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BROWNIAN REPRESENTATION OF A CLASS OF LÉVY
PROCESSES AND ITS APPLICATION TO OCCUPATION

TIMES OF DIFFUSION PROCESSES

YUJI KASAHARA AND SHINZO WATANABE

Dedicated to the memory of Professor J. L. Doob

Abstract. It is well known that a class of subordinators can be repre-
sented using the local time of Brownian motions. An extension of such
a representation is given for a class of Lévy processes which are not
necessarily of bounded variation. This class can be characterized by the
complete monotonicity of the Lévy measures. The asymptotic behavior
of such processes is also discussed and the results are applied to the
generalized arc-sine law, an occupation time problem on the positive
side for one-dimensional diffusion processes.

1. Introduction

Let {B(t)}t≥0 be a standard Brownian motion and `(t, x) be its local time.
Then, for a Radon measure m(dx) on R, the processes

X+(t) =
∫

(0,∞)

`(`−1(t, 0), x)m(dx), t ≥ 0,(1.1)

X−(t) =
∫

(−∞,0)

`(`−1(t, 0), x)m(dx), t ≥ 0(1.2)

are independent subordinators. For example, if m(dx) = |x|1/α−2 dx, then
c+X

+(t) − c−X
−(t) (c+, c− ≥ 0) is a stable Lévy processes with index α

provided that 0 < α < 1. On the other hand, for 1 ≤ α < 2, the above inte-
grals diverge a.s. and do not make sense. Indeed, the processes that can be
expressed as above are necessarily of bounded variation. Nonetheless, some
Lévy processes of unbounded variation can be given a similar Brownian repre-
sentation by modifying the integral as something similar to the Cauchy prin-
cipal value or the Hadamard finite part of a divergent integral. For example,
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using the Hölder continuity in x of `(t, x), we see that

Z(t) = lim
ε→+0

∫
x>ε

{`(`−1(t, 0), x)− `(`−1(t, 0),−x)}x1/α−2 dx

converges a.s. even if 1 ≤ α < 2, and is symmetric α-stable by self-similarity.
Further, if one needs completely asymmetric α-stable Lévy processes with
1 < α < 2, then

Z(t) = lim
ε→+0

∫
x>ε

{`(`−1(t, 0), x)− t}x1/α−2 dx

will do. (When α = 1 we need a slight modification.) We note that a similar
representation of stable processes has been already discussed by M. Yor [13,
p. 4].

In the present paper, we generalize these examples to obtain a similar
representation for a class of Lévy processes. In Section 2, we introduce a
class M of Radon measures m on an interval (0, l), 0 < l ≤ ∞, and define
Lévy processes T±(m; t) associated with m by modifying the integrals (1.1)
and (1.2) similarly as in the above examples of stable processes. In Section
3, we first treat these examples of stable processes and study the long time
asymptotics of the processes defined in Section 2. In Section 4, we apply the
results in the preceding sections to a limit theorem for occupation times of
one-dimensional diffusion processes. If the diffusion is positively recurrent,
or, more generally, if the tails of the speed measure are slowly varying with
the same order, then it is known that the ratio of the time spent on the
positive side converges to a constant. Our results here are concerned with limit
theorems for the fluctuation. Section 5 is devoted to a remark on Lamperti’s
class of distributions in connection with the result in Section 4. In Section
6, we complement Section 2 to describe the class of Lévy processes having
the Brownian representation of Section 2. It is a class of Lévy processes
with the Lévy measure supported on (0,∞] and with a completely monotone
density, and, furthermore, without the Gaussian part. By a recent result of
S. Kotani, we can see conversely that any such Lévy process has a Brownian
representation.

2. Lévy processes represented by Brownian local time

We denote by M the set of all functions m : (−∞,∞) → (−∞,∞] such
that

(i) m(x) ≡ 0 on (−∞, 0],
(ii) m(x) is nondecreasing, right-continuous on (0,∞), and
(iii) we have ∫

0<x<δ

m(x)2 dx <∞, ∃δ > 0.
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For m ∈M, we define

l(m) = sup{x;m(x) <∞},

and for mλ,m ∈M, we say mλ → m if and only if
(m.1) mλ(x)→ m(x) at every continuity point x of m, and
(m.2) limδ→0+ lim supλ→∞

∫
0<x<δ

mλ(x)2 dx = 0.

Typical examples, which will often appear later, are the following:

Example 2.1. Let 0 < α < 2 and put m(α)(x) = 0 for x ≤ 0 and

m(α)(x) =


x

1
α−1, 0 < α < 1,

log x, α = 1,
−x 1

α−1, 1 < α < 2,

for x > 0. In these cases, l(m(α)) =∞.

Remark 2.2. The class M may look strange at first but the authors were
informed by S. Kotani the following fact (cf. [8]): For m ∈M, define its dual
m∗(x) (−∞ < x <∞) by

m∗(x) = inf{u > 0; m(u) > x}.

Then m∗ : (−∞,∞) → [0,∞] is a nondecreasing, right-continuous function
such that m(−∞) = 0, and the condition (iii) can be rewritten as∫

−∞
x2 dm∗(x) <∞.

This condition is equivalent to the condition that the boundary −∞ of the
operator d

dm∗
d
dx is of the type limit circle.

Throughout the paper {B(t)}t≥0 denotes a standard Brownian motion
starting at 0 and `(t, x) the local time with respect to 2dx; `(t, x) is con-
tinuous in (t, x) and∫ t

0

f(B(s)) ds = 2
∫ ∞
−∞

f(x) `(t, x) dx, a.s.

for every bounded continuous f(x).

Definition 2.3. For m ∈M we put

G(x) =
∫ x

0

m(u) du, −∞ ≤ x < l(m), and ζ± = inf{t |B(t) = ±l(m)},
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and define the following stochastic processes with state space R ∪ {∞}:

S+(m; t) =

{
−
∫ t

0
m(B(s)) dB(s) +G(B(t)), 0 ≤ t < ζ+,

∞, t ≥ ζ+,

S−(m; t) =

{∫ t
0
m(−B(s)) dB(s) +G(−B(t)), 0 ≤ t < ζ−,

∞, t ≥ ζ−,

T+(m; t) = S+(m; `−1(t, 0)), t ≥ 0,

T−(m; t) = S−(m; `−1(t, 0)), t ≥ 0.

Here, `−1(t, 0) = inf{s > 0 | `(s, 0) > t}.

These definitions are rather artificial but the meaning will be clear later in
Corollary 2.6. Here, we mention that the stochastic integrals exist, i.e., that

(2.1)
∫ t

0

m(±B(s))2 ds <∞, 0 ≤ ∀t < ζ± a.s.

Indeed, we have∫ t

0

m(±B(s))2 ds = 2
∫ ∞

0

m(x)2 `(t,±x) dx,

and, if 0 ≤ t < ζ±, then x 7→ `(t,±x) is continuous with compact support in
(−∞, l(m)). Since m ∈ L2

loc((−∞, l(m)), dx), we obtain (2.1).

Lemma 2.4. Let m ∈M. If m(0+) > −∞, then

S±(m; t) =
∫
x>0

`(t,±x) dm(x) +m(0+) `(t, 0), 0 ≤ t < ζ±,

T±(m; t) =
∫
x>0

`(`−1(t, 0),±x) dm(x) +m(0+) t, 0 ≤ t < `(ζ±, 0).

Proof. We first note that G(±x) is a difference of two convex functions
such that

D+G(x) =

{
0, x < 0,
m(x), 0 ≤ x < l(m),

where D+ denotes the right-hand derivative. Therefore, it holds that

d(D+G)(x) = 1(0,l(m))(x) dm(x) +m(0+) δ(dx)

in the sense of signed measures, where δ(dx) denotes the unit mass at 0.
Hence, applying the Itô-Tanaka formula, we derive, for 0 ≤ t < ζ±,

G(±B(t)) = ±
∫ t

0

m(±B(s)) dB(s) +
∫
x>0

`(t,±x) dm(x) +m(0+)`(t, 0)
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because G(0) = 0. Substituting this into the definition of S±(m; t) we have
the first half of our assertion. The latter half follows from the first. �

We note that the class of Brownian additive functionals S± contains those
introduced and studied by Yamada [12] and Yor [13].

Theorem 2.5 (Continuity theorem). Suppose mλ,m ∈ M and mλ → m.
Then,

lim inf
λ→∞

(ζλ)± ≥ ζ±, a.s.,

and

sup
t∈[0,(ζ±−ε)∧T ]

|S±(mλ; t)− S±(m; t)| P−→ 0,

sup
t∈[0,`((ζ±−ε)∧T,0)]

|T±(mλ; t)− T±(m; t)| P−→ 0,

for every T > 0 and ε > 0.

Proof. Let l(m) = sup{x;m(x) < ∞} as before. Since mλ → m, it holds
that mλ(x) → m(x) for every x ∈ (0, l(m) − ε) such that m(x−) = m(x)
(∀ε > 0). Therefore, l(mλ) ≥ l(m)−ε for all sufficiently large λ. Hence we ob-
tain the first part of the theorem. Also (m.2) implies that {mλ}λ is bounded in
L2
loc((−∞, l(m)), dx). Hence mλ(x) → m(x) in L1

loc((−∞, l(m)), dx). There-
fore, we have

Gλ(x) :=
∫ x

0

mλ(u) du→ G(x) :=
∫ x

0

m(u) du, ∀x ∈ (−∞, l(m)),

which combined with the definitions of S± and T± proves the assertion. �

Corollary 2.6. If m ∈M, then for every sequence ε1 > ε2 > · · · → 0,

S±(m; t) = lim
n→∞

∫
x>εn

`(t,±x) dm(x) +m(εn) `(t, 0),

T±(m; t) = lim
n→∞

∫
x>εn

`(`−1(t, 0),±x) dm(x) +m(εn) t,

where the convergence holds, uniformly for 0 ≤ t ≤ ζ± − ε, in probability
(∀ε > 0).

Proof. The assertion follows immediately from Lemma 2.4 and Theorem
2.5 by putting mn(x) = m(x ∨ εn). �

Now, for m ∈M and c ∈ R, we define m+ c ∈M by

(m+ c)(x) =

{
0, x < 0,
m(x) + c, x ≥ 0.
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Corollary 2.7 (Linearity). Let m1,m2 ∈ M, a, b > 0, and −∞ < c <
∞. Then,

S±(am1 + bm2 + c; t) = aS±(m1; t) + bS±(m2; t) + c `(t, 0),

T±(am1 + bm2 + c; t) = aT±(m1; t) + bT±(m2; t) + c t.

Proof. The assertion can easily be seen from the definition, but also follows
immediately from Corollary 2.6. �

Theorem 2.8. Let m+,m− ∈ M. Then T+(m+; t) and T−(m−; t) are
independent Lévy processes without discontinuities of negative jumps.

Proof. In view of Corollary 2.6 it suffices to prove that∫
x>εn

`(`−1(t, 0),±x) dm(x) +m(εn) t

have the desired properties. However, the independence is well known and it
is clear that they have no negative jumps. �

As we have seen above, the Lévy measures of T±(m; t) vanish on (−∞, 0).
This fact allows us to consider Laplace transforms instead of Fourier trans-
forms. We will review the Lévy-Khintchin form of the Laplace exponent in
Section 6. In what follows we study the limit process of T±(mλ; t), mλ ∈M,
in the case where (m.1) holds with m ∈M but where (m.2) does not hold (and
hence mλ → m fails). We first consider the simplest, but most important,
case where m(x) ≡ 0:

Theorem 2.9 (Central limit theorem). Let m+
λ ,m

−
λ ∈ M and suppose

that m+
λ (x),m−λ (x)→ 0 for every x > 0. We further assume that

lim
λ→∞

∫
0<x<δ

m±λ (x)
2
dx = σ2

±(≥ 0).

(This condition does not depend on the choice of δ > 0.) Then,(
S+(m+

λ ; t), S−(m−λ ; t), B(t)
)

L−→
(√

2σ+B
(+)(`(t, 0)),

√
2σ−B(−)(`(t, 0)), B(t)

)
and(

T+(m+
λ ; t), T−(m−λ ; t), B(t)

) L−→
(√

2σ+B
(+)(t),

√
2σ−B(−)(t), B(t)

)
in the sense of convergence in law on the Skorohod space D([0,∞) : (−∞,∞]3)
of cádlág functions. Here, B and ` are the same as before and B(+), B(−) are
copies of B such that B(+), B(−) and B are independent.
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Proof. Recall the definition of S±:

S+(m+
λ ; t) = −

∫ t

0

m+
λ (B(s)) dB(s) +Gλ(B(t)),

S−(m−λ ; t) =
∫ t

0

m−λ (−B(s)) dB(s) +Gλ(−B(t))

where

Gλ(x) =
∫ x

0

mλ(u) du.

Let us see that, under our conditions,

(2.2) Gλ(x)→ 0, λ→∞ (x ∈ R),

the convergence being uniform on every finite interval [0, A]. Indeed, for
x ∈ [0, A], we have

|Gλ(x)| ≤
∫ ε

0

|m±λ (u)| du+
∫ x

ε

|m±λ (u)| du

≤
(
ε

∫ ε

0

m±λ (u)2 du

)1/2

+
(
|m±λ (ε)|+ |m±λ (A)|

)
A,

and hence
lim sup
λ→∞

sup
0≤x≤A

|Gλ(x)| ≤
√
ε σ±,

for any ε > 0. Thus we have (2.2). Hence the proof of the theorem is reduced
to determining the limiting processes of

(Mλ
1 (t),Mλ

2 (t),Mλ
3 (t))

:=
(
−
∫ t

0

mλ(B(s)) dB(s),
∫ t

0

mλ(−B(s)) dB(s), B(t)
)
.

Since our assumptions imply that

m±λ (x)2 → σ2
±δ(x),

where δ(x) is the delta function, it is easy to see that

〈Mλ
1 〉t =

∫ t

0

mλ(B(s))2ds = 2
∫ ∞

0

`(t, x)mλ(x)2dx −→ 2σ2
+`(t, 0),

the convergence being uniform for t ∈ [0, T ] (∀T > 0) a.s. Analogously, we
have

〈Mλ
2 〉t =

∫ t

0

mλ(B(s))2ds −→ 2σ2
−`(t, 0), a.s.

Similarly, by (2.2) we have

〈Mλ
1 ,M

λ
3 〉t = 2

∫ ∞
0

`(t, x)mλ(x) dx→ 0, λ→∞, a.s.,
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as well as 〈Mλ
2 ,M

λ
3 〉t → 0 while it is obvious that 〈Mλ

1 ,M
λ
2 〉t = 0. These

facts imply the tightness of the processes {Mλ
i (t)}λ (i = 1, 2, 3) over the

function space C([0,∞)). Indeed, this follows from the following observa-
tion. As is well known, Mλ

1 (t) can be expressed as Bλ(〈Mλ
1 〉t) for suitable

Brownian motions Bλ by extending the probability space if necessary. Thus
tightness of {Mλ

1 (t)}λ is reduced to that of {(Bλ(t), 〈Mλ
1 〉t)}λ, which obvi-

ously holds because both components converge in law. Similarly, {Mλ
2 (t)}λ

is tight. Therefore, the tightness is shown and it remains only to identify the
joint limiting processes. To this end recall that we have

lim
λ→∞

〈Mλ
i ,M

λ
j 〉t =


2σ2

+`(t, 0), i = j = 1,
2σ2
−`(t, 0), i = j = 2,

t, i = j = 3,
0, i 6= j.

Therefore, any limiting process (M1,M2,M3) can be expressed as follows in
terms of the 3-dimensional Brownian motion (B(+), B(−), B):(

B(+)(2σ2
+`(t, 0)), B(−)(2σ2

−`(t, 0)), B(t)
)

as desired (see, e.g., [5] for the representation theorem of continuous mar-
tingales). Thus we have the convergence of S±(mλ; t). The convergence of
T±(mλ; t) also follows because

T±(mλ; t) = S±(mλ; `−1(t, 0)). �

The following theorem is a mixture of Theorems 2.5 and 2.9.

Theorem 2.10. Let m+
λ ,m

−
λ ,m

+,m− ∈M. If
(i) m+

λ (x) → m+(x),m−λ (x) → m−(x) at all continuity points x(> 0) of
m±, and

(ii) there exist σ2
+ and σ2

− such that

lim
δ→0

lim sup
λ→∞

∣∣∣ ∫
0<x<δ

m±λ (x)
2
dx− σ2

±

∣∣∣ = 0,

then, (
S±(m±λ ; t), B(t)

) L−→
(
S±(m±; t) +

√
2σ±B(±)(`(t, 0)), B(t)

)
,(

T±(m±λ ; t), B(t)
) L−→

(
T±(m±; t) +

√
2σ±B(±)(t), B(t)

)
,

where (B(+), B(−), B) and ` are defined as in Theorem 2.9.

Proof. Let {Aλ}λ be real numbers tending to −∞ as λ→∞ and let

m±λ,1(x) = m±λ (x) ∨Aλ, m±λ,2(x) = m±λ (x)−m±λ,1(x).

Notice that
m±λ,1(x)→ m±(x), m±λ,2(x)→ 0, λ→∞,
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at every continuity point x of the limiting functions. By Corollary 2.7 it also
holds that

S±(m±λ ; t) = S±(m±λ,1; t) + S±(m±λ,2; t).

Now let us see that Theorems 2.5 and 2.9 are applicable to the first and second
terms, respectively. Since

lim
δ→0

lim sup
λ→∞

∫
0<x<δ

(m±λ (x) ∨A)2 dx = 0,

for every fixed A, we have

(2.3) lim
δ→0

lim sup
λ→∞

∫
0<x<δ

m±λ,1(x)2 dx = 0,

provided that {Aλ}λ tends to −∞ slowly enough. This proves that m±λ,1 →
m± in M. Furthermore, it holds that

(2.4) lim
δ→0

lim sup
λ→∞

∣∣∣ ∫
0<x<δ

m±λ,2(x)2 dx− σ2
±

∣∣∣ = 0.

Indeed, since∣∣∣( ∫
0<x<δ

m±λ,2(x)2 dx
)1/2

−
(∫

0<x<δ

m±λ (x)2 dx
)1/2∣∣∣

≤
(∫

0<x<δ

m±λ,1(x)2 dx
)1/2

−→ 0, λ→∞,

by (2.3), our assumption (ii) implies (2.4). Thus, Theorems 2.5 and 2.9 are
applicable to S±(m±λ,1; t) and S±(m±λ,2; t), respectively, and it remains to show
the joint convergence of these processes. As in the proof of Theorem 2.9, the
problem is reduced to determining the limiting processes of(

Mλ
1 (t),Mλ

2 (t),Mλ
3 (t),Mλ

4 (t),Mλ
5 (t)

)
=
(
−
∫ t

0

m+
λ,1(B(s)) dB(s),−

∫ t

0

m−λ,1(B(s)) dB(s),∫ t

0

m+
λ,2(−B(s)) dB(s),

∫ t

0

m−λ,2(−B(s)) dB(s), B(t)
)
.

To this end it suffices to determine the limiting processes of 〈Mλ
i ,M

λ
j 〉, i, j =

1, . . . , 5. Indeed, as in the proof of Theorem 2.9, we see that

〈Mλ
2 〉t → 2σ2

+`(t, 0), 〈Mλ
4 〉t → 2σ2

−`(t, 0), 〈Mλ
5 〉t = t

and also it is easy to see that other 〈Mλ
i ,M

λ
j 〉t converge to 0. This completes

the proof of the theorem. �



524 YUJI KASAHARA AND SHINZO WATANABE

3. The case of stable Lévy processes and limit theorems

Let m(α) ∈ M (0 < α < 2) be as in Example 2.1. We shall first show
that T+(m(α); t) and T−(m(α); t) are independent, completely asymmetric
α-stable Lévy processes. As we have mentioned in Section 2, T+(m(α); t)
and T−(m(α); t) are independent Lévy processes without negative jumps, and
therefore their common Laplace transform makes sense. So let ψ(α)(s) be its
exponent, i.e.,

E[e−sT
+(m(α);t)] = E[e−sT

−(m(α);t)] = e−tψ
(α)(s), t ≥ 0, s > 0.

Theorem 3.1. We have

(3.1) ψ(α)(s) =


Γ(2−α)

Γ(α) {α(1− α)}α−1sα, 0 < α < 1,

−s (log s+ 2γ), α = 1,
−Γ(2−α)

Γ(α) {α(α− 1)}α−1sα, 1 < α < 2,

where Γ(x) is the usual gamma function and γ = 0.577 . . . is Euler’s constant.

Proof. For 0 < α < 1, the result is already known (see, e.g., Kotani-
Watanabe [9]). In order to consider its analytic continuation, let

m̃(α)(x) =

{
α

1−α (x1/α−1 − 1), 0 < α < 2, α 6= 1,
log x, α = 1,

and define ψ̃(α)(s) by

E[e−sT
±(m̃(α);t)] = e−tψ̃

(α)(s).

Then, since

T+(m̃(α); t) =


α

1−α
{
T+(m(α); t)− t

}
, 0 < α < 1,

T+(m(α); t), α = 1,
α
α−1

{
T+(m(α); t) + t

}
, 1 < α < 2,

it holds that

ψ̃(α)(s) =


ψ(α)( α

1−αs)−
α

1−αs, 0 < α < 1,
ψ(α)(s), α = 1,
ψ(α)( α

α−1s) + α
α−1s, 1 < α < 2.

Therefore, (3.1) is equivalent to

ψ̃(α)(s) =

{
−α2α Γ(2−α)

Γ(1+α)
sα

α−1 −
α

1−αs, 0 < α < 2, α 6= 1,

−s (log s+ 2γ), α = 1.

By a standard argument we see that both sides are analytic in α on {α ∈
C ; 0 < Reα < 2}. Hence the proof of the theorem is complete. �
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This proof also gives the following result, which we need in Section 6.

Theorem 3.2. As α ↑ 1,
1

1− α
{S±(m(α); t)− `(t, 0)} P−→ S±(m(1); t),

and
1

1− α
{T±(m(α); t)− t} P−→ T±(m(1); t),

in C[0,∞) and D[0,∞), respectively .

Proof. Let m̃(α) be as above. Then the assertions can be rewritten as

S±(m̃(α); t)→ S±(m̃(1); t), S±(m̃(α); t)→ S±(m̃(1); t), α→ 1,

respectively. Thus the problem can be reduced to the continuity of m̃(α) in
α. �

Theorem 3.3 (The case 1 < α < 2). Let m(dx) be a finite Borel measure
on [0,∞) and suppose that

(3.2) m(x,∞) ∼ x−βL(x), x→∞
for some 0 < β < 1/2 and slowly varying L(x). (f(x) ∼ g(x) means that
f(x)/g(x) → 1 throughout the paper.) Then, for m ∈ M defined by m(x) =
−m(x,∞), we have(

1
λ1/αL(λ)

S±(m;λ2t),
1
λ
B(λ2t)

)
L−→
(
S±(m(α); t), B(t)

)
,(3.3) (

1
λ1/αL(λ)

T±(m;λt),
1
λ
B(λ2t)

)
L−→
(
T±(m(α); t), B(t)

)
,(3.4)

where α = 1/(1− β), so that 1 < α < 2.

Note that, by Lemma 2.4, the assertion may be rewritten in a more familiar
way. For example, (3.4) implies

λ1−1/α

L(λ)

(
1
λ

∫
(0,∞)

`
(
`−1(λt, 0),±x

)
m(dx)−m(0,∞) t

)
L−→ T±(m(α); t).

Proof of Theorem 3.3. For λ > 0, define mλ ∈M by

mλ(x) =
1

λ1/α−1L(λ)
m(λx).

Then the condition (3.2) implies that mλ → m(α) in M. Indeed, (m.1) is an
immediate consequence and (m.2) can be checked by the following well-known
fact.

lim
λ→∞

∫ δ

0

mλ(x)2 dx =
∫ δ

0

x−2β dx =
1

1− 2β
δ1−2β , δ > 0
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(see Seneta [10, pp. 66–67, Thm. 2.7] or Bingham et. al. [3, p. 26, Prop. 1.5.8]).
Since (

1
λ
B(λ2t),

1
λ
`(λ2t, x)

)
(d)
=
(
B(t), `(t,

x

λ
)
)
,

where “X
(d)
= Y ”means that X and Y are equally distributed, we have(

1
λ1/αL(λ)

S±(m;λ2t),
1
λ
B(λ2t)

)
=
(

1
λ1/αL(λ)

(
∫
x>0

`(λ2t,±x)m(dx)−m(0,∞)`(λ2t, 0)),
1
λ
B(λ2t)

)
(d)
=
(∫

x>0

`(t,±x) dmλ(x)−mλ(0)`(t, 0), B(t)
)

=
(
S±(mλ; t), B(t)

)
.

Hence (3.3) follows from Theorem 2.5. As for (3.4), recall that T± are de-
fined through S± and that the inverse process of 1

λ`(λ
2t, 0) is the process

1
λ2 `
−1(λt, 0). Then we can derive that(

1
λ1/αL(λ)

T±(m;λt),
1
λ
B(λ2t)

)
(d)
=
(
T±(mλ; t), B(t)

)
.

Therefore, (3.4) follows from Theorem 2.5 as well. �

Example 3.4. A typical example of (3.2) is

m(dx) = (1 + x)−β−1dx, x ≥ 0, (0 < β < 1/2).

We next study the extreme case β = 0 in Theorem 3.3 or, equivalently,
α = 1. In this case, m(dx) can be both a finite and an infinite measure.

Theorem 3.5 (The case α = 1). Let m(dx) be a Radon measure on [0,∞)
and let L(x) (x ≥ 0) be a slowly varying function at infinity such that both
L(x) and 1/L(x) are locally bounded on [0,∞). If

(3.5)
m(0, λx]−m(0, λ]

L(λ)
−→ log x, ∀x > 0, λ→∞,

then, for m ∈M defined by m(x) = m(0, x], we have(
1

λL(λ)
(
S±(m;λ2t)−m(λ) `(λ2t, 0)

)
,

1
λ
B(λ2t)

)
(3.6)

L−→
(
S±(m(1); t), B(t)

)
and

(3.7)
(

1
λL(λ)

(
T±(m;λt)−m(λ)λ t

)
,

1
λ
B(λ2t)

)
L−→
(
T±(m(1); t), B(t)

)
.
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Example 3.6. If m(dx) = dx/(1 + x), then the assumptions are satisfied
with L(λ) = 1 and hence we have, for example,

1
λ

{∫ ∞
0

`(λ2t,±x)
dx

1 + x
− (log λ) `(λ2t, 0)

}
L−→ S±(m(1); t).

Similarly, if

m(dx) =
dx

(1 + x){log(1 + x)}c
(c > 0),

then
{m(0, λx]−m(0, λ]} · (log λ)c → log x, λ→∞,

and the assumptions are satisfied with L(λ) = (log(1 + λ))−c. Note that
m(dx) is finite if c > 1.

Proof of Theorem 3.5. The proof can be carried out in a similar way as
that of the previous theorem: Define mλ ∈M (λ > 0) by

mλ(x) =
1

L(λ)
(m(λx)−m(λ)).

Then,(
1

λL(λ)
(
S±(m;λ2t)−m(λ)`(λ2t, 0)

)
,

1
λ
B(λ2t)

)
(d)
=
(
S±(mλ; t), B(t)

)
,

and hence the proof is reduced to the continuity theorem (Theorem 2.5). Of
course, in order to show that mλ → m(1) in M, it remains to make sure that
(m.2) is satisfied, i.e.,

(3.8) lim
δ→0+

lim sup
λ→∞

∫ δ

0

mλ(x)2dx = 0.

However, it is known that, under our assumptions, there exists, for every
ε > 0, a constant Aε > 0 such that

|m(x)−m(y)|
L(x)

≤ Aε max
{

(y/x)ε, (y/x)−ε
}

for every x, y > 0 (see [3, p. 172]). This implies that

|mλ(x)| ≤ Aεx−ε, 0 < x < 1,

and hence we see ∫ δ

0

mλ(x)2dx ≤ A2
ε

∫ δ

0

x−2εdx,

which proves (3.8). �

In Theorem 3.3 we studied the case 1 < α < 2, and in Theorem 3.5 we
considered the case α = 1. Since the case 0 < α < 1 is much simpler, we
shall not go into details (see [11]). We now proceed to discuss the case which
corresponds to α = 2.
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Theorem 3.7 (Central limit theorem). Let m(dx) be a finite Borel mea-
sure on (−∞,∞) such that∫ λ

0

(
m(x,∞)

)2
dx ∼ σ2

+L(λ), λ→∞,(3.9) ∫ λ

0

(
m(−∞,−x)

)2
dx ∼ σ2

−L(λ), λ→∞,(3.10)

for some slowly varying L(λ) > 0. Then putting m+(x) = m(0, x], m−(x) =
m[−x, 0), m+ = m(0,∞), m− = m(−∞, 0), we have(

1√
λL(λ)

(
S±(m±;λ2t)−m± `(λ2t, 0)

)
,

1
λ
B(λ2t)

)
(3.11)

L−→
(√

2σ±B(±)(`(t, 0)), B(t)
)

and (
1√
λL(λ)

(
T±(m±;λt)−m± λt

)
,

1
λ
B(λ2t)

)
(3.12)

L−→
(√

2σ±B(±)(t), B(t)
)
,

where (B(+), B(−), B) and ` are the same as in Theorem 2.9.

Proof. Put

m+
λ (x) =

√
λ/L(λ)m(λx,∞), m−λ (x) =

√
λ/L(λ)m(−∞,−λx), x > 0.

Then, as in the proof of Theorem 3.3, we have(
1√
λL(λ)

(
S±(m;λ2t)−m±`(λ2t, 0)

)
,

1
λ
B(λ2t)

)
(d)
=
(
S±(mλ; t), B(t)

)
.

The functions m±λ (x) satisfy the assumption of Theorem 2.9: For example,
for m+

λ (x) we have∫ δ

0

m+
λ (x)2dx =

1
L(λ)

∫ δλ

0

m(x,∞)2dx ∼ L(δλ)
L(λ)

σ2
+ ∼ σ2

+ asλ→∞,

and this implies that, for any 0 < α < β, (β−α)mλ(β)2 ≤
∫ β
α
m+
λ (x)2dx→ 0

as λ→∞, proving that m+
λ (x)→ 0 for all x > 0. The result then follows by

applying Theorem 2.9. �

In the special case where we can choose L(x) to be constant, this theorem
can be rewritten as follows:
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Corollary 3.8. Let m(dx) be a Borel measure on (−∞,∞) such that

σ2
+ =

∫ ∞
0

m(x,∞)2dx <∞, σ2
− =

∫ ∞
0

m(−∞,−x)2dx <∞.

Then, as λ→∞,(
1√
λ

(
S±(m±;λ2t)−m± `(λ2t, 0)

)
,

1
λ
B(λ2t)

)
(3.13)

L−→
(√

2σ±B(±)(`(t, 0)), B(t)
)

and

(3.14)
(

1√
λ

(
T±(m±;λt)−m± λt

)
,

1
λ
B(λ2t)

)
L−→
(√

2σ±B(±)(t), B(t)
)
.

Example 3.9. Let

m(dx) =
dx

(1 + |x|)3/2
.

Then, m+ = m− = 2 and∫ λ

0

(
m(x,∞)

)2
dx =

∫ λ

0

(
m(−∞,−x)

)2
dx ∼ 4 log λ, λ→∞.

Thus Theorem 3.7 is applicable with L(λ) = log λ and σ± = 2. We also note
that, if we add the two terms, we have

1√
λ log λ

(∫ ∞
−∞

`(λ2t, x)m(dx)− 4 `(λ2t, 0)
)
L−→ 2
√

2 B̃(`(t, 0)), λ→∞,

where B̃ is an independent copy of B.

4. Application to the generalized arcsine law

Let X = {X(t)}t≥0 be a conservative and recurrent diffusion process on
the real line. As is well known, with a suitable change of the scale, we may
assume that Feller’s canonical representation of the generator of X is of the
form d

dm
d
dx , where m(dx), which is referred to as the speed measure, is a

non zero Radon measure on (−∞,∞). We need not assume that m(dx) is
positive everywhere so that generalized or gap diffusions (including birth and
death processes) and reflecting diffusions on sub-intervals are also allowed. Of
course, in this case the state space of X is the support of the speed measure
m(dx). In what follows we are concerned with the long time asymptotics of
the occupation time on the half line (0,∞),

Γ(t) :=
∫ t

0

1(0,∞)(X(s)) ds, t ≥ 0.

It is known that the class of possible limit random variables in law of Γ(t)/t
as t → ∞ coincides with that of Lamperti’s random variables Yp,α, 0 ≤ p ≤



530 YUJI KASAHARA AND SHINZO WATANABE

1, 0 ≤ α ≤ 1: Yp,α is a [0, 1]–valued random variable with the Stieltjes trans-
form given by

(4.1) E

(
1

λ+ Yp,α

)
=
p(λ+ 1)α−1 + (1− p)λα−1

p(λ+ 1)α + (1− p)λα
, λ > 0.

Also, a sufficient condition for the convergence, which turns out to be nec-
essary and sufficient when 0 < p < 1, can be given in terms of m(dx). For
details, we refer to Watanabe [11] and also to Kasahara and Watanabe [7] for
some refinements in the case α = 0.

In the present section we are interested in the case α = 1. Notice that
in this case Yp,α degenerates to a constant: Yp,1 ≡ p. Here, we exclude the
trivial case of p = 1 or p = 0 and so we confine ourselves to the case where

(4.2)
1
λ

Γ(λ) P−→ p ∈ (0, 1), λ→∞.

A necessary and sufficient condition for (4.2) to hold is that x 7→ m([0, x])
and x 7→ m([−x, 0]) (x > 0) are slowly varying at ∞ with a balancing condi-
tion

(4.3) lim
x→∞

m(0, x)
m([−x, x])

= p.

A particular, and the most typical, case is the positively recurrent case, where
m(R) <∞ with the balancing condition

(4.4)
m(0,∞)
m(R)

= p ∈ (0, 1).

Our assumption that m is slowly varying means that we are here interested
in positively recurrent diffusions or similar processes. Also we note that the
convergence (4.2) can be strengthened to almost sure convergence if and only
if the diffusion is positively recurrent, i.e., m(R) <∞ (see Bertoin [2]).

Now, the aim of this section is to apply the results in the preceding section
to evaluate the fluctuation

1
λ

Γ(λt)− pt.

Let m(α) and T±(m(α); t) be as before. Thus T+(m(α); t) and T−(m(α); t) are
independent α–stable Lévy processes as we have seen in Section 2.

Theorem 4.1 (The case 1 < α < 2). Assume that m(dx) is finite, i.e.,
m(R) <∞, with the balancing condition (4.4) and assume in addition that

m(x,∞) ∼ c+x−βL(x), m(−∞,−x) ∼ c−x−βL(x), x→∞,
for some c± > 0, 0 < β < 1/2, and slowly varying L(x). Then, letting
α = 1/(1− β) so that 1 < α < 2, we have

m(R)1/α

λ1/αL(λ)

(
Γ(λ t)− p λ t

)
f.d.−→ (1− p) c+T+(m(α); t)− p c−T−(m(α); t).
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Here and throughout,
f.d.−→ denotes the convergence of all finite-dimensional

marginal distributions.

Recall that the limiting process is an α–stable Lévy process. Also note that
the convergence here cannot be strengthened to convergence with respect to
the Skorohod topology, which does not allow continuous processes to converge
to a discontinuous one.

Theorem 4.2 (The case α = 1). We assume that m(dx) satisfies the
slowly varying property and the balancing condition (4.3). We further assume
that, as λ→∞,

m(0, λx]−m(0, λ]
L(λ)

−→ c+ log x, (∀x > 0),

m[−λx, 0)−m[−λ, 0)
L(λ)

−→ c− log x, (∀x > 0),

for some positive constants c+, c− and slowly varying function L(x) such
that L(x) and 1/L(x) are locally bounded on [0,∞). Then, putting p(λ) =
m(0, λ]/m([−λ, λ]) and q(λ) = λm([−λ, λ]), we have

1
λL(λ)

(
Γ(q(λ) t)− p(λ) q(λ) t

)
f.d.−→ (1− p) c+T+(m(α); t)− p c−T−(m(α); t).

Example 4.3. Let m(dx) = dx/(1 + |x|), −∞ < x <∞. Then, m(0, x] =
m[−x, 0) = log(1 +x) and hence the assumptions are satisfied with L(λ) = 1,
p(λ) = p = 1/2, c± = 1 and q(λ) = 2λ log λ. Therefore,

log λ
λ

(
Γ(λ t)− 1

2
λ t
)

f.d.−→ T+(m(1); t)− T−(m(1); t).

Here, we used the fact that 1
2λ/ log λ is an asymptotic inverse of q(λ) =

2λ log λ. We note that the limiting process is a usual symmetric Cauchy
process.

Theorem 4.4 (Central limit theorem; the case α = 2). Assume that
m(R) <∞ with the balancing condition (4.4). Assume further that∫ λ

0

m(x,∞)2dx ∼ σ2
+L(λ),

∫ λ

0

m(−∞,−x)2dx ∼ σ2
−L(λ),

as λ→∞, for some σ± > 0 and slowly varying function L(λ) > 0. Then we
have √

m(R)
λL(λ)

(Γ(λt)− pλt) f.d.−→
√

2 (1− p)σ+B
(+)(t)−

√
2 p σ−B(−)(t),

as λ→∞, where (B(+), B(−)) is a two-dimensional Brownian motion starting
at the origin.
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Before we proceed to the proofs, we recall the well known fact on construct-
ing the diffusion process X(t) from B(t) via time change: Let

(4.5) S(t) =
∫ ∞
−∞

`(t, x)m(dx), t ≥ 0.

Then it is well known that {B(S−1(t))}t is equivalent in law to {X(t)}t.
Therefore, we may assume that X(t) = B(S−1(t)) without loss of generality.
Next, define

(4.6) A(t) =
∫
x>0

`(t, x)m(dx).

Then, by changing variables, it is not difficult to see that

(4.7) Γ(t) =
∫ t

0

1(0,∞)(X(s)) ds =
∫ t

0

1(0,∞)(B(S−1(s)) ds = A(S−1(t)),

and hence our problem is reduced to the study of the joint asymptotic behavior
of A(t) and S(t) as t→∞ (see Kasahara and Watanabe [7]).

Proof of Theorem 4.1. Define m± ∈M by m+(x) = −m(x,∞) and m−(x)
= m(−∞,−x) for x > 0. Then, by Theorem 3.3, we have

(4.8)
(

1
λ1/αL(λ)

S±(m±;λ2t),
1
λ
B(λ2t)

)
L−→
(
c±S

±(m(α); t), B(t)
)
.

Recall Lemma 2.4. Then, it is easy to verify the equality

A(t)− pS(t) = (1− p)S+(m+; t)− pS−(m−; t).

Notice here that the balancing condition (4.4) implies that `(t, x) does not
appear explicitly on the right-hand side. Therefore, (4.8) implies that(

1
λ1/αL(λ)

{
A(λ2t)− pS(λ2t)

}
,

1
λ
B(λ2t)

)
(4.9)

L−→
(

(1− p) c+S+(m(α); t)− p c−S−(m(α); t), B(t)
)
.

On the other hand, by the scaling property, we have

1
λ
S(λ2t) =

∫ ∞
−∞

1
λ
`(λ2t, x)m(dx)

(d)
=
∫ ∞
−∞

`(t, x/λ)m(dx),

and it is easy to deduce from this that

(4.10)
(

1
λ
S(λ2t),

1
λ
B(λ2t)

)
L−→ (m(R) `(t, 0), B(t)) , λ→∞.

Noting that the inverse process of t 7→ 1
λS(λ2t) is t 7→ 1

λ2S
−1(λt), and the

inverse of t 7→ m(R) `(t, 0) is t 7→ `−1(t/m(R), 0), we substitute these inverse
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processes into t of the first components in both sides of (4.9), respectively.
Then we obtain

1
λ1/αL(λ)

(
A(S−1(λt))− p λt

)
(4.11)

f.d.−→ (1− p) c+T+
(
m(α);

t

m(R)

)
− p c−T−

(
m(α);

t

m(R)

)
,

as λ → ∞. (For arguments of this kind see, e.g., Kasahara and Kotani [6].)
Since Γ(t) = A(S−1(t)), replacing t by m(R) t and λ by λ/m(R), we obtain
the assertion of the theorem. �

We next prove Theorem 4.2. The proof is essentially the same as the one
above. However, we need a small modification to deal with the case when
m(R) =∞.

Let m+(x) = m(0, x], m−(x) = m[−x, 0], x > 0. Then A(m; t) =
S+(m; t), and hence

S+(m;λ2t)− p(λ)S(m;λ2t)

= (1− p(λ)){S+(m+;λ2t)−m+(λ)`(λ2t, 0)}
− p(λ){S−(m−;λ2t)−m−(λ)`(λ2t, 0)}.

Thus we obtain:

Lemma 4.5. As λ→∞,(
1

λL(λ)

(
S+(m;λ2t)− p(λ)S(m;λ2t)

)
,

1
λ
B(λ2t)

)
L−→
(

(1− p) c+S+(m(α); t)− p c−S−(m(α); t), B(t)
)
.

We next prove a result that corresponds to (4.10).

Lemma 4.6. Under the assumptions of Theorem 4.2, it holds that(
1

q(λ)
S(m;λ2t),

1
λ
B(λ2t)

)
L−→
(
`(t, 0), B(t)

)
.

Proof. We first see that dm(λx)/m[−λ, λ] converges vaguely to the Dirac
function: For every 0 < δ < A, we have

m(λδ, λA]
m[−λ, λ]

≤ m(λδ, λA]
m(λε, λ]

=
m[0, λA]−m[0, λδ]

L(x)

/
m[0, λ]−m[0, λε]

L(x)
−→ (logA− log δ)/ log(1/ε), λ→∞,
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for every ε > 0. Since ε > 0 is arbitrary, this implies

m(λδ, λA]/m[−λ, λ] −→ 0, λ→∞.

Similarly,
m[−λA,−λδ]/m[−λ, λ] −→ 0, λ→∞.

Thus dm(λx)/m[−λ, λ]→ δ(dx). Since q(λ) = λm[−λ, λ], we have(
1

q(λ)

∫
`(λ2t, x) dm(x),

1
λ
B(λ2t)

)
(d)
=
(

1
m[−λ, λ]

∫
`(t, x) dm(λx), B(t)

)
−→

(
`(t, 0), B(t)

)
, a.s. �

We are now ready to prove Theorem 4.2. Since A(t) = S+(m; t) in the
present case, we have from Lemmas 4.5 and 4.6 that(

1
λL(λ)

(
A(λ2t)− p(λ)S(m;λ2t)

)
,

1
q(λ)

S(m;λ2t)
)

L−→
(

(1− p) c+S+(m(α); t)− p c−S−(m(α); t), `(t, 0)
)
.

The rest of the proof is the same as in the proof of Theorem 4.1.
The proof of Theorem 4.4, which is based on Theorem 3.7, is similar to

that of Theorem 4.1 and therefore it is omitted.
The different features of the above theorems are illustrated by the following

example:

Example 4.7. Let

m(dx) = (1 + |x|) 1
α−2dx, −∞ < x <∞.

It is known that if 0 < α < 1, then, Γ(λ)/λ converges in law to Lamperti’s
random variable Yp,α with p = 1/2, and if α ≥ 1, then it converges to 1/2
in probability. In the latter case, we further have the following from the
results in the above. If α = 1, then the law of log λ

λ (Γ(λ)−λ/2) converges to a
symmetric Cauchy distribution; if 1 < α < 2, then the law of 1

λ1/α (Γ(λ)−λ/2)
converges to a symmetric α-stable law; and if α = 2 (or α > 2), then the law
of 1√

λ log λ
(Γ(λ) − λ/2) (or 1√

λ
(Γ(λ) − λ/2), resp.) converges to a centered

normal distribution.

5. A remark on Lamperti’s distribution

Let Yp,α be Lamperti’s random variable as in the previous section. Then,
it is easy to see from (4.1) that the law of Yp,α is continuous in (p, α). In

particular, for every fixed 0 < p < 1, it holds that Yp,α
L→ Yp,1 ≡ p as α ↑ 1.

The aim of this section is to refine this convergence.
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Theorem 5.1. Let 0 < p < 1 and put r(α) = p1/α/{p1/α + (1 − p)1/α}.
Then, as α ↑ 1,

1
1− α

(Yp,α − r(α)) L−→ p(1− p)
(
T+(m(1); 1)− T−(m(1); 1)

)
.

Proof. The proof can be carried out in a similar way as in Section 4: Let
Xp,α = {Xp,α(t)}t≥0 be a diffusion on the real line with Feller generator

d
dmp,α(x)

d
dx , where

mp,α[0, x] = p
1
α x

1
α−1, mp,α[−x, 0) = (1− p) 1

α x
1
α−1, x > 0.

This process is called the skew Bessel diffusion process. Let

Γα(t) =
∫ t

0

1(0,∞)(Xp,α(u)) du.

Then it is known ([1], [11]) that Γα(t)/t is distributed like Yp,α for every t > 0.
Now define

S+
α (t) =

∫
[0,∞)

`(t, x)mp,α(dx), S−α (t) =
∫

(−∞,0)

`(t, x)mp,α(dx),

and let
Sα(t) = S+

α (t) + S−α (t).

Then, as we have seen in the previous section, it holds

(5.1) Γα(t) = S+
α

(
S−1
α (t)

)
.

By Theorem 3.2, we have, as α ↑ 1,(
1

1− α
(
S+
α (t)− p1/α`(t, 0)

)
,

1
1− α

(
S−α (t)− (1− p)1/α`(t, 0)

))
(5.2)

P−→
(
pS+(m(1); t), (1− p)S−(m(1); t)

)
.

Consequently, we have
1

1− α

(
S+
α (t)− r(α)Sα(t)

)
=

1
1− α

((
1− r(α)

)
S+
α (t)− r(α)S−α (t)

)
(5.3)

P−→ p(1− p)
(
S+(m(1); t)− S−(m(1); t)

)
,

as well as

(5.4) Sα(t) = S+
α (t) + S−α (t) P−→ p `(t, 0) + (1− p) `(t, 0) = `(t, 0).

Substituting the inverse process of (5.4) into (5.3), we derive

1
1− α

(
S+
α (S−1

α (t))− r(α) t
)
f.d.−→ p(1− p)

(
T+(m(1); t)− T−(m(1); t)

)
.

In view of (5.1), this proves the assertion of the theorem. �
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6. Complete monotonicity of the Lévy measures

A function f(x) on (0,∞) is said to be completely monotone if it possesses
derivatives of all orders such that

(−1)nf (n)(x) ≥ 0, x > 0,

and it is well known that this is equivalent to the condition that

f(x) =
∫ ∞

0

e−xξ σ(dξ), x > 0,

for some Radon measure σ(dξ). (See, e.g., Feller [4].) When f(x) is defined
on (−∞, 0), it is said completely monotone if f(−x) is completely monotone.
Now let m ∈M. Then, as we have seen in Section 2, T+(m; t) and T−(m; t) are
Lévy processes without discontinuities of negative jumps. Let ψ(s) = ψ(m; s)
be its exponent, i.e.,

E[e−sT
+(m;t)] = E[e−sT

−(m;t)] = e−tψ(s), s > 0, t ≥ 0.

Then, ψ(s) can be represented as

(6.1) ψ(s) = c0 + c1s−
c2

2
s2 +

∫
(0,∞)

(1− e−sx − sx1(0,1)(x))n(dx)

for some constants c0, c1, c and a Borel measure n(dx), which is referred to as
Lévy measure, such that ∫ ∞

0

min{1, x2}n(dx) <∞.

Theorem 6.1. Let m ∈ M. Then the Lévy measure n(dx) of T±(m; t)
can be expressed as

n[x,∞) =
∫

(0,∞)

e−xξσ(dξ),

where σ(dξ) is a Borel measure on (0,∞) such that

(6.2)
∫

(0,∞)

σ(dξ)
1 + ξ2

<∞.

Remark 6.2. After the first draft of this paper was prepared, S. Kotani
proved analytically that the constant c in (6.1) vanishes. He also proved that,
conversely, if a Borel measure σ(dξ) satisfying (6.2) is given, there exists an
m ∈ M that corresponds to it and, furthermore, the correspondence is one-
to-one in some sense. This means that a Lévy process can be realized in the
form T+(m+; t) − T−(m−; t) (m± ∈ M) if and only it has no Gaussian part
and the Lévy measure is completely monotone. His theory also provides us
with an analytical method of computing the exponent ψ(s). In particular,
Theorem 3.1 can be proved analytically.
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Proof of Theorem 6.1. We first show the complete monotonicity of the
Lévy measure. If m(0+) ≥ 0, it is known that ψ(s) can be expressed as

ψ(s) = sh∗(s), h∗(s) = a+
∫

[0,∞)

σ(dξ)
ξ + s

, s > 0,

where σ(dξ) is a Radon measure on [0,∞) such that∫
[0,∞)

σ(dξ)
1 + ξ

<∞.

In fact, σ(dξ) is the spectral measure of the dual string m∗(x) = inf{u >
0; m(u) > x} of m. (See [9] for details.) Hence, in this case, using Fubini’s
theorem, we easily obtain

n[x,∞) =
∫

(0,∞)

e−xξσ(dξ), x > 0.

To extend this fact to general m ∈ M, recall Corollary 2.6. Since the con-
vergence in law of Lévy processes implies that of the Lévy measures, we see
that the Lévy measure of T (m; t) is a limit of completely monotone functions
and, hence, is completely monotone, too. It remains to prove (6.2), which is
in fact a special case of the next theorem. �

Theorem 6.3. Let n(dx) be a Borel measure on (0,∞) such that

n[x,∞) =
∫

(0,∞)

e−xξσ(dξ), x > 0,

for a Borel measure σ(dξ) on (0,∞). Then,∫
(0,∞)

u2

1 + u2
n(du) <∞ iff

∫
(0,∞)

σ(dξ)
1 + ξ2

<∞,

and ∫
(0,∞)

u

1 + u
n(du) <∞ iff

∫
(0,∞)

σ(dξ)
1 + ξ

<∞.

Proof. We can prove the assertion in a more general form: For k ≥ j ≥ 0,
there exist absolute constants 0 < ck,j < Ck,j such that

ck,j

∫
(0,∞)

ξj−k

1 + ξj
σ(dξ) ≤

∫
(0,∞)

uk

1 + uj
n(du) ≤ Ck,j

∫
(0,∞)

ξj−k

1 + ξj
σ(dξ).

Indeed, since∫
(0,∞)

uk

1 + uj
n(du) =

∫
(0,∞)

∫
(0,∞)

uk

1 + uj
du ξe−uξσ(dξ)

=
∫

(0,∞)

V (ξ)
ξj−k

1 + ξj
σ(dξ),
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where

V (ξ) =
∫ ∞

0

(1 + ξj)yk

ξj + yj
e−y dy,

it suffices to find constants such that 0 < ck,j ≤ V (ξ) ≤ Ck,j . Since

(1 + ξj)yk

ξj + yj
≤ yk + yk−j ,

we have V (ξ) ≤ Γ(k + 1) + Γ(k − j + 1), while

V (ξ) =
∫ ∞

0

(1 + ξj)yk

ξj + yj
e−y dy ≥

∫ ∞
0

yk

1 + yj
e−y dy. �

Acknowledgement. We are grateful to S. Kotani not only for his valuable
discussions but also for allowing us to access the first draft of his recent work
on short Krein spaces. This helped us improve our first draft greatly.

References

[1] M. T. Barlow, J. W. Pitman, and M. Yor, Une extension multidimensionnelle de la loi
de l’arc sinus, Seminaire de Probabilites, XXIII, Lecture Notes in Mathematics, vol.
1372, Springer–Verlag, Berlin-New York, 1989, pp. 294–314. MR 1022918 (91c:60106)

[2] J. Bertoin, A ratio ergodic theorem for Brownian additive functionals with infinite

mean, Potential Anal. 7 (1997), 615–621. MR 1467209 (98i:60076)
[3] N. H. Bingham, C. M. Goldie, and J. L. Teugels, Regular variation, Encyclopedia of

Mathematics and its Applications, vol. 27, Cambridge University Press, Cambridge,
1987. MR 898871 (88i:26004)

[4] W. Feller, An introduction to probability theory and its applications. Vol. II., Second
edition, John Wiley & Sons Inc., New York, 1971. MR 0270403 (42 #5292)

[5] N. Ikeda and S. Watanabe, Stochastic differential equations and diffusion processes,

North-Holland Mathematical Library, vol. 24, North-Holland Publishing Co., Amster-
dam, 1981. MR 637061 (84b:60080)

[6] Y. Kasahara and S. Kotani, On limit processes for a class of additive functionals of re-

current diffusion processes, Z. Wahrsch. Verw. Gebiete 49 (1979), 133–153. MR 543989
(80i:60107)

[7] Y. Kasahara and S. Watanabe, Occupation time theorems for a class of one-
dimensional diffusion processes, Period. Math. Hungar. 50 (2005), 175–188.

MR 2162808 (2006h:60133)

[8] S. Kotani, Short Krein spaces, preprint.
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