS,E)(Q‘.D 0),
1
RN 0207, PN
8:5%, x) = 5.%%7 =(0,2) = x_g((VeH)(I’Nis,e)(Ova’"?)
L & my2d~A
+ F((VCH)Z‘I)NZS Z)(O? 332)3
2
e
——(z) =0.
61‘18.132
The bounds of Lemma 11.7 give us the stated result. O

Let’s now consider points which are “not very near” X;i.e., points in O \"Hy.

Set Gp(2) e /2 + 12— 2 forall z and h in R, (it is easy to see that this

is well-defined for all z and h in R) and set

G1(2) E (s(21)Gr((2)), 5(22)Gn(~1(2)))
for all x = (z1,22) € R%. Then

(107) I(gh(x) =1(x) and  H(@;(2)) =h
for all z € R? and h € R. For all x € R? and N € N, now define
of | H 1
In(z) = {—@) + —J N

rn 2
ie., Jy(z) = kry if (k —1/2)ry < H(z) < (k + 1/2)ry. Finally, define
on(x) def Oy () () Tor all @ € R? and set
(108)
prode () 4ot {‘?}’,},z(@fv(ﬂ?)) if z € go(UyNNN)N <:> \ %N and Hg*(z) > 0,
OV (on(x) if x € do(Uy N Ny) N O\ My and HY () <0

for all A € (0,1), N € N, and £ € A. To understand the regularity of 5);,2‘6
on ¢p(Us N Ny) \%N, let’s first prove a general result.

LEMMA 11.9. Fiz h € R\ {0} and f € C2(R?). Define F(x) % f(55(x))
for all x € R%2. Then for all z € R,

(V1) (65.)]

max =
197, ()12 ’

i€{1,2}

oF
— <
@) < el
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P2 F o |(VeR)F) @@
amiaxj(““’)‘S{”Qnﬁmnz} ROk
ez |((VeP2r) (5@
BB R@E

max
i,j€{1,2}

We also have that

[E

Be Y er Ve (@)

(109) ((veH)F)e(x) =

for all x € R2.

Proof. First note that (V.H,V.I), =0, V.I = —V.H, and |V.I|? = n.
For any = € R? and X € T,R?,
(77X, VA @)

IVeH(&7 (2))112

(765X, V(G @)

TX =

VG e )
- o R — e I VA @)
- LR = - g )
Thus for any = € R?, TV I =0 and
TGV A) = T V() = 'Lv(;i;g”fveﬂ<@z<x>>
- S TR @)

Thus for all x = (1, 72) € R,

OF OF
x28—xl(m) + xla—:@
oF oF
mla—xl(ﬂc) - x28—x2(

(z) = (vei,veF)E(@ = (T@z?ei(m)vvef(@(ﬁ(x))e =0,
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The second equatlon 1s exactly (109). We can simultaneously solve these

equations for o and . We get that
8F T Il({E) = ~0
(91‘1( - Z‘1+J)% n(@h(]}))(VEH7VEf)e(ph(x))
— ((?eﬂ):f)(@i(x))7
mo . e
8—1'2( ) = 1’% +1’§ n(@h(x)) (VEH,Vef)E(@h(l'))
_ (Ve H) ()
n(on(x))
Note that (V.H, Ven), = —41I; hence

Differentiating (110) again, we get that
OF (VHN(BR () | 22((VeH)*f)(h ()

R e T 1 ED)
(G (TR (R (@)
(g7 (x)) 7
<927F(x) _ (Ve H) (G () n 23((VeH)* 1) (67 (2))
Ox3 (o (2)) 0?(0p ()
231(5 (2)) (VeH) ) (65, (2)
T wGe)
PF o awa((VHPN (G ) wi2el(65 (@) (VeH) £)(55 ()
9210, (o7 (2)) 0?(0p (2))
Combine things to get the desired result, noting that 4|I(z)| < 2n(z) for all
r € R2 O

We now have

LEmMA 11.10. There is a K > 0 such that
oD e

82 ~ )\ e
N, ¢

: <
ox; ($) -

K
I L < =
63016% — A

K
X||x||e and

max
i€{1,2}

max
i,7€{1,2}
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for all N €N, z = (z1,22) € ¢e(Nny NU) N O\ Ey, and A € (0,1), and such
that

1 [l

K~ lon(@)lle ~

foralla:e()\*i*]v and all N € N.

(111)

Proof. The results stem from combining Lemmas 11.7 and 11.9. We only
need to bound ||z(|/[|¢n(z)]|| for z € O\ Hy. Set ny(z) def xt + x5 for all
r = (z1,72) € R% Fix z € O \"Hy. From (105) and (107), we have that

ny(z) AT% () + 2H2(z) :4i2(x)+2|:|2($)
ny(On(x))  A12(gn(x)) + 2H2 (N (2)  412(2) 4+ 2J%(x)

We next compute that since z ¢ My, by definition [H(z)| > ry/2 and hence
|Jn(z)] > ry. We can furthermore compute that

()] > {'H(Z)' - 1} v = [A@)| — 2

rn 2

v < {'H“’)' v 1} v = )]+ 2,

rnN 2
so in fact
A < v @)+ < 2av@)] and A2 Wn@)] - Y > )]
Hence ny(z)/n4(pn(2)) € [1/4,9/4], and the claimed result follows by recall-
ing that all norms on R? are equivalent. O

The formulae of (106) and (108) extend i)f‘\,i from vy into Ny near the
te’s (more precisely, in the gzzg({})’s). For any pyoint not near one of the r,’s,
we can follow an integral curve of VHY until we hit vy, and evaluate (i)?v i
and (f?\,ﬁ at that point. To combine all of our extensions in a smooth way,

we construct a retract.
First, we need the following regularity result.

LEMMA 11.11.  There is a constant K > 0 and a A, € (0,1), and, for each

A€ (0,1), an Ny € N such that

_ (VH, VN )e(z) 1
inf ’ > —
LeA ||| 2 K
TEPe(NNNUL)

—(VeH, Vedy 7)) 1
(4B K

or inf
LeA
r€he(NnNUe)
for all N € N greater than Ny.



PSEUDOPERIODIC FLOWS 955
Proof. Lemma 11.4 and the fact that £* vanishes in the U,’s implies that
ges)

(An3)(a) ~Jo(@)| < o) [t |(ATE) ) — 1]

for all A € (0,1), N € N, and = € ey ¢¢(Ny NU;). We now use Lemma
11.5. Thus there is K > 0 and a A, € (0,1), and for each A € (0,\,), an
Ny € N such that

Yy i x 1
=N [||I? K
TEPe (N NNU) B
—(UpnP2 x 1
wf (UnPy)(Pe(z)) > X 1o
i EE K
zEPe (NN NU)

for all N € N greater than Ny. We next use (21) to relate Uy to V.H. The
final observation is that for all A € (0,\;) and N > Ny,

(112) (Ve H)EY ) (@) = (VeH) N2 ) (@1,0) + (VH)DR2 (0, 22)
for all x = (z1,22) € pe(Ny NU) N "y, and, by (109),

2
113 V. O (z) = 7~||$He V.H on(z

( ) (( ) N/ )( ) ||KJN(SU)||§(( ) NS@)( ( ))

if £ € gpo(Ny NU) N o \ ", where in both (112) and (113) we take s = + if
Hk}c(x) >0,and s = — if HIJ?,C(Q:) < 0. To bound this last expression, We use
(111). O

Let’s next define a vector field. Fix A € (0,),) and N > N,. For each
£ € A, define

(ToVHE (@), Ve (0(2)))eBe(d0(2))
(veHave(I)%? Ve(ge())

for all 2 € Ny NUy. For each £ € A, Let € € C>°(T) be such that €(z) =1
if x € ¢o(0) and €y(z) =0 if x §Z Up. Define next the vector field

leoc @Hloc( )
H{A def + Q: R N a—
() = ||vH10c H2 Z o(x ||leoc( NE
leA

for all # € Ny. Note that FKNHY® =1 on Ny and MKy (& }\ og¢y) =0 on

Ny 0 ().
For each = € Ny, now let {pf‘v*t (x); t € I} be the maximal solution of the
ODE '

o () = —HE (@)Y (pN5(2),  te L,
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It is easy to see that for all © € Ny, [0,1) C I, and the limit p} (z) Lef

lim; ~ @?\v*t (x) exists (see [Sow05, Appendix A]). We finally define

cpag oy det J PN (pr(2) i HEO(z) >0
e R {@i“(pg(x» i HE(2) < 0

We then have

Proof of Proposition 8.5. First, let’s bound é‘;ﬁ and its derivatives. The
bounds on the size of é%’\ come directly from those on ‘i)f\v 4 and <f>;\\,77
To start our analysis of the derivatives of éfv’A, define
def

0>z e R? 1 1(2)] < d/2 and [A(2)] < d/2}

and O3 % {x € R?: [I(z)| < d/4 and |H(z)| < d/4} (see Figure 5). We shall
show that if z € Ny N ¢¢(Qz), then {th(l’); t € [0,1)} is contained in

Ny N ¢~>g(<~>), while if 2 € Ny \ Usea Q~5e(<~>2), then {p?vy;(x), t €[0,1)} is
contained in Ny \ Uyep 0¢(03)-

Combining Lemmas 11.8, 11.10, and 11.11, we see that there is a constant
K7 > 0 such that

K
sup {|m o(z)| 1 2 € Ny Uy, L€ A} < ==,

~ K

(115) sup { [ Dk o(@)]| - 2 € (N N Ue) \ de(O3), EEA} =
K

sup{HD?mM )l w € My NU)\ GelBa), L€ A} < T3

for all A € (0,,) and N > N,. From the first of these bounds, we know that
there is a Ky > 0 such that |(7EN (I o ¢r))(z)| < Ko/ for all 2 € (Ny NUy),
e, Ae(0,))and N > N,. Fixnow A € (0,A,) and let N§ > N, be such
that (1+ Ka/A)ry < d/4 for all N > N

First consider points in Ny NJyen $0($2). Fix £ € A and z € Ny Ne(O2)
and let ¢’ € [0,1] be such that {p?‘v’;(x), 0<t<t'}C ). Then

HOAEEN] =
AN )] < o)) + Hoe(a)] < § + 1 < d

for all t € [0,¢). Standard arguments thus imply that {pf‘v*t(x), 0<t<1}

T(60(a))| + (/M) Hioe ()] < 3 4+ (Ka/Nrwy <

is contained in ¢;({), which is in turn contained in {z € T : €y(z) = 1}, so
<i>p’>‘( )= CIJN’/\ (e )) In light of Lemmas 11.8 and 11.10, this implies the
stated regulamty of &% on Ny N ¢e(O2).
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Consider next points in Ny \ Uyep #¢(O2). Fix first £ € A and 2 € Ny N
$e(O\O2), and let ' € [0, 1] be such that {py;(2); 0 < ¢ < '} C ¢¢(0). Then

L(0a (0N (@))| = [T(@e@))] — (Ka/ V] Hioe(@)] 2 [Hde())] — (Kz/Nrx
> [1(6e(@))| - d/4,

Ao )] 2 A(Ge@)] — Froc(@)] > [A(@e(@)] = rx
> [A(6e(2))] - d/4

for all t € [0,t'). Thus {p;\v*t(x), 0<t<t}CNy\Upn®e(0s3). Noting
that for any 2 € Ny and t € [0,1), py(z) = @j\v(@?‘\,’;(x)), we conclude
that if 2 € Ny \ Usen ¢¢($2), then {pj)‘v*t(m), 0 <t < 1} is contained in
Nn\Ueea ¢~Sg(<~>3) Thus, if z € Nx \Uen (de(ég) we can use (115) to bound
the behavior of }KN , and its derivatives along {pN " (x); 0 <t < 1}. Standard
results on derivative flows of ODE’s now allow us to extract bounds on the
first and second derivatives of @% on Nn \ Ugea ¢¢(3) from bounds on the

first and second derivatives of i)f‘v 4 and i)?\,_ Note that derivative flows are
linear, so their bounds are exponential in time and the coeflicients.

Finally, we turn to (66). We first note that there is a constant K3 > 0 such
that for any f € C(T),

(116) Fed @) - F@) < 5w 9]
z€E\N

for all z € Ny, A € (0,A;) and N > N{. The 1/X term comes from the first
bound of (115). For any A € (0,\;) and N > N} and any z € Ny,

(4N (@)~ {€" (@) = I (@)}] < lonl | (AR @)
+ | (BN @) — (An b ok (@) + [¢" (@) — € (o ()]
+ 1o (@) - oo} @)
+ |(Ix X x () — (€ (9X (@) ~ To(pX (@)} .

where we use s = + if H¢(z) > 0 and s = — if Hi9°(x) < 0. The first three
terms can be bounded by (116) and the bounds on the regularity of i)N’S, and
the last by combining Lemmas 11.4 and 11.5. t
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