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TWO-SIDED ESTIMATES ON THE DENSITY OF
BROWNIAN MOTION WITH SINGULAR DRIFT

PANKI KIM AND RENMING SONG

Abstract. Let µ = (µ1, . . . , µd) be such that each µi is a signed mea-

sure on Rd belonging to the Kato class Kd,1. The existence and unique-

ness of a continuous Markov process X on Rd, called a Brownian motion
with drift µ, was recently established by Bass and Chen. In this paper

we study the potential theory of X. We show that X has a continuous
density qµ and that there exist positive constants ci, i = 1, · · · , 9, such
that
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for all (t, x, y) ∈ (0,∞) × Rd × Rd. We further show that, for any

bounded C1,1 domain D, the density qµ,D of XD, the process obtained
by killing X upon exiting from D, has the following estimates: for any
T > 0, there exist positive constants Ci, i = 1, · · · , 5, such that
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for all (t, x, y) ∈ (0, T ]×D×D, where ρ(x) is the distance between x and
∂D. Using the above estimates, we then prove the parabolic Harnack

principle for X and show that the boundary Harnack principle holds for
the nonnegative harmonic functions of X. We also identify the Martin
boundary of XD.
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1. Introduction

In this paper we always assume that d ≥ 3. Suppose µ = (µ1, . . . , µd) is
such that each µi is a signed measure on Rd belonging to the Kato class Kd,1.
(See Definition 2.1 for the precise definition of Kd,1.) Informally, a Brownian
motion in Rd with drift µ is a diffusion process in Rd with generator 1

2∆+µ·∇.
When each µi is given by U i(x)dx for some function U i, a Brownian motion
with drift µ is a diffusion in Rd with generator 1

2∆ +U ·∇ and it is a solution
to the SDE

dXt = dWt + U(Xt) · dt.
To give the precise definition of a Brownian motion with drift µ in Kd,1, we

fix a nonnegative smooth radial function ϕ(x) in Rd with supp[ϕ] ⊂ B(0, 1)
and

∫
ϕ(x)dx = 1. Let ϕn(x) = 2ndϕ(2nx). For 1 ≤ i ≤ d, define

U in(x) =
∫
ϕn(x− y)µi(dy).

Put Un(x) = (U1
n(x), . . . , Udn(x)). The following definition is taken from [4].

Definition 1.1. Suppose µ = (µ1, . . . , µd) is such that each µi is a signed
measure on Rd belonging to the Kato class Kd,1. A Brownian motion with
drift µ is a family of probability measures {Px : x ∈ Rd} on C([0,∞),Rd),
the space of continuous Rd-valued functions on [0,∞), such that under each
Px we have

Xt = x+Wt +At,

where

(a) At = limn→∞
∫ t

0
Un(Xs)ds uniformly over t in finite intervals, where

the convergence is in probability;
(b) there exists a subsequence {nk} such that

sup
k

∫ t

0

|Unk(Xs)|ds <∞

almost surely for each t > 0;
(c) Wt is a standard Brownian motion in Rd starting from the origin.

In this paper we will fix a µ in Kd,1 and use X to denote a Brownian
motion with drift µ. The existence and uniqueness of X were established in
[4] by Bass and Chen. In fact, they showed that it is a Feller process.

Bass and Chen raised the following question in [4]: Do the Harnack princi-
ple and the boundary Harnack principle hold for the positive harmonic func-
tions of X?

In this paper we will try to answer the above question by studying the
densities of X and XD, the process obtained by killing X upon exiting from
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a bounded C1,1 domain D. We show that X has a continuous density qµ and
that there exist positive constants ci = ci(d, µ), i = 1, · · · , 9, such that
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for all (t, x, y) ∈ (0,∞) ×Rd ×Rd. We further show that, for any bounded
C1,1 domain D, XD has a continuous density qµ,D which has the following
estimates: for any T > 0, there exist positive constants ci = ci(d, µ, T,D), i =
10, . . . , 14, such that
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for all (t, x, y) ∈ (0, T ]×D×D, where ρ(x) is the distance between x and ∂D.
Then we use these estimates to establish that the Harnack principle and the
boundary Harnack principle hold for the positive harmonic functions of X.

The Gaussian estimates (1.1) were first established by Aronson in [2] un-
der the assumption that each µi is given by U i(x)dx with U i belonging to
Lp(B(0, R)) for some p > d and R > 0 and bounded outside B(0, R). The
estimates (1.1) and (1.2) in the case when each µi is given by U i(x)dx with
U i ∈ Kd,1 were stated by Zhang in [28], although they were only proved un-
der the assumption that each U i is bounded and smooth. In [17], Kondratiev,
Liskevich, Sobol and Us gave a proof of (1.1) and (1.2) in the general case
when each µi is given by U i(x)dx with U i ∈ Kd,1, but it seems that the proof
there is not quite complete; see Lemma 2.7 there and the argument right be-
fore the lemma. In [22], Riahi established the estimates (1.3) and (1.4) in
the case when each µi is given by U i(x)dx with U i ∈ Kd,1. But the proof in
[22] also seems to be not quite complete since the first display on page 389 of
[22] (attributed to [28]), although it can be easily checked when the U i’s are
bounded and smooth (see the beginning of the proof of Theorem 4.2 below),
needs justification in the general case.

It is known that, for heat equations on manifolds, one can prove Gauss-
ian heat kernel estimates by checking the volume doubling property and the
Poicaré inequality (see [15] and [23]). However, it seems that Brownian mo-
tions with singular drifts do not fit into this framework.
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Let Xn be a Brownian motion with drift Un, where Un is defined in terms
of µ as in the beginning of this section. Our strategy for establishing (1.1)
and (1.2) for µ ∈ Kd,1 is as follows. First we use the result of [28] to establish
(1.1) and (1.2) for qn, the density of Xn, with the constants ci, 1 = 1, . . . , 9,
independent of n and depending on µ only via the rate at which the function

r 7→ max
1≤i≤d

sup
x∈Rd

∫
|x−y|≤r

|µi|(dy)
|x− y|d−1

goes to zero as r ↓ 0. Then we show that the densities qn converge uniformly
in each compact subset in (0,∞)×Rd×Rd. The uniform convergence of the
transition densities shows that the approximation scheme proposed above is
well-suited for the purpose of this paper.

The strategy for establishing (1.3) and (1.4) for µ ∈ Kd,1 is similar. The
difference is that we have to first establish them for qDn , the density of Xn,D,
and then establish the uniform convergence of qDn on arbitrary compact subsets
of (0,∞)×D ×D.

The uniform convergences of qn and qDn are essential for our approach to
establish (1.1), (1.2), (1.3) and (1.4) and they can be regarded as stability
results for the fundamental solutions under perturbations. Most of Sections
3 and 4 are devoted to proving these uniform convergences.

The content of this paper is organized as follows. In Section 2, we first recall
the definition of the Kato class and discuss some basic properties. In Section
3, we establish the two-sided estimates on the density of X. In Section 4,
we deal with estimates of the density for XD, the process obtained by killing
X upon exiting from D. We establish two-sided estimates on the density
of XD when D is a bounded C1,1 domain D. In Section 5, we prove that
the parabolic Harnack principle is valid for positive harmonic functions of
X by using estimates obtained in Section 4. In Section 6, we establish two-
sided estimates on the Green function of XD and show that a boundary
Harnack principle is valid for positive harmonic functions of X in bounded
C1,1 domains. In the last section we show that, when D is a bounded C1,1

domain, the Martin boundary and minimal Martin boundary of XD coincide
with the Euclidean boundary.

In this paper we will use the following convention. The values of the con-
stants M1,M2, · · · will remain the same throughout this paper, while the
values of the constants C1, C2, · · · might change from one appearance to an-
other. The labeling of the constants C1, C2, · · · starts anew in the statement
of each result.

Recall that a bounded domain D in Rd is said to be a C1,1 domain if there is
a localization radius r0 > 0 and a constant Λ > 0 such that for every Q ∈ ∂D,
there is a C1,1-function φ = φQ : Rd−1 → R satisfying φ(0) = ∇φ(0) = 0,
‖∇φ‖∞ ≤ Λ, |∇φ(x) − ∇φ(z)| ≤ Λ|x − z|, and an orthonormal coordinate
system y = (y1, · · · , yd−1, yd) := (ỹ, yd) such that B(Q, r0) ∩D = B(Q, r0) ∩
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{y : yd > φ(ỹ)}. The pair (r0,Λ) is called the characteristics of the C1,1

domain D.

2. Preliminaries

First we recall the definition of the Kato class Kd,α for α ∈ (0, 2], although
we will only use Kd,1 in this paper.

For any function f on Rd and r > 0, we define

Mα
f (r) = sup

x∈Rd

∫
|x−y|≤r

|f |(y)dy
|x− y|d−α

, 0 < α ≤ 2.

In this paper, by a signed measure we mean the difference of two nonnegative
measures at most one of which can have infinite total mass. For any signed
measure ν on Rd, we use ν+ and ν− to denote its positive and negative parts,
and |ν| = ν+ + ν− its total variation. For any signed measure ν on Rd and
any r > 0, we define

Mα
ν (r) = sup

x∈Rd

∫
|x−y|≤r

|ν|(dy)
|x− y|d−α

, 0 < α ≤ 2.

Definition 2.1. Let 0 < α ≤ 2. We say that a function f on Rd belongs
to the Kato class Kd,α if limr↓0M

α
f (r) = 0. We say that a signed Radon

measure ν on Rd belongs to the Kato class Kd,α if limr↓0M
α
ν (r) = 0. We say

that a d-dimensional vector valued function V = (V 1, · · · , V d) on Rd belongs
to the Kato class Kd,α if each V i belongs to the Kato class Kd,α. We say that
a d-dimensional vector valued signed Radon measure µ = (µ1, · · · , µd) on Rd

belongs to the Kato class Kd,α if each µi belongs to the Kato class Kd,α.

Rigorously speaking a function f in Kd,α may not give rise to a signed
measure ν in Kd,α since it may not give rise to a signed measure at all.
However, for the sake of simplicity we use the convention that whenever we
write that a signed measure ν belongs to Kd,α we are implicitly assuming that
we are covering the case of all the functions in Kd,α as well.

It is easy to see that if ν ∈ Kd,α, then for any r > 0 we have Mα
ν (r) <∞.

In fact, by definition we know that there exists r0 > 0 such that Mα
ν (r0) <∞,

thus

sup
x∈Rd

|ν|(B(x, r0)) ≤ sup
x∈Rd

∫
|x−y|≤r0

rd−α0 |ν|(dy)
|x− y|d−α

= rd−α0 Mα
ν (r0).

Using this one can easily get that for any r > 0,

(2.1) sup
x∈Rd

|ν|(B(x, r)) <∞.
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Thus

sup
x∈Rd

∫
|x−y|≤r

|ν|(dy)
|x− y|d−α

≤ sup
x∈Rd

∫
|x−y|≤r0

|ν|(dy)
|x− y|d−α

+ rα−d0 sup
x∈Rd

|ν|(B(x, r)) <∞

and

(2.2) sup
x∈Rd

|ν|(B(x, r)) ≤ sup
x∈Rd

∫
|x−y|≤r

rd−α|ν|(dy)
|x− y|d−α

= rd−αMα
ν (r).

In this paper we will use p(t, x, y) to denote the transition density of a standard
Brownian motion in Rd, that is,

p(t, x, y) = (2πt)−
d
2 e−

|x−y|2
2t , (t, x, y) ∈ (0,∞)×Rd ×Rd.

For any function f on Rd and t > 0, we define

Nα
f (t) = sup

x∈Rd

∫ t

0

∫
Rd

s
α
2−1p(s, x, y)|f(y)|dyds, 0 < α ≤ 2.

For any signed measure ν on Rd and t > 0, we define

Nα
ν (t) = sup

x∈Rd

∫ t

0

∫
Rd

s
α
2−1p(s, x, y)|ν|(dy)ds, 0 < α ≤ 2.

The next two propositions are variations of Lemmas 2.1 and 2.2 in [5]. For
the convenience of our readers we include the proofs of these results.

Proposition 2.2. Suppose that ν is a signed measure on Rd and 0 <
α ≤ 2. If ν ∈ Kd,α, then for any t > 0,

(2.3) sup
x∈Rd

∫
Rd

e−
|x−y|2

2t |ν|(dy) <∞,

and

(2.4) lim
R↑∞

sup
x∈Rd

∫
|x−y|>R

e−
|x−y|2

2t |ν|(dy) = 0.

Moreover, there is a constant L1 = L1(d, α) depending only on d and α with
the following property: for every r > 0, there exists a constant L2 = L2(d, α, r)
such that for any t ∈ (0, 1),

(2.5) Nα
ν (t) ≤ (t L2(d, α, r) + L1(d, α))Mα

ν (r).

Proof. By using an argument similar to that of the proof of Lemma 1.1
in [24], one can easily prove (2.3) and (2.4). We skip the details. We now
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concentrate on proving the last assertion of this proposition. For any r > 0
and s ∈ (0, 1), we have

∫ s

0

∫
|x−y|>r

u
α
2−1p(u, x, y)|ν|(dy)du

≤ s sup
u∈(0,s)

∫
|x−y|>r

u
α
2−1p(u, x, y)|ν|(dy)

≤ s (2π)−
d
2 sup
u∈(0,s)

(
u−

d+2−α
2 e−

r2
4u

)
sup
x∈Rd

∫
Rd

e−
|x−y|2

4 |ν|(dy)
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d
2 sup
u∈(0,1)

(
u−

d+2−α
2 e−

r2
4u

)
c1(2, d, r, α)Mα

ν (r)

:= sL2(d, α, r)Mα
ν (r).

On the other hand, using

(2.6)
∫ t

0

s
α
2−1p(s, x, y)ds = 2

d−α
2 (2π)−

d
2 |x− y|−d+α

∫ ∞
|x−y|2

2t

u
d−2−α

2 e−udu,

we get

∫ t

0

∫
|x−y|≤r

s
α
2−1p(s, x, y)|ν|(dy)ds

=
∫
|x−y|≤r

∫ t

0

s
α
2−1p(s, x, y)ds|ν|(dy)

=
∫
|x−y|≤r

2
d−α

2 (2π)−
d
2 |x− y|−d+α

∫ ∞
|x−y|2

2t

u
d−2−α

2 e−udu|ν|(dy)

≤ 2
d−α

2 (2π)−
d
2

∫ ∞
0

u
d−2−α

2 e−udu

∫
|x−y|≤r

|x− y|−d+α|ν|(dy)

:= L1(d, α)
∫
|x−y|≤r

|x− y|−d+α|ν|(dy).

Therefore for every s ∈ (0, 1),

Nα
ν (s) ≤ (sL2(d, α, r) + L1(d, α))Mα

ν (r). �

Proposition 2.3. Suppose that ν is a signed measure on Rd. Then for
any 0 < α ≤ 2, ν ∈ Kd,α if and only if limt→0N

α
ν (t) = 0.
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Proof. By Proposition 2.2, if ν ∈ Kd,α, then limt→0N
α
ν (t) = 0. For the

converse, by (2.6) we have∫ r2

0

∫
Rd

s
α
2−1p(s, x, y)|ν|(dy)ds

=
∫

Rd

∫ r2

0

s
α
2−1p(s, x, y)ds|ν|(dy)

≥
∫
|x−y|≤r

2
d−α

2 (2π)−
d
2 |x− y|−d+α

∫ ∞
|x−y|2

2r2

u
d−2−α

2 e−udu|ν|(dy)

≥ 2
d−α

2 (2π)−
d
2

∫ ∞
1
2

u
d−2−α

2 e−udu

∫
|x−y|≤r

|x− y|−d+α|ν|(dy). �

By combining Proposition 2.3 above and Theorem A in [28] we get the
following result.

Theorem 2.4. Suppose that U(x) = (U1(x), . . . , Ud(x)) is such that each
component U i is bounded. Then the Brownian motion with drift U has a
transition density qU (t, x, y). qU is the fundamental solution of the equation

∂

∂t
u(t, x) =

1
2

∆xu(t, x) + U(x) · ∇xu(t, x),

and is also called the heat kernel for 1
24+U ·∇. There exist positive constants

Cj , 1 ≤ j ≤ 9, depending on U only via the rate at which max1≤i≤dM
1
Ui(r)

goes to zero, such that

(2.7) C1e
−C2tt−

d
2 e−

C3|x−y|
2

2t ≤ qU (t, x, y) ≤ C4e
C5tt−

d
2 e−

C6|x−y|
2

2t

and

|∇xqU (t, x, y)| ≤ C7e
C8tt−

d+1
2 e−

C9|x−y|
2

2t

for all (t, x, y) ∈ (0,∞)×Rd ×Rd.

The meaning of the phrase “depending on µ only via the rate at which
max1≤i≤dM

1
µi(r) goes to zero” is that if w(r) is a decreasing function on (0,∞)

with limr→0 w(r) = 0, then the statement is true for any signed measure µ
with

max
1≤i≤d

Mµi(r) ≤ w(r), r > 0.

3. Two-sided estimates for the density of X

Throughout this paper, we assume that µ = (µ1, · · · , µd) is such that each
µi belongs to Kd,1 and that X is a Brownian motion with drift µ. In this
section we shall establish two-sided estimates for the density of X.
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Let ϕ(x) be a nonnegative smooth radial function in Rd such that supp[ϕ] ⊂
B(0, 1) and

∫
ϕ(x)dx = 1. We fix ϕ throughout this paper. Let ϕn(x) :=

2ndϕ(2nx). For signed Radon measures µi on Rd with 1 ≤ i ≤ d, define

(3.1) U in(x) =
∫
ϕn(x− y)µi(dy)

and set

(3.2) µin(dx) = U in(x)dx.

We write Un(x) for (U1
n(x), · · · , Udn(x)). It follows from (2.2) that when µi ∈

Kd,1, i = 1, . . . , d, each U in is a bounded and smooth function on Rd.

Lemma 3.1. Each U in belongs to the Kato class Kd,1 and

(3.3) M1
Uin

(r) ≤M1
µi(r) r > 0, 1 ≤ i ≤ d.

Proof. See the proof of Proposition 3.6 in [4]. �

Using Theorem 2.4 and Lemma 3.1 we can see that, for each n, the Brow-
nian motion with drift Un has a density qn and there exist positive constants
Mi, i = 1, . . . , 9, depending on µ only via the rate at which max1≤i≤dM

1
µi(t)

goes to zero, such that

(3.4) M1e
−M2tt−

d
2 e−

M3|x−y|
2

2t ≤ qn(t, x, y) ≤ M4e
M5tt−

d
2 e−

M6|x−y|
2

2t

and

(3.5) |∇xqn(t, x, y)| ≤ M7 e
M8t t−

d+1
2 e−

M9|x−y|
2

2t

for all (t, x, y) ∈ (0,∞)×Rd ×Rd and n ≥ 1.
The next lemma is a consequence of (2.2), which can be proved easily by a

covering argument.

Lemma 3.2. For any bounded (d− 1)-rectifiable subset A of Rd, we have
d∑
i=1

sup
x∈Rd

|µi|(A) = 0.

Proof. Let N(A, ε) be the smallest number of ε-balls needed to cover A,
i.e.,

N(A, ε) := min

k : A ⊂
k⋃
j=1

B(xj , ε) for some xj ∈ Rd

 .

So for each ε > 0, there exists a sequence {xj}1≤j≤N(A,ε) such that

|µi|(A) ≤
N(A,ε)∑
j=1

|µi|(B(xj , ε)), 1 ≤ i ≤ d.
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Using (2.2), we get

(3.6) |µi|(A) ≤ εd−1N(A, ε)M1
µi(ε), 1 ≤ i ≤ d.

Let

A(ε) :=
{
x ∈ Rd : dist(x,A) ≤ ε

}
.

It is well-known (see, for instance, (5.4) and (5.6) in [20]) that there exists a
positive number c1 = c1(d) such that

(3.7) εdN(A, ε) ≤ c1 Ld(A(ε)),

where Ld is d-dimensional Lebesgue measure. Since A is (d − 1)-rectifiable,
by Theorem 3.2.39 in [11], there exists a nonnegative real number c2 = c2(A)
such that

(3.8) lim
ε↓0

1
ε
Ld(A(ε)) = c2 <∞.

Thus combining (3.6)–(3.8), we have for any i

|µi|(A) ≤ c1 lim
ε↓0

1
ε
Ld(A(ε))M1

µi(ε) = c1c2 lim
ε↓0

M1
µi(ε) = 0. �

Lemma 3.3. Let 0 < T0 < T1 < ∞. Suppose K1 is a compact subset of
Rd and D1 is a bounded domain with smooth boundary ∂D1. Then for any
continuous function f on [T0, T1]×K1 ×K1 ×D1, we have

lim
n↑∞

sup
(t,x,y)∈[T1,T2]×K1×K1

∣∣∣∣∫
D1

f(t, x, y, z)(µin − µi)(dz)
∣∣∣∣ = 0, 1 ≤ i ≤ d.

Proof. Fix an i and extend f(t, x, y, · ) to be zero off D1. Let

An :=
{
w ∈ Rd : dist(∂D1, w) ≤ 2−n

}
.

By Lemma 3.2, we have

lim
n→∞

|µi|(An) = |µi|(∂D1) = 0.

Given ε > 0, choose a large positive integer n1 such that for every n ≥ n1,

(3.9)

(
sup

(t,x,y,z)∈[T0,T1]×K1×K1×D1

|f(t, x, y, z)|

)
|µi|(An) <

ε

4
.

By Fubini’s theorem, we have for every (t, x, y) ∈ [T1, T2] × K1 × K1 and
every n ≥ n1,
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D1

f(t, x, y, z)(µin − µi)(dz)
∣∣∣∣

=
∣∣∣∣∫

Rd

∫
Rd

ϕn(w − z)µi(dw)f(t, x, y, z)dz −
∫

Rd

f(t, x, y, w)µi(dw)
∣∣∣∣

=
∣∣∣∣∫

Rd

((ϕn ∗ f(t, x, y, · ))(w)− f(t, x, y, w))µi(dw)
∣∣∣∣

=
∣∣∣∣∫
D1∪An

((ϕn ∗ f(t, x, y, · ))(w)− f(t, x, y, w))µi(dw)
∣∣∣∣

≤

∣∣∣∣∣
∫
D1\An

((ϕn ∗ f(t, x, y, · ))(w)− f(t, x, y, w))µi(dw)

∣∣∣∣∣ +
ε

2
.

In the last inequality above, we used (3.9). Note that from (2.1), we have
|µi|(D1) < c1 < ∞. So by taking the supremum over (t, x, y) ∈ [T0, T1] ×
K1 ×K1, we get

sup
t∈[T0,T1],

(x,y)∈K1×K1

∣∣∣∣∫
D1

f(t, x, y, z)(µin − µi)(dz)
∣∣∣∣

≤ |µi|(D1) sup
t∈[T0,T1],

(x,y)∈K1×K1,
w∈D1\An

|(ϕn ∗ f(t, x, y, · ))(w)− f(t, x, y, w)|+ ε

2

≤ c1 sup
t∈[T0,T1],

(x,y)∈K1×K1,
w∈D1\An

∣∣∣∣∣
∫
B(0,1)

ϕ(z)(f(t, x, y, w + 2−nz)− f(t, x, y, w))dz

∣∣∣∣∣+
ε

2

≤ c1 sup
t∈[T0,T1],

(x,y)∈K1×K1,

w∈D1\An,|z|<2−n

|(f(t, x, y, z + w)− f(t, x, y, w))|+ ε

2
.

The first term in the last line above goes to zero as n → ∞ by the uniform
continuity of f . �

Lemma 3.4. Suppose that R is a positive number. Then for any a > 0,
there exist positive constants C1 and C2 depending only on a and d such that
for any measure ν on Rd and t > 0,

(3.10) sup
|x|,|y|<R/2

∫ t

0

∫
|x−z|≥4R

s−
d
2 e−

a|x−z|2
2s (t− s)−

d+1
2 e−

a|z−y|2
t−s ν(dz)ds

≤ C1t
− d2 sup
|u|<R/2

∫ t

0

∫
|u−z|≥3R

s−
d+1

2 e−
a|u−z|2

4s ν(dz)ds
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and

(3.11) sup
|x|,|y|<R/2

∫ t

0

∫
|x−z|≥4R

s−
d+1

2 e−
a|x−z|2

2s (t− s)−
d+1

2 e−
a|z−y|2
t−s ν(dz)ds

≤ C2t
− d+1

2 sup
|u|<R/2

∫ t

0

∫
|u−z|≥3R

s−
d+1

2 e−
a|u−z|2

4s ν(dz)ds.

Proof. One can follow the proof of Lemma 3.1 of [28] and show that for
any x, y ∈ Rd,

(3.12)
∫ t

0

∫
|x−z|≥4R

s−
d
2 e−

a|x−z|2
2s (t− s)−

d+1
2 e−

a|z−y|2
t−s ν(dz)ds

≤ C0 t
− d2 e−

a|x−y|2
2t

(∫ t

0

∫
|x−z|≥4R

s−
d+1

2 e−
a|x−z|2

4s ν(dz)ds

+
∫ t

0

∫
|x−z|≥4R

s−
d+1

2 e−
a|y−z|2

4s ν(dz)ds

)
.

For x, y ∈ B(0, R/2), if z satisfies |x − z| > 4R, we have |y − z| > |x − z| −
|x− y| > 4R− |x− y| > 3R. Therefore∫ t

0

∫
|x−z|≥4R

s−
d+1

2 e−
a|y−z|2

4s ν(dz)ds

≤
∫ t

0

∫
|y−z|≥3R

s−
d+1

2 e−
a|y−z|2

4s ν(dz)ds.

Now (3.10) follows by taking the supremum over |x|, |y| < 1
2R. (3.11) can be

proved similarly. �

Lemma 3.5. For any δ > 0, there exists a constant C1 = C1(d, δ) depend-
ing only on d and δ such that, for every t > δ, x ∈ Rd, R > 1, n ≥ 1, M > 0
and 1 ≤ i ≤ d∫ t

δ

∫
|y−x|≥3R

s−
d+1

2 e−
M|y−z|2

4s (|U in(y)|dy + |µi|(dz))ds

≤ C1 t

∫
|z−x|≥R

e−
M|x−z|2

4t |µi|(dz).

Proof. For any x ∈ Rd,∫ t

δ

∫
|y−x|≥3R

s−
d+1

2 e−
M|y−z|2

4s (|U in(y)|dy + |µi|(dz))ds

≤ δ−
d+1

2 t

∫
|y−x|≥3R

e−
M|x−y|2

4t (|U in(y)|dy + |µi|(dz))dy.
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Since ϕ is a nonnegative radial function supported by B(0, 1), we have for any
x ∈ Rd ∫

|y−x|≥3R

e−
M|x−y|2

4t |U in(y)|dy

≤
∫
|y−x|≥3R

e−
M|x−y|2

4t

∫
|y−z|≤1

ϕn(y − z)|µi|(dz)dy

≤
∫
|z−x|≥2R

∫
|y−z|≤1

ϕn(y − z)e−
M|x−y|2

4t dy|µi|(dz).

Using the change of variable y = z − w in the inner integral we get that∫
|z−x|≥2R

∫
|y−z|≤1

ϕn(y − z)e−
M|x−y|2

4t dy|µi|(dz)

=
∫
|z−x|≥2R

∫
|w|≤1

ϕn(w)e−
M|x−z+w|2

4t dw|µi|(dz)

=
∫
|w|≤1

ϕn(w)
∫
|z−x|≥2R

e−
M|x−z+w|2

4t |µi|(dz)dw

≤ sup
|w|≤1

∫
|z−x|≥2R

e−
M|x−z+w|2

4t |µi|(dz)

≤
∫
|u−x|≥R

e−
M|x−u|2

4t |µi|(du).

Therefore the lemma is valid with C1 = 2δ−
d+1

2 . �

It is easy to check that, for any positive integer n, the function defined by

q̃n(t, x, y) := p(t, x, y) +
∫ t

0

∫
Rd

qn(s, x, z)Un(z) · ∇zp(t− s, z, y)dzds

is a fundamental solution of the equation

∂

∂t
u(t, x) =

1
2

∆xu(t, x) + Un(x) · ∇xu(t, x).

Thus by Theorem 5 of [2] we get that for every (t, x, y) ∈ (0,∞)×Rd ×Rd,

(3.13) qn(t, x, y) = p(t, x, y) +
∫ t

0

∫
Rd

qn(s, x, z)Un(z) · ∇zp(t− s, z, y)dzds.

We define Ink (t, x, y) recursively for k ≥ 0 and (t, x, y) ∈ (0,∞)×Rd ×Rd:

In0 (t, x, y) := p(t, x, y),

Ink+1(t, x, y) :=
∫ t

0

∫
Rd

Ink (s, x, z)Un(z) · ∇zp(t− s, z, y)dzds.
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Then iterating (3.13) gives

(3.14) qn(t, x, y) =
∞∑
k=0

Ink (t, x, y), (t, x, y) ∈ (0,∞)×Rd ×Rd.

It is easy to see that there exists A > 0 such that

(3.15) |∇xp(t, x, y)| ≤ At−
d+1

2 e−
|x−y|2

4t , (t, x, y) ∈ (0,∞)×Rd ×Rd.

By taking A larger if necessary, we may assume that

(3.16) p(t, x, y) ≤ At− d2 e−
|x−y|2

4t , (t, x, y) ∈ (0,∞)×Rd ×Rd.

We claim that there exist positive constants T1 and M0 such that for k =
0, 1, · · · and (t, x, y) ∈ (0, T1]×Rd ×Rd

(3.17) |Ink (t, x, y)| ≤ 2−k−1M0t
− d2 e−

|x−y|2
8t .

In fact, by Lemma 3.1 in [28], (3.15) and (3.16), there exists a positive constant
C1 depending only on d such that

|In1 (t, x, y)| ≤ C1 t
− d2 e−

|x−y|2
8t

(
A

d∑
i=1

N1
Uin

(8t)

)
.

Now suppose that

|Ink (t, x, y)| ≤ C1 t
− d2 e−

|x−y|2
8t

(
A

d∑
i=1

N1
Uin

(8t)

)k
is true. Then by Lemma 3.1 in [28] and (3.15), we have

|Ink+1(t, x, y)|

≤
∫ t

0

∫
Rd

|Ink (s, x, z)||Un(z) · ∇zp(t− s, z, y)|dzds

≤
∫ t

0

∫
Rd

C1 s
− d2 e−

|x−z|2
8s

(
A

d∑
i=1

N1
Uin

(8s)

)k
×

×
d∑
i=1

A(t− s)−
d+1

2 e−
|z−y|2
4(t−s) |U in(z)|dzds

≤ C1 t
− d2 e−

|x−y|2
8t

(
A

d∑
i=1

N1
Uin

(8t)

)k+1

.

Choose T1 > 0 small so that

(3.18) A sup
n≥1

d∑
i=1

N1
Uin

(8T1) <
1
2
.
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By (2.5) and Lemma 3.1, T1 depends on µi only via the rate at which
max1≤i≤dM

1
µi(r) goes to zero. So the claim is proved. We will fix this con-

stant T1 until the end of this section.
Now we define Ik(t, x, y) recursively for k ≥ 0 and (t, x, y) ∈ (0, T1]×Rd×

Rd:

I0(t, x, y) := p(t, x, y),

Ik+1(t, x, y) :=
∫ t

0

∫
Rd

Ik(s, x, z)∇zp(t− s, z, y) · µ(dz)ds.

Let

(3.19) q(t, x, y) :=
∞∑
k=0

Ik(t, x, y), (t, x, y) ∈ (0, T1]×Rd ×Rd.

Using a similar argument as in the previous paragraph, we also have that for
k = 0, 1, · · · and (t, x, y) ∈ (0, T1]×Rd ×Rd

(3.20) |Ik(t, x, y)| ≤ 2−k−1M0t
− d2 e−

|x−y|2
8t .

So
∑∞
k=0 Ik(t, x, y) converges absolutely on (t, x, y) ∈ (0, T1] ×Rd ×Rd and

converges uniformly on (t, x, y) ∈ [T0, T1] × Rd × Rd for every 0 < T0 <
T1, which implies that q(t, x, y) is jointly continuous on (0, T1] × Rd × Rd.
Moreover

(3.21) q(t, x, y) ≤ M0t
− d2 e−

|x−y|2
8t , (t, x, y) ∈ (0, T1]×Rd ×Rd.

We will show that qn converges uniformly on each compact subset of
(0,∞)×Rd ×Rd through several lemmas.

Lemma 3.6. For any compact subsets K1,K2 of Rd and T0 ∈ (0, T1], we
have

lim
n→∞

sup
(t,x,y)∈[T0,T1]×K1×K2

|In1 (t, x, y)− I1(t, x, y)| = 0.

Proof. Without loss of generality we may assume that T0 < 2. We will
prove this lemma for the case K1 = K2 = B(0, r) only. For any given ε > 0,
we first choose r1 > 0 small such that

(3.22)
d∑
i=1

M1
µi(r1) <

ε

8L1(d, 1)
,
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where L1(d, 1) is the constant from Proposition 2.2. Then, by Proposition 2.2
and Lemma 3.1, we can choose δ = δ(r1, d) < min(1

2T0, 1) such that

(3.23)
d∑
i=1

sup
x∈Rd

∫ δ

0

∫
Rd

s−
d+1

2 exp
(
−|z − x|

2

16s

)
(|U in|(z)dz + |µi|(dz))ds

<
T
d/2
0

8A2
(C−1

1 ∧ 2−
d+1

2 T
1/2
0 )ε, n ≥ 1,

where C1 is the constant from Lemma 3.4 with a = 1
4 . Then for this δ, by

Lemma 3.5, there exists a constant c1 = c1(d, δ) such that for any x ∈ Rd

and R > 1,∫ T1

δ

∫
|z−x|≥3R

s−
d+1

2 exp
(
−|z − x|

2

16s

)
(|U in|(z)dz + |µi|(dz))ds

≤ c1T1

∫
|z−x|≥R

exp
(
−|z − x|

2

16T1

)
|µi|(dz)ds.

By (2.4) we can choose R > 2r large enough so that

(3.24)
∫ T1

δ

∫
|z−x|≥3R

s−
d+1

2 exp
(
−|z − x|

2

16s

)
(|U in|(z)dz + |µi|(dz))ds

<
T
d/2
0 ε

8C1A2
, n ≥ 1.

We split |In1 (t, x, y)− I1(t, x, y)| into four parts:

|In1 (t, x, y)− I1(t, x, y)|

≤
d∑
i=1

∫ t

0

∫
|z|≥7R

p(s, x, z)|∇zp(t− s, z, y)|(|U in|(z)dz + |µi|(dz))ds

+
d∑
i=1

∫ δ

0

∫
|z|<7R

p(s, x, z)|∇zp(t− s, z, y)|(|U in|(z)dz + |µi|(dz))ds

+
d∑
i=1

∫ t

t−δ

∫
|z|<7R

p(s, x, z)|∇zp(t− s, z, y)|(|U in|(z)dz + |µi|(dz))ds

+
d∑
i=1

∣∣∣∣∣
∫ t−δ

δ

∫
|z|<7R

p(s, x, z)∂zip(t− s, z, y)U in(z)dzds

−
∫ t−δ

δ

∫
|z|<7R

p(s, x, z)∂zip(t− s, z, y)µi(dz))ds

∣∣∣∣∣
=: I(n, t, x, y) + II(n, t, x, y) + III(n, t, x, y) + IV(n, t, x, y).
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Since |x| ≤ r < R, we have |x− z| > |z| − |x| > 6R for |z| ≥ 7R. So

I(n, t, x, y)

≤
d∑
i=1

∫ t

0

∫
|x−z|≥6R

p(s, x, z)|∇zp(t− s, z, y)|(|U in|(z)dz + |µi|(dz))ds.

By Lemma 3.4, (3.16) and (3.15), we have

sup
|x|,|y|≤r,n≥1

I(n, t, x, y)

≤ C1A
2t−

d
2

d∑
i=1

sup
|u|<R/2

∫ t

0

∫
|u−z|≥3R

s−
d+1

2 e−
|u−z|2

16s (|U in|(z)dz+|µi|(dz))ds.

Therefore, by (3.23)–(3.24), we get

sup
|x|,|y|≤r,n≥1,
T0≤t≤T1

I(n, t, x, y)

≤ C1A
2T
− d2
0

d∑
i=1

sup
u∈Rd

∫ T1

0

∫
|u−z|≥3R

s−
d+1

2 e−
|u−z|2

16s

× (|U in|(z)dz + |µi|(dz))ds

≤ C1A
2T
− d2
0

d∑
i=1

(
sup
u∈Rd

∫ δ

0

∫
Rd

s−
d+1

2 e−
|u−z|2

16s (|U in|(z)dz + |µi|(dz))ds

+ sup
u∈Rd

∫ T1

δ

∫
|u−z|≥3R

s−
d+1

2 e−
|u−z|2

16s (|U in|(z)dz + |µi|(dz))ds

)
<

ε

4
.

On the other hand, since δ < T0/2, by (3.15)–(3.16) we have

II(n, t, x, y)

≤ A2(
2
T0

)
d+1

2

d∑
i=1

sup
u∈Rd

∫ δ

0

∫
Rd

s−
d
2 e−

|u−z|2
8s (|U in|(z)dz + |µi|(dz))ds.

Similarly,

III(n, t, x, y)

≤ A2(
2
T0

)
d
2

d∑
i=1

sup
u∈Rd

∫ δ

0

∫
Rd

s−
d+1

2 e−
|u−z|2

8s (|U in|(z)dz + |µi|(dz))ds.

Therefore, by (3.23), we conclude

sup
|x|,|y|≤r,n≥1,
T0≤t≤T1

(II(n, t, x, y) + III(n, t, x, y)) <
ε

4
.
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Now we estimate IV. Let

fi(t, x, y, z) :=
∫ t−δ

δ

p(s, x, z)∂zip(t− s, z, y)ds.

By the continuity of p(s, x, z) and ∂zip(t−s, z, y) and (3.16)–(3.15), fi(t, x, y, z)
is continuous on [T0, T1]×B(0, r)×B(0, r)×B(0, 7R). Therefore, by Lemma
3.2,

lim
n→∞

sup
|x|,|y|≤r,
T0≤t≤T1

IV(n, t, x, y)

= lim
n→∞

d∑
i=1

sup
|x|,|y|≤r,
T0≤t≤T1

∣∣∣∣∣
∫
B(0,7R)

fi(t, x, y, z)(µin − µi)(dz)

∣∣∣∣∣ = 0. �

Lemma 3.7. For any compact subsets K1,K2 ⊂ Rd and T0 ∈ (0, T1], we
have

lim
n→∞

sup
t∈[T0,T1],

(x,y)∈K1×K2

|Ink (t, x, y)− Ik(t, x, y)| = 0, k ≥ 1.

Proof. Without loss of generality we may assume that T0 < 2. We will
prove this lemma for the case K1 = K2 = B(0, r) only. The previous lemma
implies that the present lemma is valid for k = 1. We assume that the lemma
is true for k, which implies that Ik(s, x, z) is continuous. Given ε > 0, we
choose r1 > 0 as in (3.22) and then, using Proposition 2.2 and Lemma 3.1,
choose δ = δ(r1, d) < min( 1

2T0, 1) such that

(3.25)
d∑
i=1

sup
x∈Rd

∫ δ

0

∫
Rd

s−
d+1

2 exp
(
−|z − x|

2

16s

)
(|U in|(z)dz + |µi|(dz))ds

<
T
d/2
0 ε

8AM0
(C−1

1 ∧ 2−
d+1

2 T
1/2
0 ), n ≥ 1,

where C1 is the constant in Lemma 3.4. Then for this δ, using Lemma 3.5
and (2.4) we choose R > 2r large enough so that

(3.26)
∫ T1

δ

∫
|z−x|≥3R

s−
d+1

2 exp
(
−|z − x|

2

16s

)
(|U in|(z)dz + |µi|(dz))ds

<
T
d/2
0 ε

8C1AM0
, n ≥ 1.
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Let

I(n, t, x, y) :=
d∑
i=1

(∫ t

0

∫
|z|≥7R

|Ink (t, x, y)||∇zp(t− s, z, y)||U in|(z)dzds

+
∫ t

0

∫
|z|≥7R

|Ik(t, x, y)||∇zp(t− s, z, y)||µi|(dz)dzds

)
,

II(n, t, x, y) :=
d∑
i=1

(∫ δ

0

∫
|z|<7R

|Ink (t, x, y)||∇zp(t− s, z, y)||U in|(z)dzds

+
∫ δ

0

∫
|z|<7R

Ik(t, x, y)|∇zp(t− s, z, y)||µi|(dz)dzds

)
,

III(n, t, x, y) :=
d∑
i=1

(∫ t

t−δ

∫
|z|<7R

|Ink (t, x, y)||∇zp(t− s, z, y)||U in|(z)dzds

+
∫ t

t−δ

∫
|z|<7R

Ik(s, x, z)|∇zp(t− s, z, y)||µi|(dz)dzds

)
,

IV(n, t, x, y) :=
d∑
i=1

∣∣∣∣∣
∫ t−δ

δ

∫
|z|<7R

Ik(s, x, z)∂zip(t− s, z, y)U in(z)dzds

−
∫ t−δ

δ

∫
|z|<7R

Ik(s, x, z)∂zip(t− s, z, y)µi(dz))ds

∣∣∣∣∣
and

V(n, t, x, y) :=
d∑
i=1

∫ t−δ

δ

∫
|z|<7R

|Ink (s, x, z)− Ik(s, x, z)|×

× |∂zip(t− s, z, y)||U in(z)|dzds.

Then we have

|Ink+1(t, x, y)− Ik+1(t, x, y)|
≤ I(n, t, x, y) + II(n, t, x, y) + III(n, t, x, y) +

+ IV(n, t, x, y) + V(n, t, x, y).
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Since |x| ≤ r < R, we have |x−z| > |z|−|x| > 6R for |z| ≥ 7R. So by Lemma
3.4, (3.17), (3.20) and (3.15), we have

sup
|x|,|y|≤r,n≥1

I(n, t, x, y)

≤ 2−kC1AM0t
− d2

d∑
i=1

sup
|u|<R/2

∫ t

0

∫
|u−z|≥3R

s−
d+1

2 e−
|u−z|2

16s ×

× (|U in|(z)dz + |µi|(dz))ds.

Therefore, by (3.25)–(3.26), we get

sup
|x|,|y|≤r,n≥1,
T0≤t≤T1

I(n, t, x, y)

≤ C1AM0T
− d2
0

d∑
i=1

sup
u∈Rd

∫ T1

0

∫
|u−z|≥3R

s−
d+1

2 e−
|u−z|2

16s ×

× (|U in|(z)dz + |µi|(dz))ds

≤ C1AM0T
− d2
0

d∑
i=1

(
sup
u∈Rd

∫ δ

0

∫
Rd

s−
d+1

2 e−
|u−z|2

16s (|U in|(z)dz + |µi|(dz))ds

+ sup
u∈Rd

∫ T1

δ

∫
|u−z|≥3R

s−
d+1

2 e−
|u−z|2

16s (|U in|(z)dz + |µi|(dz))ds

)
<

ε

4
.

On the other hand, since δ < T0/2, by (3.17), (3.20) and (3.15) we have

II(n, t, x, y) ≤ 2−kAM0(
2
T0

)
d+1

2

d∑
i=1

sup
u∈Rd

∫ δ

0

∫
Rd

s−
d
2 e−

|u−z|2
8s ×

× (|U in|(z)dz + |µi|(dz))ds.

Similarly,

III(n, t, x, y) ≤ 2−kAM0(
2
T0

)
d
2

d∑
i=1

sup
u∈Rd

∫ δ

0

∫
Rd

s−
d+1

2 e−
|u−z|2

8s ×

× (|U in|(z)dz + |µi|(dz))ds.

Therefore, by (3.25), we conclude

sup
|x|,|y|≤r,n≥1,T0≤t≤T1

(II(n, t, x, y) + III(n, t, x, y)) <
ε

4
.

Now we estimate IV. Let

fi(t, x, y, z) :=
∫ t−δ

δ

Ik(s, x, z)∂zip(t− s, z, y)ds.
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By the continuity of Ik(s, x, z) and ∂zip(t − s, z, y) and (3.15) and (3.17),
fi(t, x, y, z) is continuous on [T0, T1]×B(0, r)×B(0, r)×B(0, 7R). Therefore,
by Lemma 3.2,

lim
n→∞

sup
|x|,|y|≤r,T0≤t≤T1

IV(n, t, x, y)

= lim
n→∞

d∑
i=1

sup
|x|,|y|≤r,T0≤t≤T1

∣∣∣∣∣
∫
B(0,7R)

fi(t, x, y, z)(µin − µi)(dz)

∣∣∣∣∣ = 0.

Finally, we estimate V. From (3.15), we easily see that

V(n, t, x, y) ≤M0T1(
2
T0

)
d+1

2 sup
|x|<r,|z|≤7R,δ≤t≤T1

|Ink (s, x, z)− Ik(s, x, z)|×

× sup
n≥1

d∑
i=1

∫ t

0

∫
Rd

(t− s)−
d+1

2 e−
|z−y|2
4(t−s) |U in(z)|dzds.

By Proposition 2.2 and Lemma 3.1,

sup
n≥1,y∈Rd

d∑
i=1

∫ t

0

∫
Rd

(t− s)−
d+1

2 e−
|z−y|2
4(t−s) |U in(z)|dzds

is bounded. Therefore

lim
n→∞

sup
|x|,|y|≤r,
T0≤t≤T1

V(n, t, x, y) = 0

by the assumption on Ink . �

Theorem 3.8. The sequence qn(t, x, y) converges uniformly on any com-
pact subset of (0,∞)×Rd ×Rd.

Proof. By (3.17), for every T0 ∈ (0, T1) and compact subsets K1,K2 ⊂ Rd

sup
(t,x,y)∈[T0,T1]×K1×K2

∞∑
k=0

|Ink (t, x, y)| <∞.

Therefore Lemma 3.7 and a standard ε-δ argument give the uniform conver-
gence of qn(t, x, y) on any compact subset of (0, T1]×Rd ×Rd.
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The uniform upper bounds of qn and q imply that for large R,

sup
n≥1,t∈(T1,

3
2T1],

(x,y)∈K1×K2

∫
|z|≥R

(
qn(

T1

2
, x, z)qn(t− T1

2
, z, y)+

+q(
T1

2
, x, z)q(t− T1

2
, z, y)

)
dz

≤ c1(T1)−d
∫
|z|≥R

e−c2
|z|2
T1 dz,

for some positive constants c1 and c2. For any given ε > 0, we can choose R
large such that

c1(T1)−d
∫
|z|≥R

e−c2
|z|2
T1 dz <

ε

2
.

By the Chapman-Kolmogorov equation, we have for (t, x, y) ∈ (T1,
3
2T1] ×

K1 ×K2,∣∣∣∣qn(t, x, y)−
∫

Rd

q(
T1

2
, x, z)q(t− T1

2
, z, y)dz

∣∣∣∣
=
∣∣∣∣∫

Rd

qn(
T1

2
, x, z)qn(t− T1

2
, z, y)− q(T1

2
, x, z)q(t− T1

2
, z, y)dz

∣∣∣∣
< c3R

d sup
t∈[ 1

2T1,T1],

(x,y,z)∈K1×K2×B(0,R)

∣∣∣∣qn(
T1

2
, x, z)qn(t− T1

2
, z, y)

−q(T1

2
, x, z)q(t− T1

2
, z, y)

∣∣∣∣+
ε

2

for some positive constant c3. The first term in the last line above goes zero
as n → ∞ by the uniform convergence of qn(t, x, y) on compact subsets of
(0, T1]×Rd ×Rd. The general case can be proved by induction. �

We define q on (0,∞)×Rd ×Rd by

q(t, x, y) := lim
n→∞

qn(t, x, y).

Using (3.15), the continuity of ∇xqn(t, x, y) and (3.13), we can easily show
that for any positive integer n and any (t, x, y) ∈ (0,∞)×Rd ×Rd,

(3.27) ∇xqn(t, x, y) = ∇xp(t, x, y)

+
∫ t

0

∫
Rd

∇xqn(s, x, z)Un · ∇zp(t− s, z, y)dzds.
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We define vector-valued functions Jnk (t, x, y) = (Jn,(1)
k , · · · , Jn,(d)

k )(t, x, y) re-
cursively for k ≥ 0 and (t, x, y) ∈ (0,∞)×Rd ×Rd:

Jn0 (t, x, y) := ∇xp(t, x, y),

Jnk+1(t, x, y) :=
∫ t

0

∫
Rd

Jnk (s, x, z)Un(z) · ∇zp(t− s, z, y)dzds.

Then iterating (3.27) gives

(3.28) ∇xqn(t, x, y) =
∞∑
k=0

Jnk (t, x, y), (t, x, y) ∈ (0,∞)×Rd ×Rd.

Using Lemma 3.1(b) in [28] and (3.15), one can show that there exists
positive constantM10 such that for k = 0, 1, · · · and (t, x, y) ∈ (0, T1]×Rd×Rd

(3.29) |Jnk (t, x, y)| ≤ 2−k−1M10t
− d+1

2 e−
|x−y|2

8t .

The proof is similar to the proof of (3.17), so we skip the details.
Now we define Jk(t, x, y) := (J (1)

k , · · · , J (d)
k )(t, x, y) recursively for k ≥ 0

and (t, x, y) ∈ (0, T1]×Rd ×Rd:

J0(t, x, y) := ∇xp(t, x, y),

Jk+1(t, x, y) :=
∫ t

0

∫
Rd

Jk(s, x, z)∇zp(t− s, z, y) · µ(dz)ds.

Let

(3.30) r(t, x, y) :=
∞∑
k=0

Jk(t, x, y), (t, x, y) ∈ (0, T1]×Rd ×Rd.

Using an argument similar to the proof of (3.17), we also have that for k =
0, 1, · · · and (t, x, y) ∈ (0, T1]×Rd ×Rd

(3.31) |Jk(t, x, y)| ≤ 2−k−1M10t
− d2 e−

|x−y|2
8t .

So
∑∞
k=0 Jk(t, x, y) converges absolutely on (t, x, y) ∈ (0, T1] ×Rd ×Rd and

converges uniformly on (t, x, y) ∈ [T0, T1] × Rd × Rd for every 0 < T0 <
T1, which implies that r(t, x, y) is jointly continuous on (0, T1] × Rd × Rd.
Moreover

(3.32) r(t, x, y) ≤ M10t
− d2 e−

|x−y|2
8t , (t, x, y) ∈ (0, T1]×Rd ×Rd.

Similar to qn, we will show that ∇xqn(t, x, y) converges uniformly on each
compact subset of (0,∞)×Rd ×Rd through several lemmas.

Lemma 3.9. For any compact subsets K1,K2 ⊂ Rd and T0 ∈ (0, T1], we
have

lim
n→∞

sup
(t,x,y)∈[T0,T1]×K1×K2

|Jn1 (t, x, y)− J1(t, x, y)| = 0.
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Proof. The proof of this lemma is similar to that of Lemma 3.6. We omit
the details. �

Lemma 3.10. For any compact subsets K1,K2 ⊂ Rd and T0 ∈ (0, T1], we
have

lim
n→∞

sup
(t,x,y)∈[T0,T1]×K1×K2

|Jnk (t, x, y)− Jk(t, x, y)| = 0, k ≥ 1.

Proof. The proof of this lemma is similar to that of Lemma 3.7. We omit
the details. �

Theorem 3.11. ∇xqn(t, x, y) converges uniformly on any compact subset
of (0,∞)×Rd ×Rd.

Proof. Recall that q(t, x, y) = limn→∞ qn(t, x, y). By Theorem 3.8, the
above convergence is uniform on any compact subset of (0,∞) × Rd × Rd.
Using this fact, one can prove this theorem using an argument similar to that
used in the proof of Theorem 3.8 (without using induction). We omit the
details. �

Define

Sλnf(x) = Ex

∫ ∞
0

e−λtf(Xn
t )dt, λ > 0.

Using the estimates in (3.4) and (3.5), we can give simpler proofs of Theorem
4.2 and Theorem 4.3 in [4] without assuming that µ has compact support.

Corollary 3.12. For every λ > M8, the family of functions {Sλng : n ≥
1, ‖g‖L∞(Rd) = 1} is equicontinuous.

Proof. By (3.5) and the continuity of ∇xqn(t, x, y), we have

|∇xSλng(x)| =
∣∣∣∣∫

Rd

∫ ∞
0

e−λt∇xqn(t, x, y)g(y)dydt
∣∣∣∣

≤M7‖g‖L∞(Rd)

∫
Rd

∫ ∞
0

e(M8−λ)tt−
d+1

2 exp
(
−M9|x− y|2

2t

)
dydt

= M7

∫
Rd

∫ ∞
0

e(M8−λ)tt−
d+1

2 exp
(
−M9|y|2

2t

)
dydt

:= C(M7,M8,M9, λ). �

Corollary 3.13. For any positive constants β, ε and T , there exists δ > 0
independent of x and n such that

Px

(
sup

s,t≤T,|t−s|<δ
|Xn

t −Xn
s | > β

)
< ε.
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Proof. As in the proof of Theorem 4.3 in [4], by the Markov property and
Chebyshev’s inequality, it is enough to show that

sup
n≥1

∥∥∥∥∥Ex

∫ δ

0

d∑
i=1

|U in|(Xn
t )dt

∥∥∥∥∥
L∞(Rd)

<
εβ

4
.

In fact, by Lemma 3.1 and (3.4), the above expectation is bounded by

M0e
M5δ

d∑
i=1

∫
Rd

∫ δ

0

t−
d
2 e−

M6|x−y|
2

2t |U in|(y)dydt

≤M0M6e
M5δ(2π)−

d
2

d∑
i=1

N1
µ(

δ

M6
),

which is arbitrarily small as δ goes to zero. �

Now, we are ready to prove the main result of this section.

Theorem 3.14. For any µ ∈ Kd,1, the process X has a transition density
qµ(t, x, y) which is jointly continuous on (0,∞)×Rd ×Rd. Moreover, there
exist positive constants Mi, i = 1, . . . , 9, depending on µ only via the rate at
which max1≤i≤dM

1
µi(t) goes to zero, such that

(3.33) M1e
−M2tt−

d
2 e−

M3|x−y|
2

2t ≤ qµ(t, x, y) ≤M0e
M5tt−

d
2 e−

M6|x−y|
2

2t

and

(3.34) |∇xqµ(t, x, y)| ≤ M7e
M8tt−

d+1
2 e−

M9|x−y|
2

2t

for all (t, x, y) ∈ (0,∞)×Rd ×Rd.

Proof. Let Xn be the Brownian motion with drift Un. The transition den-
sity qn(t, x, y) of Xn is the heat kernel of 1

24+Un·∇. Using the estimates (3.4)
and (3.5), we have proved in Corollaries 3.12 and 3.13 above the conclusions
of Theorems 4.2 and 4.3 in [4] without any extra assumption on µ. So the con-
clusions of Theorems 4.2 and 4.3 in [4] are valid without any extra assumption
on µ, and the proof of Theorem 4.5 in [4] goes through under the assumption
λ > M8. Thus for every subsequence nk there is a sub-subsequence nkm such
that Xnkm converges weakly under Px for every x ∈ Rn in C([0,∞),Rd).
Theorem 3.8 tells us that all subsequence limits of the density Xn are the
same, which implies that Xn

t converges weakly to the Xt in C([0,∞),Rd). In
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particular, for every open set B in Rd,

Px(Xt ∈ B) ≤ lim inf
n→∞

Ex [1B(Xn
t )]

= lim inf
n→∞

∫
B

qn(t, x, y)dy

≤ M0e
M5tt−

d
2

∫
B

dy.

Therefore Px(Xt ∈ dy) is absolutely continuous with respect to Lebesgue
measure. So by Theorem 3.8,

qµ(t, x, y) := lim
n→∞

qn(t, x, y)

is the density for Xt. Since qµ(t, x, y) is the uniform limit of jointly continuous
functions on any compact subset of (0,∞)×Rd×Rd, it is jointly continuous
on (0,∞)×Rd ×Rd. Now (3.33) follows immediately from Theorem 3.8 and
(3.4). Using Theorems 3.8 and 3.11 we see that for any (t, y) ∈ (0,∞)×Rd,
the sequence of functions {qn(t, ·, y) : n ≥ 1} is a Cauchy sequence in the
Banach space C1

b (B(0, r)) for every r > 0. Thus ∇xqµ(t, x, y) exists for every
(t, x, y) ∈ (0,∞)×Rd ×Rd and it satisfies (3.34). �

Using Lemmas 3.1, 3.3 and 3.6, and Theorems 3.8, 3.11 and 3.14, we can
easily show the following result:

Theorem 3.15. For any µ ∈ Kd,1, the density qµ(t, x, y) of X satisfies
the equations

qµ(t, x, y) = p(t, x, y) +
∫ t

0

∫
Rd

qµ(s, x, z) · ∇zp(t− s, z, y)µ(dz)ds,

∇xqµ(t, x, y) = ∇xp(t, x, y) +
∫ t

0

∫
Rd

∇xqµ(s, x, z) · ∇zp(t− s, z, y)µ(dz)ds

for all (t, x, y) ∈ (0,∞)×Rd ×Rd.

Proof. We omit the details. �

4. Two-sided estimates for the density of XD

In this section we assume that D is a bounded C1,1 domain. We will use
ρ(x) to denote the distance between x and ∂D. Let pD(t, x, y) be the density
of a standard Brownian motion killed upon exiting D. It is obvious that

pD(t, x, y) ≤ p(t, x, y), (t, x, y) ∈ (0,∞)×D ×D.
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We let a∧ b := min{a, b}. It is known that for any T > 0, there exist positive
constants Ci, i = 1, . . . , 5, depending on T and D such that

(4.1) C1(1 ∧ ρ(x)√
t

)(1 ∧ ρ(y)√
t

)t−
d
2 e−

C2|x−y|
2

t ≤ pD(t, x, y)

≤ C3(1 ∧ ρ(x)√
t

)(1 ∧ ρ(y)√
t

)t−
d
2 e−

C4|x−y|
2

t

and

(4.2) |∇xpD(t, x, y)| ≤ C5t
− d+1

2 e−
C4|x−y|

2

t

for all (t, x, y) ∈ (0, T ] × D × D. (4.1) was proved in [10] and [29], while a
proof of (4.2) can be found in [14]. Differentiating with respect to x in the
equation

pD(t, x, y) =
∫
D

pD(
t

2
, x, z)pD(

t

2
, z, y)dz

and using the above estimates on pD(t, x, y) and ∇xpD(t, x, y) we get

|∇xpD(t, x, y)| ≤ 2d+1C3C5

∫
D

t−
d+1

2 e−
2C4|x−z|

2

t ρ(y)t−
d+1

2 e−
2C4|z−y|

2

t dz

≤ 2d+1C3C5ρ(y)
∫

Rd

t−
d+1

2 e−
2C4|x−z|

2

t t−
d+1

2 e−
2C4|z−y|

2

t dz

:= C6ρ(y)t−
d+2

2 e−
C4|x−y|

2

t .

Combining this with (4.2) we see that, for any T > 0, there exists a positive
constant C7 such that

(4.3) |∇xpD(t, x, y)| ≤ C7(1 ∧ ρ(y)√
t

)t−
d+1

2 e−
C4|x−y|

2

t

for all (t, x, y) ∈ (0, T ]×D×D. By the translation and scaling property of pD,
we see that, with properly scaled T , the constants in (4.1)–(4.3) are invariant
under translation and Brownian scaling.

Let

ψ(t, x, y) := (1 ∧ ρ(x)√
t

)(1 ∧ ρ(y)√
t

), (t, x, y) ∈ (0,∞)×D ×D.

The following result is an analog of Lemma 3.1 of [28].

Lemma 4.1. For any a > 0, there exist positive constants C1 and C2

depending only on a and d such that for any measure ν on Rd and any
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(t, x, y) ∈ (0,∞)×D ×D,

(4.4)
∫ t

0

∫
D

ψ(s, x, z)s−
d
2 e−

a|x−z|2
2s (1 ∧ ρ(y)√

t− s
)(t− s)−

d+1
2 e−

a|z−y|2
t−s ν(dz)ds

≤ C1ψ(t, x, y)t−
d
2 e−

a|x−y|2
2t sup

u∈Rd

∫ t

0

∫
Rd

s−
d+1

2 e−
a|u−z|2

4s ν(dz)ds

and

(4.5)∫ t

0

∫
D

(1 ∧ ρ(z)√
s

)s−
d+1

2 e−
a|x−z|2

2s (1 ∧ ρ(y)√
t− s

)(t− s)−
d+1

2 e−
a|z−y|2
t−s ν(dz)ds

≤ C2(1 ∧ ρ(y)√
t

)t−
d+1

2 e−
a|x−y|2

2t sup
u∈Rd

∫ t

0

∫
Rd

s−
d+1

2 e−
a|u−z|2

4s ν(dz)ds.

Proof. The proof of (4.4) (for ν(dz) = f(x)dz) is contained in the proof
of Theorem 2.1 (pages 389–391) in [22]. (4.5) can be proved similarly if one
notes that, for any a > 0, there exists c > 0 depending only on a and d such
that ∫ t

0

∫
Rd

s−
d+2

2 e−
a|x−z|2

2s (t− s)−
d+1

2 e−
a|z−y|2
t−s ν(dz)ds

≤ c t−
d+2

2 e−
a|x−y|2

2t

∫ t

0

∫
Rd

s−
d+1

2 e−
a|u−z|2

4s ν(dz)ds,

which can proved using the same argument in the proof of Lemma 3.1 in
[28]. �

The proof of next theorem is similar to the proof of Theorem 2.1 in [22].
However, since some observations on the proof will be made later in Sections
4 and 5, we give a sketch of the proof.

Theorem 4.2. Suppose that U(x) = (U1(x), . . . , Ud(x)) is such that each
component U i is smooth and bounded. Then the Brownian motion with drift
U killed upon exiting from D has a transition density qU,D(t, x, y). qU,D is
the fundamental solution of the problem{

∂
∂tu(t, x) = 1

2∆xu(t, x) + U(x) · ∇xu(t, x), (t, x) ∈ (0,∞)×D,
u(t, x) = 0, (t, x) ∈ (0,∞)× ∂D

and is also called the Dirichlet heat kernel for 1
24 + U · ∇ in D. For each

T > 0 there exist positive constants Mj , 11 ≤ j ≤ 15, depending on U only
via the rate at which max1≤i≤dM

1
Ui(r) goes to zero, such that

M11t
− d2ψ(t, x, y)e−

M12|x−y|
2

2t ≤ qU,D(t, x, y) ≤M13t
− d2ψ(t, x, y)e−

M14|x−y|
2

2t
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and

|∇xqU,D(t, x, y)| ≤ M15(1 ∧ ρ(y)√
t

)t−
d+1

2 e−
M14|x−y|

2

2t

for all (t, x, y) ∈ (0, T ]×D ×D.

Proof. The existence of the fundamental solution qU,D is well known. Re-
call that pD(t, x, y) is the density of a killed Brownian motion in D. It is easy
to check that the function defined by

q̃U,D(t, x, y) := pD(t, x, y) +
∫ t

0

∫
D

qU,D(s, x, z)U(z) · ∇zpD(t− s, z, y)dzds

is a fundamental solution of{
∂
∂tu(t, x) = 1

2∆xu(t, x) + U(x) · ∇xu(t, x), (t, x) ∈ (0,∞)×D,
u(t, x) = 0, (t, x) ∈ (0,∞)× ∂D.

Thus it follows from Theorem 6 of [2] that

(4.6) qU,D(t, x, y) = pD(t, x, y)

+
∫ t

0

∫
D

qU,D(s, x, z)U(z) · ∇zpD(t− s, z, y)dzds.

We define Ĩk(t, x, y) recursively for k ≥ 0 and (t, x, y) ∈ (0,∞)×D ×D:

Ĩ0(t, x, y) := pD(t, x, y),

Ĩk+1(t, x, y) :=
∫ t

0

∫
D

Ĩk(s, x, z)U(z) · ∇zpD(t− s, z, y)dzds.

Then iterating (4.6) gives

(4.7) qU,D(t, x, y) =
∞∑
k=0

Ĩk(t, x, y), (t, x, y) ∈ (0,∞)×D ×D.

By induction, and using Lemma 4.1, (4.1) and (4.3), one can show that there
exist positive constants C0, C1 and M14 depending only on the constants in
(4.1), (4.3) and (4.4) such that for k = 0, 1, · · · and (t, x, y) ∈ (0, 1]×D ×D

(4.8) |Ĩk(t, x, y)| ≤ C0 ψ(t, x, y) t−
d
2 e−

M14|x−y|
2

2t

(
C1

d∑
i=1

N1
Ui(

2t
M14

)

)k
(see [22] for details). Choose t0 < 1 small so that

(4.9) C1

d∑
i=1

N1
Ui(

2t0
M14

) <
1
2
.
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By (2.5), t0 depends on U only via the rate at which max1≤i≤dM
1
Ui(r) goes

to zero. (4.7) and (4.8) imply that for (t, x, y) ∈ (0, t0]×D ×D

(4.10) qU,D(t, x, y) ≤
∞∑
k=0

|Ĩk(t, x, y)| ≤ 2C0ψ(t, x, y)t−
d
2 e−

M14|x−y|
2

2t .

Now we are going to prove the lower estimate of qU,D(t, x, y). Combining
(4.7), (4.8) and (4.9) we have for every (t, x, y) ∈ (0, t0]×D ×D,

|qU,D(t, x, y)− pD(t, x, y)| ≤
∞∑
k=1

|Ĩk(t, x, y)|

≤ C0C1

d∑
i=1

N1
Ui(

2t0
M14

)ψ(t, x, y)t−
d
2 e−

M14|x−y|
2

2t .

Since there exist C2 and C3 ≤ 1 depending on t0 such that

pD(t, x, y) ≥ 2C3ψ(t, x, y)t−
d
2 e−

C2|x−y|
2

2t ,

we have for |x− y| ≤
√
t and (t, x, y) ∈ (0, t0]×D ×D,

(4.11) qU,D(t, x, y) ≥

(
2C3e

−2C2 − C0C1

d∑
i=1

N1
Ui(

2t0
M14

)

)
ψ(t, x, y)t−

d
2 .

Now we choose t1 ≤ t0 small so that

(4.12) C0C1

d∑
i=1

N1
Ui(

2t1
M14

) < C3e
−2C2 .

Note that t1 depends on U only via the rate at which max1≤i≤dM
1
Ui(r) goes

to zero. So for (t, x, y) ∈ (0, t1]×D ×D and |x− y| ≤
√
t, we have

(4.13) qU,D(t, x, y) ≥ C3e
−2C2ψ(t, x, y)t−

d
2 .

It is easy to check (see pages 420–421 of [29]) that there exists a positive
constant t2 depending only on the characteristics of the bounded C1,1 domain
D such that for any t ≤ t2 and x, y ∈ D with ρ(x) ≥

√
t, ρ(y) ≥

√
t, one can

find an arclength-parameterized curve l ⊂ D connecting x and y such that
the length |l| of l is equal to λ1|x − y| with λ1 ≤ λ0, a constant depending
only on the characteristics of the bounded C1,1 domain D. Moreover, l can
be chosen so that

ρ(l(s)) ≥ λ2

√
t, s ∈ [0, |l|]

for some positive constant λ2 depending only on the characteristics of the
bounded C1,1 domain D. Put t3 = t1 ∧ t2. Using this fact and (4.13), and
following the proof of Theorem 2.7 in [13], we can show that there exists
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a positive constant C4 depending only on d and the characteristics of the
bounded C1,1 domain D such that

(4.14) qU,D(t, x, y) ≥ 1
2
C3e

−2C2ψ(t, x, y)t−
d
2 e−

C4|x−y|
2

t

for all t ∈ (0, t3] and x, y ∈ D with ρ(x) ≥
√
t, ρ(y) ≥

√
t.

It is easy to check that there exists a positive constant t4 depending only on
the characteristics of the bounded C1,1 domain D such that for t ∈ (0, t4] and
arbitrary x, y ∈ D, one can find x0, y0 ∈ D be such that ρ(x0) ≥

√
t, ρ(y0) ≥√

t and |x− x0| ≤
√
t, |y− y0| ≤

√
t. Put t5 = t3 ∧ t4. Then, using (4.11) and

(4.14) one can repeat the last paragraph of the proof of Theorem 2.1 in [22]
to show that there exists a positive constant C5 depending only on d and the
characteristics of the bounded C1,1 domain D such that

(4.15) qU,D(t, x, y) ≥ C3C5e
−2C2ψ(t, x, y)t−

d
2 e−

2C4|x−y|
2

t

for all (t, x, y) ∈ (0, t5]×D ×D.
Now we are going to prove the upper estimate of ∇xqU,D(t, x, y). Using

(4.3), the continuity of ∇xqU,D(t, x, y) and (4.6) we can easily show that for
(0, 1]×D ×D,

(4.16) ∇xqU,D(t, x, y) = ∇xpD(t, x, y)+

+
∫ t

0

∫
D

∇xqU,D(s, x, z)U(z) · ∇zpD(t− s, z, y)dzds.

We define J̃k(t, x, y) for (t, x, y) ∈ (0, 1]×D ×D recursively by

J̃0(t, x, y) := ∇xpD(t, x, y),

J̃k+1(t, x, y) :=
∫ t

0

∫
D

J̃k(s, x, z)U(z) · ∇zpD(t− s, z, y)dzds.

Then iterating (4.16) gives

(4.17) ∇xqU,D(t, x, y) =
∞∑
k=0

J̃k(t, x, y), (t, x, y) ∈ (0, 1]×D ×D.

Using induction and Lemma 4.1, one can show that there exist constants C6

and C7 depending only on the constants in (4.1), (4.3) and (4.5) such that for
k = 0, 1, · · · and (t, x, y) ∈ (0, 1]×D ×D

(4.18) |J̃k(t, x, y)| ≤ C6 (1∧ ρ(y)√
t

) t−
d+1

2 e−
M14|x−y|

2

2t

(
C7

d∑
i=1

N1
Ui(

2t
M14

)

)k
.

Now we choose t6 ≤ t5 small so that

(4.19) C7

d∑
i=1

N1
Ui(

2t6
M14

) <
1
2
.
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By (2.5), the choice of the above constant t6 depends only on C1, M14 and U ,
with the dependence on U being only via the rate at which max1≤i≤dM

1
Ui(r)

goes to zero. Let

C8 := C6

∞∑
k=0

(
C7

d∑
i=1

N1
Ui(

2t6
M14

)

)k
.

Now (4.17) and (4.18) imply that for (t, x, y) ∈ (0, t6]×D ×D

(4.20)
∣∣∇xqU,D(t, x, y)

∣∣ ≤ ∞∑
k=1

|J̃k(t, x, y)| ≤ C8 (1∧ρ(y)√
t

) t−
d+1

2 e−
M14|x−y|

2

2t .

Now we have proved that the conclusion of this theorem is valid for t ≤ t6.
To prove this theorem for a general T > 0, we can apply the Chapman-
Kolmogorov equation and use the argument in the proof of Theorem 3.9 in
[25]. We omit the details. �

Recall that µi ∈ Kd,1 and µin(dx) = U in(x)dx =
∫
ϕn(x − y)µi(dy)dx. Let

qDn (t, x, y) be the Dirichlet heat kernel for 1
24 + Un · ∇ in D. Since Un is

smooth and bounded, Lemma 3.1 and the above theorem imply that for each
T > 0 there exist positive constants Mj , 11 ≤ j ≤ 15, depending on T and µ
only via the rate at which max1≤i≤dM

1
µi(r) goes to zero, such that

(4.21) M11t
− d2ψ(t, x, y)e−

M12|x−y|
2

2t ≤ qDn (t, x, y)

≤M13t
− d2ψ(t, x, y)e−

M14|x−y|
2

2t

and

(4.22) |∇xqDn (t, x, y)| ≤ M15(1 ∧ ρ(y)√
t

)t−
d+1

2 e−
M14|x−y|

2

2t

for all (t, x, y) ∈ (0, T ]×D ×D.
We define Înk (t, x, y), Îk(t, x, y), Ĵnk (t, x, y) and Ĵk(t, x, y) recursively for

k ≥ 0 and (t, x, y) ∈ (0,∞)×D ×D:

În0 (t, x, y) := pD(t, x, y),

Înk+1(t, x, y) :=
∫ t

0

∫
D

Înk (s, x, z)Un(z) · ∇zpD(t− s, z, y)dzds,

Î0(t, x, y) := pD(t, x, y),

Îk+1(t, x, y) :=
∫ t

0

∫
D

Îk(s, x, z)∇zpD(t− s, z, y) · µ(dz)ds,

Ĵn0 (t, x, y) := ∇xpD(t, x, y),

Ĵnk+1(t, x, y) :=
∫ t

0

∫
D

Ĵnk (s, x, z)Un(z) · ∇zpD(t− s, z, y)dzds,
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and

Ĵ0(t, x, y) := ∇xpD(t, x, y),

Ĵk+1(t, x, y) :=
∫ t

0

∫
D

Ĵk(s, x, z)∇zpD(t− s, z, y) · µ(dz)ds.

By (4.6) and (4.16),

qDn (t, x, y) =
∞∑
k=0

Înk (t, x, y)

and

∇xqDn (t, x, y) =
∞∑
k=0

Ĵnk (t, x, y), (t, x, y) ∈ (0,∞)×D ×D.

Recall the constant t6 in the proof of Theorem 4.2. Let

q̂(t, x, y) =
∞∑
k=0

Îk(t, x, y)

and

r̂(t, x, y) =
∞∑
k=0

Ĵk(t, x, y), (t, x, y) ∈ (0, t6]×D ×D.

Then, from (4.8), (4.18), (4.10) and (4.20), there exists a positive constant B
such that for k = 0, 1, · · · and (t, x, y) ∈ (0, t6]×D ×D

|Îk(t, x, y)|, |Înk (t, x, y)| ≤ B 2−k−1ψ(t, x, y) t−
d
2 e−

M14|x−y|
2

2t ,(4.23)

|Ĵk(t, x, y)|, |Ĵnk (t, x, y)| ≤ B 2−k−1ψ(t, x, y) t−
d+1

2 e−
M14|x−y|

2

2t ,(4.24)

and

qDn (t, x, y), q̂(t, x, y) ≤ B ψ(t, x, y) t−
d
2 e−

M14|x−y|
2

2t ,

|∇xqDn (t, x, y)|, |r̂(t, x, y)| ≤ B ψ(t, x, y) t−
d
2 e−

M14|x−y|
2

2t .

In the remainder of this section, we fix this constant B. We will show that
qDn (t, x, y) and ∇xqDn (t, x, y) converge uniformly on every compact subset of
(0,∞)×D ×D.

In the remainder of this section, t6 stands for the constant t6 defined in the
proof of Theorem 4.2.

Lemma 4.3. For any compact subsets K1 and K2 of D, and T0 ∈ (0, t6],
we have

lim
n→∞

sup
(t,x,y)∈[T0,t6]×K1×K2

|În1 (t, x, y)− Î1(t, x, y)| = 0,

lim
n→∞

sup
(t,x,y)∈[T0,t6]×K1×K2

|Ĵn1 (t, x, y)− Ĵ1(t, x, y)| = 0.
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Proof. We only prove the first identity; the proof of the second identity is
similar. Without loss of generality we may assume that T0 < 2 and we will
prove this lemma for the case K := K1 = K2 only. Given ε > 0, we choose
r1 > 0 as in (3.22) and then, using Proposition 2.2 and Lemma 3.1, choose
δ = δ(r1, d,M14) < min( 1

2T0, 1) such that for every n ≥ 1

(4.25)
d∑
i=1

sup
x∈Rd

∫ δ

0

∫
Rd

s−
d+1

2 exp
(
−M14|z − x|2

4s

)
(|U in|(z)dz + |µi|(dz))ds

<
T
d/2
0

8B2
(C−1

1 ∧ 2−
d+1

2 T
1/2
0 )ε,

where C1 is the constant from Lemma 3.4 with a = 1
4 . For this δ, we choose

a smooth domain D1 ⊂ D1 ⊂ D such that for every z ∈ D \D1

(4.26) ρ(z) < d1 :=
√
δ(1 ∧ εδd/2

4B2L2
),

where

L2 := sup
n≥1,u∈Rd

d∑
i=1

∫ t6

0

∫
Rd

s−
d+1

2 e−
M14|u−z|

2

2s (|U in|(z)dz + |µi|(dz))ds,

which is finite by Proposition 2.2 and Lemma 3.1. We split |În1 (t, x, y) −
Î1(t, x, y)| into four parts:

|În1 (t, x, y)− Î1(t, x, y)|

≤
d∑
i=1

∫ t

δ

∫
D\D1

pD(s, x, z)|∇zpD(t− s, z, y)|(|U in|(z)dz + |µi|(dz))ds

+
d∑
i=1

∫ δ

0

∫
D

pD(s, x, z)|∇zpD(t− s, z, y)|(|U in|(z)dz + |µi|(dz))ds

+
d∑
i=1

∫ t

t−δ

∫
D

pD(s, x, z)|∇zpD(t− s, z, y)|(|U in|(z)dz + |µi|(dz))ds

+
d∑
i=1

∣∣∣∣∣
∫ t−δ

δ

∫
D1

pD(s, x, z)∂zip
D(t− s, z, y)U in(z)dzds

−
∫ t−δ

δ

∫
D1

pD(s, x, z)∂zip
D(t− s, z, y)µi(dz))ds

∣∣∣∣∣
=: I(n, t, x, y) + II(n, t, x, y) + III(n, t, x, y) + IV(n, t, x, y).
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By (4.23) and (4.24), we have

sup
(x,y)∈K×K,

n≥1

I(n, t, x, y)

≤ B2 sup
y∈K,n≥1

d∑
i=1

∫ t

δ

∫
D\D1

(1 ∧ ρ(z)
s

)s−
d
2 (t− s)−

d+1
2 e−

M14|y−z|
2

2(t−s) ×

× (|U in|(z)dz + |µi|(dz))ds

≤ B2d1

δ
d+1

2

sup
y∈K,n≥1

d∑
i=1

∫ t

δ

∫
Rd

(t− s)−
d+1

2 e−
M14|y−z|

2

2(t−s) (|U in|(z)dz + |µi|(dz))ds

≤ B2d1

δ
d+1

2

sup
u∈Rd,n≥1

d∑
i=1

∫ t6

0

∫
Rd

s−
d+1

2 e−
M14|u−z|

2

2s (|U in|(z)dz + |µi|(dz))ds,

which is less than ε
4 by (4.26).

On the other hand, since δ < T0/2, by (4.23)–(4.24) we have

II(n, t, x, y)

≤ B2(
2
T0

)
d+1

2

d∑
i=1

sup
u∈Rd

∫ δ

0

∫
Rd

s−
d
2 e−

M14|u−z|
2

2s (|U in|(z)dz + |µi|(dz))ds.

Similarly,

III(n, t, x, y)

≤ B2(
2
T0

)
d
2

d∑
i=1

sup
u∈Rd

∫ δ

0

∫
Rd

s−
d+1

2 e−
M14|u−z|

2

2s (|U in|(z)dz + |µi|(dz))ds.

Therefore, by (4.25), we conclude

sup
(t,x,y)∈[T0,t6]×K×K,n≥1

(II(n, t, x, y) + III(n, t, x, y)) <
ε

4
.

Now we estimate IV. Let

fi(t, x, y, z) :=
∫ t−δ

δ

pD(s, x, z)∂zip
D(t− s, z, y)ds.

Note that by the Schauder type estimates for parabolic equations (see, for in-
stance, Theorem 3.26 in [12] and Theorems 4.8 and 4.27 in [18]), ∂wip

D(s, w, v)
is jointly continuous in (0, t6] ×D ×D. By the continuity of pD(s, x, z) and
∂zip

D(t − s, z, y) and (4.23)–(4.24), fi(t, x, y, z) is uniformly continuous on
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[T0, t6]×K ×K ×D1. Therefore, by Lemma 3.2,

lim
n→∞

sup
(t,x,y)∈[T0,t6]×K×K

IV(n, t, x, y)

= lim
n→∞

d∑
i=1

sup
(t,x,y)∈[T0,t6]×K×K

∣∣∣∣∫
D1

fi(t, x, y, z)(µin − µi)(dz)
∣∣∣∣ = 0.

�

Lemma 4.4. For any compact subsets K1 and K2 of D, and T0 ∈ (0, t6],
we have for all k ≥ 1,

lim
n→∞

sup
(t,x,y)∈[T0,t6]×K1×K2

|Înk (t, x, y)− Îk(t, x, y)| = 0,

lim
n→∞

sup
(t,x,y)∈[T0,t6]×K1×K2

|Ĵnk (t, x, y)− Ĵk(t, x, y)| = 0.

Proof. We only prove the first identity; the proof of the second is similar.
Without loss of generality we may assume that T0 < 2 and we will prove this
lemma for the case K := K1 = K2 only. The previous lemma implies that
the present lemma is valid for k = 1. We assume that the lemma is true
for k, which implies that Îk(s, x, z) is continuous. Given ε > 0, we choose
r1 > 0 as in (3.22) and then, using Proposition 2.2 and Lemma 3.1, choose
δ = δ(r1, d,M14) < min( 1

2T0, 1) as in (4.25). For this δ, we choose a smooth
domain D1 ⊂ D1 ⊂ D such that for every z ∈ D \D1, ρ(z) < d1 as in (4.26).
Let

I(n, t, x, y) :=
d∑
i=1

(∫ t

0

∫
D\D1

|Înk (t, x, y)||∇zpD(t− s, z, y)||U in|(z)dzds

+
∫ t

0

∫
D\D1

|Îk(t, x, y)||∇zpD(t− s, z, y)||µi|(dz)dzds

)
,

II(n, t, x, y) :=
d∑
i=1

(∫ δ

0

∫
D

|Înk (t, x, y)||∇zpD(t− s, z, y)||U in|(z)dzds

+
∫ δ

0

∫
D

Îk(t, x, y)|∇zpD(t− s, z, y)||µi|(dz)dzds

)
,

III(n, t, x, y) :=
d∑
i=1

(∫ t

t−δ

∫
D

|Înk (t, x, y)||∇zpD(t− s, z, y)||U in|(z)dzds

+
∫ t

t−δ

∫
D

Îk(s, x, z)|∇zpD(t− s, z, y)||µi|(dz)dzds
)
,
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IV(n, t, x, y) :=
d∑
i=1

∣∣∣∣∣
∫ t−δ

δ

∫
D1

Îk(s, x, z)∂zip
D(t− s, z, y)U in(z)dzds

−
∫ t−δ

δ

∫
D1

Îk(s, x, z)∂zip
D(t− s, z, y)µi(dz))ds

∣∣∣∣∣
and

V(n, t, x, y) :=
d∑
i=1

∫ t−δ

δ

∫
D1

|Înk (s, x, z)− Îk(s, x, z)|×

× |∂zipD(t− s, z, y)||U in(z)|dzds.

Then we have

|Înk+1(t, x, y)− Îk+1(t, x, y)|
≤ I(n, t, x, y) + II(n, t, x, y) + III(n, t, x, y) +

+ IV(n, t, x, y) + V(n, t, x, y).

By (4.23) and (4.24), we have

sup
(x,y)∈K×K,n≥1

I(n, t, x, y)

≤ 2−kB2 sup
y∈K,n≥1

d∑
i=1

∫ t

δ

∫
D\D1

(1 ∧ ρ(z)
s

)s−
d
2 (t− s)−

d+1
2 e−

M14|y−z|
2

2(t−s) ×

× (|U in|(z)dz + |µi|(dz))ds

≤ B2d1

δ
d+1

2

sup
y∈K,n≥1

d∑
i=1

∫ t

δ

∫
Rd

(t− s)−
d+1

2 e−
M14|y−z|

2

2(t−s) (|U in|(z)dz + |µi|(dz))ds

≤ B2d1

δ
d+1

2

sup
u∈Rd,n≥1

d∑
i=1

∫ t6

0

∫
Rd

s−
d+1

2 e−
M14|u−z|

2

2s (|U in|(z)dz + |µi|(dz))ds,

which is less than ε
4 by (4.26).

On the other hand, since δ < T0/2, by (4.23)–(4.24) we have

II(n, t, x, y)

≤ 2−kB2(
2
T0

)
d+1

2

d∑
i=1

sup
u∈Rd

∫ δ

0

∫
Rd

s−
d
2 e−

M14|u−z|
2

2s (|U in|(z)dz + |µi|(dz))ds.
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Similarly,

III(n, t, x, y)

≤ 2−kB2(
2
T0

)
d
2

d∑
i=1

sup
u∈Rd

∫ δ

0

∫
Rd

s−
d+1

2 e−
M14|u−z|

2

2s (|U in|(z)dz + |µi|(dz))ds.

Therefore, by (4.25), we conclude

sup
t∈[T0,t6],

(x,y)∈K×K,n≥1

(II(n, t, x, y) + III(n, t, x, y)) <
ε

4
.

Now we estimate IV. Let

fi(t, x, y, z) :=
∫ t−δ

δ

Îk(s, x, z)∂zip
D(t− s, z, y)ds.

By the continuity of Îk(s, x, z) and ∂zip
D(t − s, z, y) and (4.23)–(4.24), we

know that fi(t, x, y, z) is uniformly continuous on [T0, t6] × K × K × D1.
Therefore, by Lemma 3.2,

lim
n→∞

sup
t∈[T0,t6],

(x,y)∈K×K

IV(n, t, x, y)

= lim
n→∞

d∑
i=1

sup
t∈[T0,t6],

(x,y)∈K×K

∣∣∣∣∫
D1

fi(t, x, y, z)(µin − µi)(dz)
∣∣∣∣ = 0.

Finally, we estimate V. From (4.24), we easily see that

V(n, t, x, y) ≤ Bt6(
2
T0

)
d+1

2 sup
t∈[T0,t6],

(x,z)∈K×D1

|Înk (s, x, z)− Îk(s, x, z)|×

× sup
n≥1

d∑
i=1

∫ t

0

∫
Rd

(t− s)−
d+1

2 e−
M14|z−y|

2

2(t−s) |U in(z)|dzds.

By Proposition 2.2 and Lemma 3.1,

sup
n≥1,y∈Rd

d∑
i=1

∫ t

0

∫
Rd

(t− s)−
d+1

2 e−
M14|z−y|

2

2(t−s) |U in(z)|dzds

is bounded. Therefore

lim
n→∞

sup
(t,x,y)∈[T0,t6]×K×K

V(n, t, x, y) = 0

by the assumption on Înk . �

The proof of the next theorem is similar to the proofs of Theorems 3.8 and
3.11.
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Theorem 4.5. qDn (t, x, y) and ∇xqDn (t, x, y) converge uniformly on any
compact subset of (0,∞)×D ×D.

Proof. We will prove the uniform convergence of qDn (t, x, y) only. By (4.23),
for every T0 ∈ (0, t6) and any compact subsets K1,K2 ⊂ D

sup
(t,x,y)∈[T0,t6]×K1×K2

∞∑
k=0

|Înk (t, x, y)| <∞.

Therefore Lemma 4.4 and a standard ε-δ argument give the uniform conver-
gence of qDn (t, x, y) on any compact subsets of (0, t6]×D ×D.

Let Dr := {z ∈ D : ρ(z) < r}. The uniform upper bounds of qDn and qD

imply that for r < (t6/2)1/2,

sup
n≥1,t∈(t6,

3
2 t6],

(x,y)∈K1×K2

∫
Dr

(
qDn (

t6
2
, x, z)qDn (t− t6

2
, z, y)+

+ qD(
t6
2
, x, z)qD(t− t6

2
, z, y)

)
dz

≤ c1(t6)−d
∫
Dr

(1 ∧
√

2ρ(z)√
t6

)dz ≤
√

2c1t
−d− 1

2
6 |D|r

for some positive constants c1 and c2. For any given ε > 0, we can choose
0 < r < (t6/2)1/2 small such that

√
2c1t

−d− 1
2

6 |D|r < ε
2 . By the Chapman-

Kolmogorov equation, we have for (t, x, y) ∈ (t6, 3
2 t6]×K1 ×K2,∣∣∣∣qDn (t, x, y)−

∫
D

qD(
t6
2
, x, z)qD(t− t6

2
, z, y)dz

∣∣∣∣
=
∣∣∣∣∫
D

qDn (
t6
2
, x, z)qDn (t− t6

2
, z, y)− qD(

t6
2
, x, z)qD(t− t6

2
, z, y)dz

∣∣∣∣
< c3|D| sup

t∈[ 1
2 t6,t6],

(x,y)∈K1×K2,ρ(z)≥r

∣∣∣∣qDn (
t6
2
, x, z)qDn (t− t6

2
, z, y)

−qD(
t6
2
, x, z)qD(t− t6

2
, z, y)

∣∣∣∣+
ε

2

for some positive constant c3. The first term in the last line above goes zero
as n → ∞ by the uniform convergence of qDn (t, x, y) on compact subsets of
(0, t6]×D ×D. The general case can be proved by induction. �

Recall that X is the Brownian motion with drift µ. Define τD := inf{t > 0 :
Xt /∈ D}. Let XD

t (ω) = Xt(ω) if t < τD(ω) and set XD
t (ω) = ∂ if t ≥ τD(ω),

where ∂ is a cemetery point added to D. The process XD is called a killed
Brownian motion with drift µ in D.

The following is the main result of this section.
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Theorem 4.6. For any µ ∈ Kd,1, XD has transition density qD(t, x, y),
which is jointly continuous on (0,∞) × D × D. For each T > 0 there exist
positive constants Mj , 11 ≤ j ≤ 15, depending on µ only via the rate at which
max1≤i≤dM

1
µi(r) goes to zero, such that

(4.27) M11t
− d2ψ(t, x, y)e−

M12|x−y|
2

2t ≤ qD(t, x, y)

≤M13t
− d2ψ(t, x, y)e−

M14|x−y|
2

2t

and

(4.28) |∇xqD(t, x, y)| ≤ M15(1 ∧ ρ(y)√
t

)t−
d+1

2 e−
M14|x−y|

2

2t

for all (t, x, y) ∈ (0, T )×D ×D.

Proof. Recall that Xn is the Brownian motion with drift Un. Similar to
XD, we use Xn,D to denote the process obtained by killing Xn upon exiting
from D. The density function for Xn,D

t is the heat kernel qDn (t, x, y) for
1
2∆ + Un · ∇ in D. In the proof of Theorem 3.14, we have shown that Xn

t

converges weakly to Xt in C([0,∞),Rd). Since Xn
t has continuous sample

paths and D is a bounded C1,1 domain, for every t > 0 and x ∈ Rd,

(4.29) Px[τD = t] ≤
∫
∂D

q(t, x, y)dy = 0

Since {τD > t} is open in C([0,∞),Rd), using (4.29), we get that for any
bounded continuous function f in D,

lim
n→∞

Ex[f(Xn
t )1{t<τD}] = Ex[f(Xt)1{t<τD}], ∀x ∈ D, t > 0.

So by Theorem 4.5,

qD(t, x, y) := lim
n→∞

qDn (t, x, y)

is the density for XD
t . Since qD(t, x, y) is the uniform limit of jointly con-

tinuous functions on any compact subset of (0,∞) × D × D, it is jointly
continuous on (0,∞)×D×D. Now (4.27) follows immediately from Theorem
4.5 and (4.21). Using Theorem 4.5 we see that for any (t, y) ∈ (0,∞) × D
and any relatively compact open subset D0 of D, the sequence of functions
{qn(t, ·, y) : n ≥ 1} is a Cauchy sequence in the Banach space C1(D0),
thus ∇xqD(t, x, y) exists for every (t, x, y) ∈ (0,∞) × D × D and it satis-
fies (4.28). �

Similar to Theorem 3.15, we have the following result.
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Theorem 4.7. For any µ ∈ Kd,1, the density qD(t, x, y) of XD satisfies
the equations

qD(t, x, y) = pD(t, x, y) +
∫ t

0

∫
D

qD(s, x, z) · ∇zpD(t− s, z, y)µ(dz)ds,

∇xqD(t, x, y) = ∇xpD(t, x, y)+

+
∫ t

0

∫
D

∇xqD(s, x, z) · ∇zpD(t− s, z, y)µ(dz)ds

for all (t, x, y) ∈ (0,∞)×D ×D.

Proof. We omit the details. �

5. Parabolic Harnack principle for X

In this section we shall prove the small time parabolic Harnack principle
for X. With the density estimates of the last two sections in hand, one can
follow the ideas in [13] (see also [27]) to prove the parabolic Harnack principle.
For this reason, the proofs in this section will be omitted.

Throughout this section we assume that D is a bounded C1,1 domain in
Rd. We start with the following observation on the proof of Theorem 4.2:
We have chosen t0 ≥ t1 ≥ t6 small enough so that (4.9), (4.12) and (4.19) are
true, respectively. The estimates of the density of qD(t, x, y) for t ≤ t6 we get
depend only on t6, the estimates of pD(t, x, y) and the characteristics (r0,Λ)
of D. So the constants Mj , 11 ≤ j ≤ 15, are invariant under translation and
Brownian scaling:

For any z ∈ Rd, 0 < r <∞ and bounded C1,1 domain D, let

Dz
r := z + rD,

ψDzr (t, x, y) := (1 ∧
ρDzr (x)
√
t

)(1 ∧
ρDzr (y)
√
t

), (t, x, y) ∈ (0,∞)×Dz
r ×Dz

r ,

where ρDzr (x) denotes the distance between x and ∂Dz
r . Then, for any T > 0,

there exist positive constants t0 and Mj , 11 ≤ j ≤ 15, independent of z and r
and depending on µ only via the rate at which max1≤i≤dM

1
µi(r) goes to zero,

such that

(5.1) M11t
− d2ψDzr (t, x, y)e−

M12|x−y|
2

2t ≤ qD
z
r (t, x, y)

≤M13t
− d2ψDzr (t, x, y)e−

M14|x−y|
2

2t

and

(5.2) |∇xqD
z
r (t, x, y)| ≤ M15(1 ∧

ρDzr (y)
√
t

)t−
d+1

2 e−
M14|x−y|

2

2t

for all (t, x, y) ∈ (0, t0 ∧ (r2T )] × Dz
r × Dz

r . We will sometimes suppress the
indices from Dz

r when it is clear from the context.
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The next lemma is an easy consequence of (5.1).

Lemma 5.1. There exists a constant t0 = t0(d, µ) depending on µ only via
the rate at which max1≤i≤dM

1
µi(r) goes to zero such that for each 0 < δ, r < 1,

there exists ε = ε(d, δ, r) > 0 such that

(5.3) qB(x0,R)(t, x, y) ≥ ε

|B(x0, δR)|
for all x, y ∈ B(x0, δR), and (1− r)R2 ≤ t ≤ R2 ≤ t0.

Proof. We omit the details. �

We adopt the notation from [6] and define a space-time process Zs :=
(Ts, Xs), where Ts = T0 + s. The law of the space-time process Zs starting
from (t, x) will be denoted by Pt,x.

Definition 5.2. For any (t, x) ∈ [0,∞) ×Rd, r > 0 and bounded open
subset D of Rd, we say that a nonnegative continuous function u defined on
[t, t + r] × D is parabolic in [t, t + r] × D if for any [s1, s2] ⊂ [t, t + r) and
B(y, δ) ⊂ B(y, δ) ⊂ D we have

(5.4) u(s, z) = E(s,z)

[
u(Zτ[s1,s2)×B(y,r))

]
, (s, z) ∈ [s1, s2)×B(y, δ),

where τ[s1,s2)×B(y,δ) = inf{s > 0 : Zs /∈ [s1, s2)×B(y, δ)}.

Lemma 5.3. For each T > 0 and y ∈ D, (t, x) → qD(T − t, x, y) is
parabolic in [0, T )×D.

Proof. See the proof of Lemma 4.5 in [6]. �

Corollary 5.4. For any T ∈ (0,∞) and any nonnegative bounded func-
tion f on D, the function

u(t, x) :=
∫
D

qD(T − t, x, y)f(y)dy

is parabolic on [0, T )×D.

Proof. The continuity of u follows from the continuity of qD. (5.4) follows
from Lemma 5.3 and Fubini’s theorem. �

For s ≥ 0, x ∈ Rd and R > 0, let

Osc(u; s, x,R) = sup {|u(t1, x1)− u(t2, x2)| :
s < t1, t2 < s+R2, x1, x2 ∈ B(x,R)

}
.

We assume that t0 is the constant from Lemma 5.1 in the remainder of this
section.
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Lemma 5.5. For any 0 < δ < 1, there exist 0 < ρ < 1 such that for all
s ∈ [0,∞), x0 ∈ Rd, 0 < R ≤

√
t0 and every function u which is parabolic in

[s, s+R2)×B(x0, R) and continuous in [s, s+R2]×B(x0, R)

Osc(u; s, x0, δR) ≤ ρ Osc(u; s, x0, R).

Proof. The proof is similar to that of the corresponding result in [13] and
we omit the details. �

The above lemma implies:

Theorem 5.6. All parabolic functions are Hölder continuous. More pre-
cisely, for any 0 < δ < 1, there exist C > 0 and β ∈ (0, 1) such that for all
s ∈ [0,∞), x0 ∈ Rd, 0 < R ≤

√
t0 and every function u which is parabolic in

[s, s+R2)×B(x0, R) and continuous in [s, s+R2]×B(x0, R) we have

|u(t1, x1)− u(t2, x2)| ≤ C‖u‖
L∞([s,s+R2]×B(x0,R))

(
|t1 − t2|2 + |x1 − x2|

R

)β
for any (t1, x1), (t2, x2) ∈ [s, s+ δR2]×B(x0, δR).

Proof. See Theorem 5.3 in [13]. �

Using Lemma 5.1 and 5.5, the proof of the next theorem is almost identical
to Theorem 5.4 in [13]. So we omit the proof.

Theorem 5.7. For any 0 < α < β < 1 and 0 < δ < 1, there exists M > 0
such that for all x0 ∈ Rd, s ∈ [0,∞), 0 < R ≤

√
t0 and every function u which

is parabolic in [s, s+R2)×B(x0, R) and continuous in [s, s+R2]×B(x0, R),
we have

u(t, y) ≤Mu(s, x0), (t, y) ∈ [s+ αR2, s+ βR2]×B(x0, δR).

Now the parabolic Harnack inequality is an easy corollary of the above
theorem.

Theorem 5.8 (Parabolic Harnack principle). For any 0 < α1 < β1 <
α2 < β2 < 1 and 0 < δ < 1, there exists M > 0 such that for all x0 ∈ Rd,
0 < R ≤

√
t0 and every function u which is parabolic in [0, R2) × B(x0, R)

and continuous in [0, R2]×B(x0, R), we have

sup
B2

u ≤M inf
B1
u,

where Bi = {(t, y) ∈ [αiR2, βiR
2]×B(x0, δR)}.
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Definition 5.9. Suppose D is an open subset of Rd. A nonnegative
continuous function f on D is said to be harmonic in D with respect to X if
for every relatively compact open subset B of D,

(5.5) f(x) = Ex[f(XτB )], x ∈ D,

where τB = inf{s > 0 : Xs /∈ B}.

The parabolic Harnack inequality implies the Harnack inequality.

Corollary 5.10 (Harnack principle). There exist r1 = r1(d, µ) > 0 and
N = N(d, µ) > 0 depending on µ only via the rate at which max1≤i≤dM

1
µi(r)

goes to zero such that for every harmonic function f in B(x0, R) with R ∈
(0, r1), we have

sup
y∈B(x0,R/4)

f(y) ≤ N inf
y∈B(x0,R/4)

f(y).

6. Green function estimates and boundary Harnack principle

The main objective of this section is to obtain two-sided estimates for
the Green function GD of XD and prove the boundary Harnack principle
for nonnegative harmonic functions of X. Throughout this section we also
assume that D is a bounded C1,1 domain in Rd. We start with the following
simple result.

Lemma 6.1. There exist positive constants C1 and C2 such that

qD(t, x, y) ≤ C1e
−C2t, (t, x, y) ∈ (1,∞)×D ×D.

Proof. Let l <∞ be the diameter of D. Recall that τD := inf{t > 0 : Xt /∈
D}. By (3.33), for every x ∈ D we have

Px(τD ≤ 1) ≥ Px(X1 ∈ Rd \D) =
∫

Rd\D
qµ(1, x, y)dy

≥M1e
−M2

∫
Rd\D

e−
M3
2 |x−y|

2
dy

≥M1e
−M2

∫
{ |z| ≥ l }

e−
M3
2 |z|

2
dz > 0.

Thus

sup
x∈D

∫
D

qD(1, x, y)dy = sup
x∈D

Px(τD > 1) < 1.

The Markov property implies that there exist positive constants c1 and c2
such that ∫

D

qD(t, x, y)dy ≤ c1e
−c2t, (t, x) ∈ (0,∞)×D.
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It follows from Theorem 4.6 that there exists c3 > 0 such that

qD(1, x, y) ≤ c3, (x, y) ∈ D ×D.

Thus for any (t, x, y) ∈ (1,∞)×D ×D, we have

qD(t, x, y) =
∫
D

qD(t− 1, x, z)qD(1, z, y)dz

≤ c3
∫
D

qD(t− 1, x, z)dz ≤ c1c3e−c2(t−1). �

Combining the above result with (4.27) we know that there exist positive
constants M16 and M17 such that for any (t, x, y) ∈ (0,∞)×D ×D,

(6.1) qD(t, x, y) ≤ M17t
− d2 exp

(
−M16|x− y|2

2t

)
.

Therefore the Green function

GD(x, y) :=
∫ ∞

0

qD(t, x, y)dt

is finite for x 6= y.
The following theorem is one of the main results of this section. It should

be compared with Theorem 5.1 of [16], where the same conclusion is obtained
under the assumptions that each µi is given by µi(dx) = U i(x)dx with U i ∈
Kd,1 and that

sup
x∈D

∫
D

(
1 ∧ ρ(y)
|x− y|

)
|U i(y)|
|x− y|d−1

dy

is sufficiently small for each i = 1, . . . , d. Recall that ρ(x) is the distance
between x and ∂D.

Theorem 6.2. Let D be a bounded C1,1 domain in Rd. There exist con-
stants M18 = M18(D,µ) > 0 and M19 = M19(D,µ) > 0 depending on µ only
via the rate at which max1≤i≤d goes to zero such that for x, y ∈ D,

(6.2) M18 (1 ∧ ρ(x)ρ(y)
|x− y|2

)
1

|x− y|d−2
≤ GD(x, y)

≤ M19(1 ∧ ρ(x)ρ(y)
|x− y|2

)
1

|x− y|d−2
.
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Proof. As ρ(x) ≤ ρ(y) + |x− y| for every x, y ∈ D, it is easy to see that

(6.3) (1∧ ρ(x)
|x− y|

) (1∧ ρ(y)
|x− y|

) ≤ 1∧ ρ(x)ρ(y)
|x− y|2

≤ 2 (1∧ ρ(x)
|x− y|

) (1∧ ρ(y)
|x− y|

).

Put T := diam(D)2, where diam(D) is the diameter of D. First we show
the lower bound of GD. By the change of variable u = |x−y|2

t , we have

(6.4)
∫ T

0

(1 ∧ ρ(x)√
t

)(1 ∧ ρ(y)√
t

)t−
d
2 e−

M12|x−y|
2

2t dt

=
1

|x− y|d−2

∫ ∞
|x−y|2
T

u
d−4

2 (1 ∧
√
uρ(x)
|x− y|

)(1 ∧
√
uρ(y)
|x− y|

)e−
1
2M12udu.

Then by (4.27) and the above identity,

G(x, y) ≥
∫ T

0

qD(t, x, y)dt

≥M11

∫ T

0

(1 ∧ ρ(x)√
t

)(1 ∧ ρ(y)√
t

)t−
d
2 e−

M12|x−y|
2

2t dt

≥ M11

|x− y|d−2

∫ ∞
1

u
d−4

2 (1 ∧
√
uρ(x)
|x− y|

)(1 ∧
√
uρ(y)
|x− y|

)e−
1
2M12udu

≥ C(1 ∧ ρ(x)
|x− y|

)(1 ∧ ρ(y)
|x− y|

)
1

|x− y|d−2
,

where C = M11

∫∞
1
u
d−4

2 e−
1
2M12udu.

Now we show the upper bound of GD. Using (4.27) and (6.4), we have

∫ T

0

qD(t, x, y)dt(6.5)

≤M13

∫ T

0

(1 ∧ ρ(x)√
t

)(1 ∧ ρ(y)√
t

)t−
d
2 e−

M14|x−y|
2

2t dt

=
M13

|x− y|d−2

∫ ∞
|x−y|2
T

u
d−4

2 (1 ∧
√
uρ(x)
|x− y|

)(1 ∧
√
uρ(y)
|x− y|

)e−
1
2M14udu

≤ M13

|x− y|d−2
(1 ∧ ρ(x)

|x− y|
)(1 ∧ ρ(y)

|x− y|
)
∫ ∞

0

u
d−4

2 (u ∨ 1)e−
1
2M14udu.

On the other hand, by the Chapman-Kolmogorov equation, (4.27) and (6.1),
if t > T we have
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qD(t, x, y) =
∫
D

∫
D

qD(
T

2
, x, z)qD(t− T, z, w)qD(

T

2
, w, y)dzdw

≤ 2M2
13M17(1 ∧ ρ(x)√

T
)(1 ∧ ρ(y)√

T
)
∫
D

∫
D

(
T

2
)−d(t− T )−

d
2×

× e−
M14|x−z|

2

T e−
M16|z−w|

2

2(t−T ) e−
M14|w−y|

2

T dzdw

≤ 2M2
13M17(1 ∧ ρ(x)

|x− y|
)(1 ∧ ρ(y)

|x− y|
)
∫

Rd

∫
Rd

(
T

2
)−d(t− T )−

d
2×

× e−
M14|x−z|

2

T e−
M16|z−w|

2

2(t−T ) e−
M14|w−y|

2

T dzdw

≤ C0M
2
13M17(1 ∧ ρ(x)

|x− y|
)(1 ∧ ρ(y)

|x− y|
)t−

d
2 e−

C1|x−y|
2

2t ,

where C0 = C0(d) and C1 = C1(M14,M16). Since∫ ∞
T

t−
d
2 e−

C1|x−y|
2

2t dt =
1

|x− y|d−2

∫ |x−y|2
T

0

u
d−4

2 e−
1
2C1udu,

we have

(6.6)
∫ ∞
T

qD(t, x, y)dt ≤ C0M
2
13M17

1
|x− y|d−2

×

×
(

1 ∧ ρ(x)
|x− y|

)(
1 ∧ ρ(y)
|x− y|

)∫ ∞
0

u
d−4

2 e−
1
2C1udu.

Combining (6.3), (6.5) and (6.6), we have proved the upper estimate for Green
function. �

The next corollary is an easy consequences of Theorem 6.2.

Corollary 6.3 (3G Theorem). For any bounded C1,1 domain D in Rd,
there exists a constant M20 > 0 depending on µ only via the rate at which
max1≤i≤d goes to zero such that for x, y ∈ D,

(6.7)
GD(x, y)GD(y, z)

GD(x, z)
≤ M20

|x− z|d−2

|x− y|d−2|y − z|d−2

and
GD(x, y)GD(y, z)

GD(x, z)
≤ M20

(
ρ(y)
ρ(x)

GD(x, y) +
ρ(y)
ρ(z)

GD(y, z)
)
.

Proof. The proof of this result is elementary. We omit the details. For the
proof of the last inequality, one can see the proof of Proposition 4.2 in [7]. �

In the remainder of this section, we will prove a boundary Harnack principle
for nonnegative harmonic functions in D with respect to X.

The following proposition is also an easy consequence of the Green function
estimate.
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Proposition 6.4. Suppose D be a bounded C1,1 domain in Rd, V is
an open set of Rn and K is a compact subset of V . Then there exists a
constant c = c(D,V,K, µ) > 1 depending on µ only via the rate at which
max1≤i≤dM

1
µi(t) goes to zero such that for every x1, x2 ∈ K ∩D and y1, y2 ∈

D \ V ,

(6.8) c−1 GD(x1, y1)
GD(x2, y1)

≤ GD(x1, y2)
GD(x2, y2)

≤ c
GD(x1, y1)
GD(x2, y1)

.

Proof. We skip the details. �

If D is a bounded C1,1 domain, then it is easy to check that there exists
R > 0 such that for any x ∈ ∂D and r ∈ (0, R), B(x, r) ∩D is connected.

Theorem 6.5 (Boundary Harnack principle). Suppose D be a bounded
C1,1 domain in Rd and R is the above constant. Then for any r ∈ (0, R)
and z ∈ ∂D, there exists a constant c > 1 depending on µ only via the rate
at which max1≤i≤d goes to zero such that for any nonnegative functions u, v
which are harmonic in D ∩B(z, r) with respect to X and vanish continuously
on ∂D ∩B(z, r), we have

u(x)
v(x)

≤ c
u(y)
v(y)

for any x, y ∈ D ∩B(z, r/2).

Proof. One can find bounded C1,1 domains D1 ⊂ D2, which are relatively
compact in D ∩ B(z, r) such that D ∩ B(z, r/2) ⊂ D1 ⊂ D2 ⊂ D ∩ B(z, r).
Define TD1 := inf{t ≥ 0 : Xt ∈ D1}. Let

f(x) := Ex

[
u(XD2

TD1
)
]
, x ∈ D2.

Obviously f = u in D1. f is an excessive function of XD2 which is harmonic in
D1 and vanishes continuously on ∂D2, so by the Riesz decomposition theorem
in [9] we know that there exists a Radon measure ν supported on D2 \ D1

such that

f(x) =
∫
D2\D1

GD2(x, y)ν(dy).

Fix a z0 ∈ D2 \D1. By (6.8), for every x, y ∈ D∩B(z, r/2) and w ∈ D2 \D1,

c−1GD2(x,w) ≤ GD2(x, z0)
GD2(y, z0)

GD2(y, w) ≤ cGD2(x,w).

Therefore, integrating the above expression over w ∈ D2 \D1 with respect to
ν gives

c−1 u(x) ≤ GD2(x, z0)
GD2(y, z0)

u(y) ≤ c u(x). �
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7. Martin kernel and Martin boundary

Throughout this section we will assume that D is a bounded C1,1 domain
in Rd. We will show in this section that the Martin boundary and the minimal
Martin boundary of XD can all be identified with the Euclidean boundary
∂D of D. There are at least two existing arguments in the literature to
identify the Martin boundary of killed diffusion processes corresponding to
differential operators: the argument in [1] uses a harmonic space approach
and the argument in [21] uses some deep results from PDE. Brownian motions
with singular drift do not fit into the framework of harmonic spaces in general,
so the argument in [1] does not apply to the present case. Some of the deep
results from PDE used in [21] are not available for Brownian motions with
singular drift, so the argument in [21] does not apply to the present case
either.

Fix x0 ∈ D and define

MD(x, y) :=

{
GD(x,y)
GD(x0,y) , if x ∈ D and y ∈ D \ {x0} ,

1{x0}(x), if y = x0.

Note that for each y ∈ D\{x0} and ε > 0, MD( · , y) is a harmonic function
with respect to X in D \B(y, ε) and

MD(x, y) = Ex

[
MD(XτD\B(y,ε) , y)

]
, x ∈ D \B(y, ε).

Using Theorem 6.2, we can easily see that

(7.1) MD(x, y) ≤ c
ρ(x)(ρ(y) ∨ 1)
|x− y|d

, (x, y) ∈ D ×D.

Combining Theorem 6.2 with the results of [9] we know that the Riesz
decomposition theorem holds for the excessive functions of XD. Using the
Riesz decomposition theorem, the Harnack inequality (5.10) and the Hölder
continuity of harmonic functions (Theorem 5.6), one can follow the arguments
in [19] (see also Section 2.7 of [3] or [26]) to show that there is a unique
compactification DM of D up to homeomorphism satisfying the following
properties:

(M1) D is open and dense in DM and its relative topology coincides with
its original topology;

(M2) MD(x, · ) can be extended to DM uniquely in such a way that the
function MD(x, ξ) is jointly continuous on D × (DM \ {x0}), and for
each ξ ∈ DM \ D, MD(x, y) converges to MD(x, ξ) as y → ξ, and
MD(·, ξ1) 6= MD(·, ξ2) if ξ1 6= ξ2.

The boundary ∂MD := DM \D is called the Martin boundary of XD. The
bound (7.1) and the harmonicity of MD( · , y) in D\{y} imply the harmonicity
of MD( · , ξ) in D for every ξ ∈ ∂MD.
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Proposition 7.1. For every z ∈ ∂MD, x 7→ M(x, z) is harmonic with
respect to X in D.

Proof. Fix z ∈ ∂MD and a relatively compact open set U in D. Choose a
sequence {yn}n≥1 in D \ U converging to z in D ∪ ∂MD so that

MD(x, z) = lim
n→∞

MD(x, yn).

Since MD( · , yn) is harmonic in a neighborhood of U for large n, we have

Ex

[
MD(XD

τU , yn)
]

= MD(x, yn), x ∈ U.
By (7.1) and the bounded convergence theorem,

lim
n→∞

Ex

[
MD(XD

τU , yn)
]

= Ex

[
MD(XD

τU , z)
]

= MD(x, z), x ∈ U. �

Recall that a positive harmonic function u with respect to X in D is said
to be minimal if, whenever v is positive harmonic with respect to X in D and
v ≤ u, then v is a constant multiple of u. The minimal Martin boundary of
XD is defined as

∂mD = {ξ ∈ ∂MD : M(·, ξ) is minimal harmonic with respect to X in D}.
Using Theorem 6.2 and Theorem 5.6 we can show that, for any compact

subset K of D, the family {MD(·, y) : y ∈ ∂MD} is uniformly bounded and
equicontinuous on K. One can then apply the Ascoli-Arzelà theorem to prove
that, for every excessive function f of XD, there are a unique Radon measure
ν1 on D and a unique finite measure ν2 on ∂mD such that

(7.2) f(x) =
∫
D

GD(x, y)ν1(dy) +
∫
∂mD

MD(x, z)ν2(dz),

and f is harmonic in D with respect to X if and only if ν1 = 0 (see Section 2.7
of [3]). When f is harmonic in D, the measure ν2 above is called the Martin
measure of f .

Now we will use the Green function estimates of Section 6 to show that
there exists a homeomorphism between ∂MD ∪D and D which is an identity
map in D. The next lemma is well-known.

Lemma 7.2 (Maximum principle). Suppose that h is a nonnegative func-
tion. If h is a harmonic function in D with respect to X and continuous on
D, then supx∈D h(x) = supx∈∂D h(x).

Proof. Take an increasing sequence of smooth domains {Dm}m≥1 such that
Dm ⊂ Dm+1 and

⋃∞
m=1Dm = D. By the bounded convergence theorem, we

have

h(x) = lim
m→∞

Ex

[
h(XτDm

)
]

= Ex

[
h
(

lim
t↑τD

Xt

)]
.

Therefore, supx∈D h(x) = supx∈∂D h(x). �
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Lemma 7.3. There exists a continuous map ι from ∂MD∪D onto D which
is an identity map in D. Moreover,

(7.3) MD(x,w) ≤ c
ρ(x)

|x− ι(w)|d
, w ∈ ∂MD.

Proof. Note that D ∪ ∂MD is a compact metric space. We will show that
if a sequence {yn}n≥1 in D that converges to a point w in ∂MD, it converges
in D. Assume that a subsequence {ynk}k≥1 of {yn}n≥1 converges to y0 ∈ D.
Let U be a neighborhood of y0 and x ∈ D \ U . By (7.1), we have

MD(x,w) = lim
k→∞

MD(x, ynk) ≤ c lim inf
k→∞

ρ(x)
|x− ynk |d

.

So for every y ∈ ∂D\U , limx→yMD(x,w) = 0. If there exists a subsequence of
{yn}n≥1 that converges to a point in D different from y0, the above argument
shows that the Martin kernel would vanish continuously near ∂D. But this
implies that MD( · , w) ≡ 0 by the maximum principle (Lemma 7.2), which is
impossible. Therefore y0 ∈ D must be unique. Moreover, y0 must be in ∂D,
for otherwise we could choose U in D and also argue that the Martin kernel
would vanish continuously near ∂D.

Since {yn}n≥1 is bounded in D, the above argument shows that every
subsequence of {yn}n≥1 has a further subsequence converging to a unique
point in D. So the map ι defined by ι(w) = y0 is continuous and (7.3) is true.

Now we show that ι is onto. Fix a point z0 ∈ ∂D and choose a sequence
{yn}n≥1 in D converging to a z0 in D. Since {yn}n≥1 is a sequence in the com-
pact metric space D ∪ ∂MD, there exists a subsequence {ynk}k≥1 of {yn}n≥1

that converges to a w0 ∈ D ∪ ∂MD. By the continuity of ι, ι(w0) = z0. �

Lemma 7.4. For each w0 ∈ ∂MD, the support of the Martin measure ν
for MD( · , w0) is contained in ι−1(ι(w0)).

Proof. Let z0 := ι(w0) and ν be the Martin measure ν for MD( · , w0). For
any closed subset U of ∂MD such that U ∩ ι−1(z0) = ∅, define

h(x) =
∫
U

MD(x,w)ν(dw) for x ∈ D.

We will show that h ≡ 0, which implies that the support of ν is contained in
ι−1(z0).

If z ∈ ∂D is different from z0 = ι(w0), then by (7.3)

h(x) ≤
∫
∂MD

MD(x,w)ν(dw) = MD(x,w0) ≤ c
ρ(x)
|x− z0|d

→ 0 as x→ z.

On the other hand, for any w ∈ U ,

lim
x→z0

MD(x,w) ≤ c lim
x→z0

ρ(x)
|x− ι(w)|d

= 0.
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Moreover, for any w ∈ U and x ∈ D near z0,

MD(x,w) ≤ c
ρ(x)

|x− ι(w)|d

is bounded. Therefore by the bounded convergence theorem, we get

lim
x→z0

h(x) = lim
x→z0

∫
U

MD(x,w)ν(dw) = 0.

Thus the harmonic function h(x) vanishes continuously on ∂D. So by Lemma
7.2, h ≡ 0 �

Lemma 7.5. The map ι is one-to-one. Moreover ∂mD = ∂MD.

Proof. Fix z0 ∈ ∂D. (7.2) and Lemma 7.4 imply that for each w ∈ ι−1{z0},
there is a unique Martin measure νw for MD( · , w) such that

MD(x,w) =
∫
ι−1(z0)∩∂mD

MD(x, a)νw(da).

Therefore ι−1(z0) ∩ ∂mD 6= ∅. Fix w0 ∈ ι−1(z0) ∩ ∂mD and let w1, w2 ∈
ι−1(z0). Suppose {y0

n}n≥1 ⊂ D converges to w0 in D ∪ ∂MD and {y1
n}n≥1 in

D converges to w1 in D ∪ ∂MD. Then both {y0
n}n≥1 and {y1

n}n≥1 converge
to z0 in D. By Theorem 6.2,

MD(x,w1) = lim
n→∞

MD(x, y1
n) ≤ c lim

n→∞
MD(x, y0

n) = cMD(x,w0).

The minimal harmonicity ofMD( · , w0) implies thatMD(x,w1) = cMD(x,w0).
But the two functions agree on x = x0. So MD( · , w1) = MD( · , w0). The
same argument shows that MD( · , w2) = MD( · , w0), thus MD( · , w2) =
MD( · , w1), which implies that w1 = w2. Therefore ι is one-to-one. The above
argument also shows that every w ∈ ι−1(∂D) is a minimal Martin boundary
point. Since ι is onto and ι(∂MD) = ∂D (Lemma 7.3), every w ∈ ∂MD is a
minimal Martin boundary point of XD. Therefore ∂mD = ∂MD �

Lemmas 7.3 and 7.5 imply there exists a homeomorphism between ∂mD∪D
and D which is an identity map in D. Therefore we arrive the following result.

Theorem 7.6. There is a one-to-one correspondence between the minimal
Martin boundary ∂mD and the Euclidean boundary ∂D.

As a consequence of Theorem 6.2 and the above results, we immediately
get the following result.

Theorem 7.7. There exists c = c(x0, D) such that for all x ∈ D and
z ∈ ∂D,

1
c

ρ(x)
|x− z|d

≤ MD(x, z) ≤ c
ρ(x)
|x− z|d

.
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