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EXCURSION THEORY REVISITED

P.J. FITZSIMMONS AND R.K. GETOOR

In memory of J.L. Doob

Abstract. Excursions from a fixed point b are studied in the framework
of a general Borel right process X, with a fixed excessive measure m

serving as background measure; such a measure always exists if b is

accessible from every point of the state space of X. In this context the

left-continuous moderate Markov dual process X̂ arises naturally and

plays an important role. This allows the basic quantities of excursion
theory such as the Laplace-Lévy exponent of the inverse local time at b
and the Laplace transform of the entrance law for the excursion process

to be expressed as inner products involving simple hitting probabilities

and expectations. In particular ifX and X̂ are honest, then the resolvent
of X may be expressed entirely in terms of quantities that depend only

on X and X̂ killed when they first hit b.

1. Introduction

Let X be a nice Markov process and b an element of its state space. Let
M be the closure of the random set {t : Xt = b}. Then the complement of M
is the disjoint union of a countable number of open intervals, the excursion
intervals from b. Excursion theory is concerned with the analysis of M and
the behavior of X on the excursion intervals. This description of excursion
theory comes from Chapter VI §42 of [RW87], to which we refer the reader for
some history of the subject. In his seminal paper [I71], K. Itô introduced the
Poisson process point of view for describing excursions from a point. Excellent
presentations of this theory may be found in Chapter VI of [RW87], Chapter
XII of [RY91], Chapter 3 of [B92], and the papers [R83], [R84] and [R89].
A closely related approach to excursions (from more general subsets of the
state space) is based on the notion of an exit system, due to B. Maisonneuve
[Ma75]; see also E.B. Dynkin [Dy71]. The exit system point of view was used
in [G79] and we adopt it here.

Our interest in the subject was rekindled by a recent paper of Fukushima
and Tanaka [FT05]. Working in the context of an m-symmetric diffusion
they showed that some of the basic quantities of excursion theory could be
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expressed as inner products of simple hitting probabilities or expectations.
These results were preliminary to the main subject of the Fukushima-Tanaka
paper but were intriguing and of interest in their own right. The purpose
of this paper is to show that analogous results hold for an arbitrary Borel
right process X on a Lusin space E with a fixed excessive measure m serving
as background measure. It is perhaps surprising that the mere existence of
an excessive measure enables one to obtain results of considerable interest.
In concrete examples there is usually a natural choice for m. Of course, if
one does not assume symmetry then a dual process enters the picture. The
dual that appears most naturally is the left-continuous moderate Markov dual
process X̂ associated with m and X. Such a dual process always exists. The
simplest way to understand X̂ is in terms of the corresponding Kuznetsov
process. The relevant facts may be found in [Fi87], [DMM92] or [Ma93];
Section 2 of [G99] contains a good summary. See also [FG03]. The reader
who is not familiar with this theory may assume throughout that X and X̂
are standard processes in weak duality with respect to m, as in [GS84].

In Section 2 we describe the hypotheses that are in force throughout the
paper, and we recall the basic facts of the exit system approach to excursions.
This section also contains the fundamental decomposition of the resolvent in
terms of excursion-related ingredients. In Section 3 the key formula expressing
the Laplace-Lévy exponent, g(λ), of the inverse local time at a regular point
b as an inner product is developed. It appears in Theorem (3.6) and states
that g(λ) = δ + λc(m)−1

∫
ϕλϕ̂ dm, where ϕλ = E•[e−λTb ], ϕ̂ = P̂•[T̂b <∞],

and δ = limλ→0 g(λ). Here Tb (resp. T̂b) is the hitting time of b by X (resp.
X̂). This formula depends on a specific normalization of the local time at b,
` = (`t), inasmuch as the Revuz measure of ` with respect to m is c(m)εb,
εb being the unit mass at b. Additional expressions for the constant δ are
contained in Theorem (3.15). Moreover, the Laplace transform of the entrance
law governing the excursion process is shown to be given by an inner product
(f, ϕ̂λ) =

∫
fϕ̂λ dm. One consequence of all this is that g(λ) and the resolvent

(Uλ) of X may be expressed entirely in terms of quantities that depend only
on the processes X and X̂ killed at Tb and T̂b respectively, at least if X and
X̂ are honest. In Section 4 we extend an old result of Harris [H56], Silverstein
[Si80], and Getoor [G79], showing that under a mild condition, the mean
occupation measure of excursions gives rise to an excessive measure. This is
the case, in particular, if b is accessible from every other point of the state
space. In Section 5 we present several examples that illustrate the results
in Section 3 and 4. In particular, we discuss the extent to which δ and the
“stickiness” γ = limλ→∞ g(λ)/λ may be varied while the Lévy measure of g
and the entrance law of the excursion process remain fixed. Finally, in an
appendix we present several facts about the left-continuous moderate Markov
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dual process X̂ that are needed in the body of the paper but are not readily
available in the literature. Some of these results are of independent interest.

We close this introduction with a few words on notation. We shall use
B]0,∞[ to denote the Borel subsets of the half-line ]0,∞[. If (F,F , µ) is a
measure space, then bF (resp. pF) denotes the class of bounded real-valued
(resp. [0,∞]-valued) F-measurable functions on F . For f ∈ pF we use µ(f)
or 〈µ, f〉 to denote the integral

∫
F
f dµ; similarly, if D ∈ F then µ(f ;D)

denotes
∫
D
f dµ. On the other hand fµ denotes the measure f(x)µ(dx) and

µ|D the restriction of µ to D. We write F∗ for the universal completion of F ;
that is, F∗ =

⋂
ν Fν , where Fν is the ν-completion of F and the intersection

runs over all finite measures on (F,F). If (E, E) is a second measurable space
and K = K(x, dy) is a kernel from (F,F) to (E, E) (i.e., F 3 x 7→ K(x,A)
is F-measurable for each A ∈ E and K(x, ·) is a measure on (E, E) for each
x ∈ F ), then we write µK for the measure A 7→

∫
F
µ(dx)K(x,A) and Kf for

the function x 7→
∫
E
K(x, dy)f(y). Finally if f is a measurable function from

(F,F) to (E, E), then ν = f(µ), the image of µ under f , is the measure on
(E, E) defined by ν(B) = µ[f−1(B)] for B ∈ E .

2. The Lévy exponent of the inverse local time

Throughout this paper (Pt, t ≥ 0) will denote a Borel right semigroup on
a Lusin state space (E, E), and X = (Xt,Px) will denote a right continuous
strong Markov process realizing (Pt). In general we shall use the standard no-
tation for Markov processes without special mention; see, for example, [BG68],
[DM87], [Sh88] and [G90]. In particular Uλ =

∫∞
0
e−λtPt dt denotes the re-

solvent of (Pt). We adopt the usual convention that a real-valued function f
defined on E is extended to the cemetery point ∆ by f(∆) := 0. For example,
Ptf(x) = Px[f(Xt)] = Px[f(Xt); t < ζ] and Uλf(x) = Px

∫ ζ
0
e−λtf(Xt) dt,

where ζ denotes the lifetime of X.
We suppose that b ∈ E is a regular point; that is, Pb[Tb = 0] = 1, where

Tb := inf{t > 0 : Xt = b} is the hitting time of {b}. Define ϕλ(x) = Px[e−λTb ]
for λ > 0, and set ϕ = limλ→0 ϕ

λ = P•[Tb < ∞]. (To avoid trivialities,
we assume throughout that ϕ does not vanish identically on E \ {b}.) Let
Xb = (X,Tb) denote X killed when it hits b, and let Qt and V λ denote the
semigroup and resolvent of (X,Tb):

Qtf = Px[f(Xt); t < Tb],

V λf(x) = Px

∫ Tb

0

e−λtf(Xt) dt =
∫ ∞

0

e−λtQff(x) dt.
(2.1)

The lifetime of (X,Tb) is R = Tb ∧ ζ, and one may replace Tb in (2.1) by
R without changing the integrals, because of our convention that functions
vanish at ∆. Also, Tb < ζ if and only if Tb <∞ so R = Tb on {Tb <∞}. This
statement holds Px-a.s. for all x ∈ E, and as is customary we shall omit the
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qualifier a.s. where it is clearly required. A direct application of the strong
Markov property at time Tb shows that

(2.2) Uλf = V λf + ϕλ · Uλf(b), λ > 0, f ∈ pE∗.
Because b is a regular point, the singleton {b} is not semipolar and conse-
quently there exists a local time ` = `b for X at b. This is a positive con-
tinuous additive functional (PCAF) of X, increasing only on the visiting set
{t ≥ 0 : Xt = b}. As such ` is uniquely determined up to a multiplicative
constant. Define, for λ > 0 and f ∈ pE∗,

(2.3) Uλ` f = P•
∫ ∞

0

e−λtf(Xt) d`t.

Especially important is the λ-potential of `,

(2.4) uλ(x) = Uλ` 1(x) = Px

∫ ∞
0

e−λt d`t.

Note that this integral is really over ]0, ζ[ since the measure d`t is carried by
this interval. Using the strong Markov property of X,

(2.5) Uλ` f = P•
∫ ∞
Tb

e−λtf(Xt) d`t = ϕλ · Uλ` f(b),

and, taking f ≡ 1, uλ(x) = ϕλ(x)uλ(b).
The inverse local time τ = (τ(t))t≥0 is the right continuous inverse of `:

τ(t) := inf{s > 0 : `s > t}, t ≥ 0.

It is standard that (τ(t)) under the law Pb is a strictly increasing subordinator
and that

(2.6) Pb[e−λτ(t)] = e−t/u
λ(b), λ > 0, t ≥ 0.

Thus g(λ) := [uλ(b)]−1 is the subordinator exponent of (τ,Pb); as is well
known, g(λ) takes the form

(2.7) g(λ) = δ + γλ+
∫

]0,∞[

(1− e−λt) ν(dt)

where δ and γ are nonnegative constants and ν is a measure on ]0,∞[ with∫
]0,∞[

(t ∧ 1) ν(dt) <∞.

The measure ν is the Lévy measure of (τ,Pb). Observe that

(2.8) δ = lim
λ→0

g(λ), γ = lim
λ→∞

g(λ)/λ.

It was shown in [GS73] that

(2.9)
∫ t

0

1b(Xs)ds = γ · `t, ∀t ≥ 0,
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Px-a.s. for all x ∈ E, and so Uλ1b(b) = γuλ(b). (Here 1b is the indicator of
{b}.) As both `t and

∫ t
0

1b(Xs)ds vanish on [0, Tb], we even have Uλ1b = γuλ.

(2.10) Proposition. Under Pb, `∞ has an exponential distribution with
parameter δ. In particular, δ = 0 if and only if Pb[`∞ = ∞] = 1 if and only
if Pb[`∞] =∞.

Proof. Observe that {`∞ > t} = {τ(t) <∞}. Therefore

Pb[`∞ > t] = Pb[τ(t) <∞] = lim
λ→0

Pb[e−λτ(t)] = lim
λ→0

e−tg(λ) = e−δt, t > 0,

by (2.6) and (2.8). �

An efficient way to compute probabilities to do with the excursions of X
from the regular point b is the associated (predictable) exit system (P∗, l);
see [Ma75, §9]. Let M denote the closure in [0,∞[ of the visiting set {t ≥ 0 :
Xt = b}, and let G be the set of strictly positive left endpoints of the maximal
complementary intervals of M . Then there exists a σ-finite measure P∗ on
(Ω,F∗), where F∗ is the universal completion of F0, such that

(2.11) Px

[∑
s∈G

Zs · F ◦θs

]
= Px

[∫ ∞
0

Zs dls

]
·P∗[F ], x ∈ E,

provided Z ≥ 0 is a predictable process and F ∈ pF∗. (As with the local time
`, the measure P∗ is only determined up to a constant multiple: If (P∗, `)
is an exit system then so is (c−1P∗, c · `) for any constant c > 0.) Taking
Zs = e−s, F = 1− e−Tb and then F = 1{Tb=0} in (2.11) we see that

(2.12) P∗[1− e−Tb ] <∞ and P∗[Tb = 0] = 0.

Under P∗ the process (Xt)t>0 is strong Markov with semigroup (Pt). This is
a (very) special case of a result of Maisonneuve [Ma75]. Define

(2.13) Q∗t (f) = P∗[f(Xt); t < Tb] = P∗[f(Xt); t < R], t > 0, f ∈ pE∗.
It is well known and easily verified that (Q∗t ) is an entrance law for (Qt) (the
semigroup of the killed process (X,Tb)); that is, Q∗t+s = Q∗tQs. Also, for each
t > 0, the measure Q∗t is carried by Eb := E\{b} and Q∗t 1Eb = P∗[t < R] <∞
because (by (2.12))

∞ > P∗[1− e−Tb ] ≥ P∗[1− e−R] ≥ (1− e−t)P∗[t < R].

(2.14) Proposition. Define

(2.15) V λ∗ (f) :=
∫ ∞

0

e−λtQ∗t (f) dt = P∗
∫ R

0

e−λtf(Xt) dt, λ ≥ 0, f ∈ pE∗.

Then

(2.16) Uλf(b) =
γf(b) + V λ∗ (f)

g(λ)
, λ > 0, f ∈ pE∗.
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Proof. Let f and λ be as above. Then

Uλf(b) = Pb

∫ ∞
0

e−λtf(Xt)1b(Xt) dt+ Pb
∑
s∈G

∫ s+R◦θs

s

e−λtf(Xt) dt.

The first term on the right is just f(b)Uλ1b(b) = γf(b)uλ(b) because of (2.9).
Using (2.11) the second term on the right reduces to

Pb
∑
s∈G

e−λs

[∫ R

0

e−λtf(Xt) dt

]
◦θs = V λ∗ (f)uλ(b).

The assertion now follows because uλ(b) = [g(λ)]−1. �

The next result concerns the last exit time from b, namely L := supM (with
the convention that sup ∅ = 0). Observe that Pb[L > 0] = Pb[Tb <∞] = 1.

(2.17) Proposition. If λ > 0, then

(2.18) Pb[e−λL] = P∗[Tb =∞]/g(λ)

and

(2.19) Pb[e−λL;L = ζ] = P∗[ζ = 0]/g(λ).

In particular,

(2.20) δ = P∗[Tb =∞] ≥ P∗[ζ = 0],

and Pb[L <∞] is 0 or 1 according as δ = 0 or δ > 0.

Proof. Observe that L is the unique point s ∈ G for which Tb◦θs = ∞.
Therefore, by (2.11),

Pb[e−λL] = Pb
∑
s∈G

e−λs1{Tb=∞}◦θs

= uλ(b) ·P∗[Tb =∞],

proving (2.18). A similar computation proves (2.19) once we notice that
s = L = ζ < ∞ if and only if s ∈ G and ζ◦θs = 0. Multiplying both sides
of (2.18) by g(λ) and then sending λ → 0 we obtain (on account of (2.8))
δ · Pb[L < ∞] = P∗[Tb = ∞], proving (2.20) when δ = 0. As in the proof
of (2.10), Pb[τ(t) = ∞] = 1 − e−δt for t > 0. Because the closed range of
the subordinator τ coincides with the closure of the visiting set {t : Xt = b},
we have the inclusion {τ(t) = ∞} ⊂ {L < ∞}, for each t > 0. Therefore, if
δ > 0,

Pb[L <∞] ≥ Pb

[ ∞⋃
n=1

{τ(n) =∞}

]
=↑ lim

n
Pb[τ(n) =∞] = lim

n
(1− e−δn) = 1,
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proving (2.20) in this case as well. The final assertion of the proposition
follows from (2.18) and (2.20). �

(2.21) Remarks. (a) Letting λ → 0 in (2.19) we see that P∗[ζ = 0] =
δ ·Pb[ζ = L <∞]. This implies that when δ > 0 there is no killing at b (i.e.,
Pb[L = ζ <∞] = 0) if and only if P∗[ζ = 0] = 0.

(b) Because g(λ)−1 = Pb
∫∞

0
e−λt d`t, we can invert the Laplace transform

in (2.18) to obtain

Pb[L ≤ t] = δ ·Pb[`t], t ≥ 0.

(2.22) Corollary. P∗[Tb ∈ A] = ν(A), for all A ∈ B]0,∞[.

Proof. Let T = Tb during this proof, and recall that ϕ = P•[T < ∞].
Evidently R ≤ T and R = T on T < ∞; together with the terminal time
property of T this yields

V λ∗ (ϕ) = P∗
∫ R

0

e−λt1{T◦θt<∞} dt(2.23)

= P∗
∫ T

0

e−λt1{T<∞} dt = λ−1P∗
[
1− e−λT ;T <∞

]
.

Thus, by (2.16),

(2.24) g(λ) · λUλϕ(b) = γλ+ P∗[1− e−λT ;T <∞], λ > 0.

On the other hand

λUλϕ(b) = λPb

∫ ζ

0

e−λt1{T<∞}◦θt dt

= λPb

∫ ζ

0

e−λt1{L>t} dt

= Pb[1− e−λL].

Combining this with (2.18), (2.20), and (2.24) we find that

(2.25) g(λ) = δ + γλ+ P∗[1− e−λT ;T <∞], λ > 0.

Now define h(t) = ν(]t,∞[). Then

λ

∫ ∞
0

e−λth(t) dt =
∫

]0,∞[

(1− e−λt) ν(dt)
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by Fubini’s theorem. On the other hand, by (2.25) and (2.7),

λ

∫ ∞
0

e−λtP∗[t < T <∞] dt = P∗
[∫ T

0

λe−λt dt ;T <∞

]
= P∗

[
1− e−λT ;T <∞

]
=
∫ ∞

0

(1− e−λt) ν(dt).

Both h(t) and P∗[t < T <∞] are finite and right continuous on ]0,∞[, hence
equal functions of t by the uniqueness theorem for Laplace transforms. The
assertion now follows from the monotone class theorem. �

(2.26) Corollary. P∗[R =∞] = δ ·Pb[ζ =∞].

Proof. Since λV λ∗ (1Eb) = P∗[1 − e−λR], P∗[R = ∞] = limλ→0 λV
λ
∗ (1Eb).

Also, from (2.16), λUλ1(b) = [γλ + λV λ∗ (1Eb)]/g(λ). As λ → 0, λUλ1(b) =
Pb[1 − e−λζ ] → Pb[ζ = ∞] and g(λ) → δ. Hence P∗[R = ∞] = δ · Pb[ζ =
∞]. �

3. Excursions and duality

We now fix an excessive measure m on (E, E) to serve as background mea-
sure. Thus m is σ-finite and mPt ≤ m for all t. It is known that mPt ↑ m
(setwise) as t ↓ 0; see [DM87, XII, 36–37]. (The existence of m is a mild
assumption and, as we shall see in Theorem (4.5), not really an assumption
at all if b is accessible from all points of E.)

Associated with m and (Pt) is the Kuznetsov process ((Yt)t∈R, Qm). We
shall make no explicit use of this process except in the appendix, but we
suppose (without loss of generality) that (Xt,Px) is the realization of (Pt)
described on p. 53 of [G90]. Similarly the moderate Markov left-continuous
dual process (X̂t, P̂x) associated with X and m is as described on p. 106 of
[G99]. See also [Ma93] or [Fi87] where somewhat different notation is used.
Let P̂tf = P̂•[f(X̂t)] and Ûλf =

∫∞
0
e−λtP̂tf dt = P̂•

∫∞
0
e−λtf(X̂t) dt denote

the semigroup and resolvent of X̂. This semigroup and resolvent are linked
to those of X by the duality formulas

(3.1) (Ptf, g) = (f, P̂tg) and (Uλf, g) = (f, Ûλg), f, g ∈ E∗, λ > 0, t ≥ 0,

in which (f, g) :=
∫
fg dm provided the integral exists. We emphasize that

the probabilities P̂x, x ∈ E, are only uniquely determined off a Borel m-
polar set (which may be taken to have absorbing complement); see [FG03,
(5.14)]. Therefore functions involving the dual measures P̂x are only well
defined modulo an m-polar set. This should be borne in mind when reading
formulas involving these functions. However this causes no problems with
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the duality formulas (3.1) since m does not charge m-polars, or even m-
semipolars. Finally we shall usually omit the hat ̂ in those places where it
is obviously required. For example, we write P̂•[f(Xt)] in place of P̂•[f(X̂t)].
In most of the paper we shall make no use of the explicit realizations of X
and X̂. However we shall need them in the Appendix. As mentioned in the
introduction the reader may avoid the use of the moderate Markov dual by
assuming throughout that X and X̂ are standard processes in weak duality
with respect to m.

Because b ∈ E is regular, we have Pb[Tb = 0] = 1. By (A.4), P̂b[Tb = 0] = 1
as well. The following “hatted” forms of notation introduced in Section 2 will
be used freely in what follows: ϕ̂ := P̂•[Tb <∞], X̂b := (X̂, T̂b) (the process X̂
killed at T̂b), V̂ λ and Q̂t (the resolvent and semigroup of X̂b), etc. According
to (A.7), Xb and X̂b are dual processes in the sense that (V λf, g) = (f, V̂ λg)
for f, g ∈ p E∗. See also Remark (A.8). As with their dual counterparts,
we have R̂ = T̂b on {T̂b < ∞}. Here one must be a little careful since the
measures (P̂x, x ∈ E) are only determined modulo an m-polar set. Thus this
last statement holds P̂x-a.s. for x ∈ E\N where N ∈ E is m-polar for both
X and X̂. We should emphasize that X is the object of interest; X̂ is a
convenient construct to help us analyze X.

The Revuz measure νm` of ` with respect to m is proportional to εb, the unit
mass at b; that is, νm` = c(m)εb, where 0 < c(m) < ∞. The constant c(m)
will appear in various formulas below. Of course εb is a smooth measure. Let̂̀ be the dual PCAF of X̂ with Revuz measure c(m)εb. The λ-co-potential
function

(3.2) ûλ(x) := P̂x

∫ ∞
0

e−λt d`t

is only determined off an m-polar set, but since {b} is not even semipolar, the
value ûλ(b) is uniquely determined. Moreover the dual of (2.2) holds,

(3.3) Ûλ` f(x) = ϕ̂λ(x) · Ûλ` f(b) and ûλ = ϕ̂λ · ûλ(b),

but requires a separate proof which is given in the Appendix as (A.9). From
(A.2) we obtain the important relation

(3.4) uλ(b) =
∫
E

Uλ` 1(x) εb(dx) =
∫
E

Ûλ` 1(x) εb(dx) = ûλ(b).

Recall the “stickiness” coefficient γ from (2.8) and (2.9). Taking ν = m and
µ = c(m)εb in (A.1) gives

λmUλ1b = λ(1, γ uλ) = c(m)γλÛλ1(b)→ c(m)γ as λ→∞.

But λmUλ1b ↑ m({b}) as λ→∞ and so

(3.5) γ = m({b})/c(m).
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We come now to the main result of this section. Recall from (2.7) the Lévy
exponent g(λ).

(3.6) Theorem. If λ > 0 and f ∈ pE∗, then

(i) g(λ) = δ + λ(ϕ̂, ϕλ)/c(m), and

(ii) Uλf(b) =
(f, ϕ̂λ)/c(m)

g(λ)
.

Proof. It suffices to consider strictly positive f ∈ bE such that m(f) <
∞. Fix λ > 0 and β ∈]0, λ[. From the resolvent equation Uλf(b) + (λ −
β)UβUλf(b) = Uβf(b). Then (A.1) with ν = c(m)εb and µ = m (i.e., At =
(t ∧ ζ)) implies that c(m)Uλf(b) + (λ − β) · (Uλf, ûβ) = (f, ûβ). But from
(3.3) and (3.4), ûβ = ûβ(b)ϕ̂β = uβ(b)ϕ̂β . Divide the previous equality by
uβ(b) ∈]0,∞[ and then let β ↓ 0. Since uβ(b) = g(β)−1, we deduce from (2.2)
and (2.8) that

(3.7) c(m)δ · Uλf(b) + λ(V λf, ϕ̂) + λUλf(b) · (ϕλ, ϕ̂) = (f, ϕ̂).

Because f > 0 we have (ϕλ, ϕ̂) <∞, and then rearranging (3.7) we obtain

Uλf(b)[c(m)δ + λ(ϕλ, ϕ̂)] = (f, ϕ̂− λV̂ λϕ̂).

Using the moderate Markov property and the fact that {t ≤ R̂} ∈ F̂t− one
readily checks that ϕ̂− λV̂ λϕ̂ = ϕ̂λ, which shows that

(3.8) Uλf(b) =
(f, ϕ̂λ)

c(m)δ + λ(ϕλ, ϕ̂)

in view of the previous display. Finally, by (A.1) again, we see that
c(m)Uλf(b) = (f, ûλ) = ûλ(b)(f, ϕ̂λ) = uλ(b)(f, ϕ̂λ). Thus (3.8) implies that
g(λ) = uλ(b)−1 = δ + λ(ϕλ, ϕ̂)/c(m). This proves both (i) and (ii). �

Taken together with its dual, (3.6)(ii) yields the following result.

(3.9) Proposition. (ϕλ, ϕ̂) = (ϕ, ϕ̂λ).

Proof. From (A.11), Ûλf = V̂ λf + ϕ̂λ · Ûλf(b) for λ > 0 and f ∈ pbE∗.
Now arguing as in the proof (3.6)(ii) we find that Ûλf(b)[c(m)δ+λ(ϕ̂λ, ϕ)] =
(f, ϕλ) since ûβ(b) = uβ(b) ↑ δ−1 as β ↓ 0. But Ûλf(b) = c(m)−1(f, uλ) =
c(m)−1uλ(b)(f, ϕλ) and so g(λ) = uλ(b)−1 = δ + λ(ϕ̂λ, ϕ)/c(m). Combining
this with (3.6)(i) we obtain (ϕλ, ϕ̂) = (ϕ̂λ, ϕ). �

(3.10) Remark. Since (ϕλ, ϕ̂) = c(m)uλ(b)−1Ûλϕ̂(b) and (ϕ̂λ, ϕ) =
c(m)ûλ(b)−1Uλϕ(b) and uλ(b) = ûλ(b), we see that (3.9) is equivalent to
Uλϕ(b) = Ûλϕ̂(b).
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We are now going to develop a formula that relates δ to the energy func-
tional Lb of the killed process Xb = (X,Tb). We refer the reader to [G90,
§3] for general information about the energy functional. A σ-finite measure
ξ is an Xb-excessive measure provided λξV λ ≤ ξ on Eb = E\{b}, which is
the state space of Xb, since Px[R > 0] = 1 if x 6= b. If ξ is an Xb-excessive
measure and f an Xb-excessive function, then

(3.11) Lb(ξ, f) := sup{µ(f) : µV ≤ ξ}.
If ξ is purely excessive for Xb (that is, ξQt(B) ↓ 0 as t→∞ whenever B ∈ E
and ξ(B) <∞) then (3.6) of [G90] states that

(3.12) Lb(ξ, f) =↑ lim
λ→∞

λ〈ξ − λξV λ, f〉.

Define ψ := 1− ϕ = P•[Tb =∞]. Since Qtψ = P•[Tb =∞, t < R] ↑ ψ on Eb
as t ↓ 0, the function ψ is Xb-excessive. (More precisely, the restriction of ψ
to Eb is Xb-excessive; note that ψ(b) = 0.) Now

Q̂tϕ̂ = P̂•[t < T̂b <∞] ≤ ϕ̂,

and in particular Q̂tϕ̂ → 0 as t → ∞. Let m0 := ϕ̂m
∣∣
Eb

. If f ∈ pE with

m(f) < ∞ and f(b) = 0, then m0Qt(f) = (ϕ̂, Qtf) = (Q̂tϕ̂, f) ≤ m0(f) and
m0Qt(f)→ 0 as t→∞. Therefore m0 = ϕ̂m

∣∣
Eb

is a purely excessive measure
for Xb, and so from (3.12)

(3.13) Lb(m0, ψ) =↑ lim
λ→∞

λ〈m0 − λm0V
λ, ψ〉 =↑ lim

λ→∞
λ(ϕ̂− λV̂ λϕ̂, ψ).

The last equality is valid because ψ(b) = 0 andm0−λm0V
λ = (ϕ̂−λV̂ λϕ̂)m as

σ-finite measures on Eb. (In general, it is not the case that 〈m0−λm0V
λ, ψ〉 =

(ϕ̂, ψ)− λ(V̂ λϕ̂, ψ).) Since ϕ̂λ = ϕ̂− λV̂ λϕ̂, it follows that

(3.14) Lb(m0, ψ) =↑ lim
λ→∞

λ(ϕ̂λ, ψ).

We are now prepared to state the promised result relating δ and Lb. Recall
from (2.20) that δ = P∗[Tb =∞].

(3.15) Theorem.

δ = c(m)−1Lb(m0, ψ) + lim
λ→∞

g(λ)[1− λUλ1(b)](3.16)

= c(m)−1Lb(m0, ψ) + P∗[ζ = 0].

Consequently,

(3.17) Lb(m0, ψ) = c(m)P∗[ζ > 0, Tb =∞].

Proof. From (3.8) and (3.9)

(3.18) Uλ1(b) =
(ϕ̂λ, 1)

c(m)δ + λ(ϕ̂λ, ϕ)
=

(ϕ̂λ, 1)
c(m)δ − λ(ϕ̂λ, ψ) + λ(ϕ̂λ, 1)

.
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But λUλ1(b) ≤ 1 and g(λ) = δ+λ(ϕ̂λ, ϕ)/c(m) <∞ which forces (ϕ̂λ, 1) <∞.
Now (ϕ̂λ, 1) = ûλ(b)−1(ûλ, 1) = g(λ)c(m)Uλ1(b). Substituting this into the
last display we find

(3.19) δ = λ(ϕ̂λ, ψ)/c(m) + g(λ)[1− λUλ1(b)].

Letting λ→∞ establishes the first equality in (3.16). To see the second notice
that on the event {ζ < ∞}, we have z = ζ(ω) if and only if z = s + ζ(θsω)
where s is the unique element of G(ω) for which Tb(θsω) =∞, and so

1− λUλ1(b) = Pb[e−λζ ]

= Pb
∑
s∈G

e−λse−λζ◦θs1{Tb=∞}◦θs

= P∗[e−λζ ;Tb =∞] · uλ(b).

Therefore

(3.20) g(λ)[1− λUλ1(b)] = P∗[e−λζ ;Tb =∞].

The right side of (3.20) decreases to P∗[ζ = 0, Tb = ∞] = P∗[ζ = 0] as
λ→∞, and this gives the second equality in (3.16) �

(3.21) Remarks. (a) Theorem (3.15) tells us that Lb(m0, ψ) ≤ c(m)δ <
∞. Since λ−1g(λ) → γ < ∞ as λ → ∞, a sufficient condition that δ =
Lb(m0, ψ)/c(m) is that λ[1 − λUλ1(b)] → 0 as λ → ∞, and this condition is
necessary if γ > 0. If γ = 0, then the condition lim supλ→∞ λ[1− λUλ1(b)] <
∞ suffices.

(b) The formula (2.20) identifies δ as the (local time) rate at which a
final (infinite duration) excursion appears, thereby terminating the visiting
set {t : Xt = b}. Formulas (3.16) and (3.17) indicate that P∗[ζ = 0] ≤ δ is the
rate at which the process X is killed at b, while Lb(m0, ψ)/c(m) is the rate of
appearance of an excursion in which the process wanders away from b, never
to return. See Remark (2.21)(a). In particular, δ = c(m)−1Lb(m0, ψ) if and
only if there is no killing at b.

It is easy to check that the measure ϕ̂m is excessive for X. Indeed, ϕ̂m
is the balayage of m on the singleton {b}; see Proposition (A.3) and the
discussion preceding it in the Appendix. Let mb denote the restriction of m
to Eb. Then

(3.22) V λ∗ = c(m)−1ϕ̂λmb, λ ≥ 0,

by (2.16) and (3.6). In the sequel we shall write V∗ for V 0
∗ .

(3.23) Corollary. The entrance law (Q∗t )t>0 is uniquely determined by
the measure c(m)−1m0.
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Proof. Note that ϕ̂mb = m0 = ϕ̂m|Eb is a purely excessive measure
for (Qt). See the discussion just before (3.13). Moreover m0 = c(m)V∗ =
c(m)

∫∞
0
Q∗t dt. It is well-known that a purely excessive measure is the in-

tegral of a uniquely determined entrance law; see, e.g., [G90, (5.25)]. This
establishes the corollary. �

(3.24) Remark. If ζ̂ =∞ so that T̂b = R̂, then c(m)−1m0(= c(m)−1ϕ̂mb)
and the entrance law (Q∗t ) are uniquely determined by the killed process X̂b.

We conclude this section with a brief discussion of the resolvent decompo-
sition resulting from (2.2), (3.8), (3.9), (2.16), (2.23), and (2.25):

Uλf(x) = V λf(x) + ϕλ(x)
(ϕ̂λ, f)

c(m)δ + λ(ϕ̂λ, ϕ)
(3.25)

= V λf(x) + ϕλ(x)
γf(b) + V λ∗ (f)
δ + γλ+ λV λ∗ (ϕ)

, x ∈ E,

vis-à-vis the killed process Xb. Recalling that R (the lifetime of Xb) is equal
to Tb ∧ ζ, we see that {Tb < ∞} = {R < ∞, XR = b}. Therefore ϕλ =
P•[e−λR;XR = b] and ϕ = P•[XR = b]. Because the entrance law (Q∗t )t>0

is determined by c(m)−1ϕ̂mb, so is its Laplace transform (V λ∗ )λ≥0. Also,
γ = limλ→∞ g(λ)/λ = limλ→∞(ϕλ, ϕ̂)/c(m). Consequently, all quantities
appearing on the right side of (3.25) (except δ) are determined by the stopped
processes Xt∧R and X̂t∧R. If both ζ and ζ̂ are infinite (so that R = Tb
and R̂ = T̂b), then the resolvent (Uλ) is uniquely determined by the killed
processes since (3.16) implies that δ = Lb(m0, ψ)/c(m) in this case.

Finally, we relate the parameters of the decomposition (3.25) to the resol-
vent decomposition [R83, (7)], obtained there by purely analytic arguments.
We remark at the outset that there appears to be an unspoken assumption in
[R83], which when expressed in our notation amounts to this: Px[Tb > ζ] = 0
for all x ∈ E—in other words, the process X can be killed only when in state
b. For example, implicit in formula (6) of [R83] is the identity of P•[e−λR] and
P•[e−λTb ] (our notation). This condition implies that Px[ζ <∞, Tb =∞] = 0
for all x ∈ E, and in turn that

P∗[0 < ζ <∞;Tb =∞] = lim
t↓0

P∗[θ−1
t {ζ <∞, Tb =∞}; t < ζ](3.26)

= lim
t↓0

∫
Eb

Px[ζ <∞, Tb =∞]Q∗t (dx) = 0.

Getting to the point, Rogers’ decomposition is

(3.27) Uλf(b) =
γ0f(b) + nλ(f)

δ0 + γ0λ+ λnλ(1Eb)
,

where γ0 ≥ 0, δ0 ≥ 0, and (nλ)λ>0 is the Laplace transform of an entrance
law for (Qt). (We have written γ0 and δ0 for what Rogers calls γ and δ,
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so as to distinguish his coefficients from ours.) To streamline the discussion,
we suppose for the remainder of the section that the local time ` has been
normalized so that c(m) = 1. We start with the expression [R83, (9)] for the
numerator on the right side of (3.27):

γ0f(b) + nλ(f) = Uλf(b) ·
[
1 + (λ− β)Uβϕλ(b)

]
(here we use the assumption that ϕλ = P•[e−λR]). Our computation relies
on the following identity, in which Dt := t+ Tb◦θt:

Pb

[∫ ∞
t

e−λs d`s

]
= Pb

∫ ∞
Dt

e−λs d`s

= Pb

[
e−λDt

(∫ ∞
0

e−λu d`u

)
◦θDt

]
= Pb[e−λDt ]uλ(b).

Using the above for the fourth equality below, we have:

(λ− β)Uβϕλ(b) = (λ− β)Pb

∫ ∞
0

e−βtPXt [e−λTb ] dt

= (λ− β)Pb

∫ ∞
0

e−βte−λTb◦θt dt

= (λ− β)
∫ ∞

0

e−(β−λ)tPb[e−λ(t+Tb◦θt)] dt

= g(λ)(λ− β)
∫ ∞

0

e−(β−λ)tPb

[∫ ∞
t

e−λs d`s

]
dt

= g(λ)Pb

[∫ ∞
0

(∫ s

0

(λ− β)e−(β−λ)t dt

)
e−λs d`s

]
= g(λ)Pb

[∫ ∞
0

(e−βt − e−λt) d`s
]

= g(λ)
[
g(β)−1 − g(λ)−1

]
.

It follows that

(3.28) γ0f(b) + nλ(f) = Uλf(b) · g(λ)
g(β)

.

Using (3.28) to compare (3.27) with (3.25) we find that

(3.29) γ0 = g(β)−1γ and nλ = g(β)−1V λ∗ .

To compute δ0 we recall the definition δ0 := 1−βUβ1(b), where β > 0 is fixed
(but arbitrary). Therefore, by a computation appearing in the display above
(3.20),

(3.30) δ0 = Pb[e−βζ ] = g(β)−1P∗[ζ = 0],
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because of (3.26). This reconciles the discussion preceding (3.26) with the
observation in Remark (3.21)(b) that P∗[ζ = 0] is the rate of killing at b.

4. Excessive measures from excursions

We continue in the setting of Section 3. It follows from (3.22) and (3.5)
that

(4.1) ϕ̂m = c(m) [γεb + V∗] .

The measure ϕ̂m is X-excessive. (As noted in Section 3, it is the balayage of
m on the singleton {b}; as such the identity (4.1) has been noted already in
[FM86, (6.10)].) According to [G79, Thm. 8.1], the excessive measure γεb+V∗
is an invariant measure for (Pt) if and only if δ = 0, at least under the side
condition ζ = ∞ a.s. (The coefficient δ is denoted by h(∞) in [G79].) We
shall give a simpler proof of a sharper form of this assertion without assuming
the finiteness of ζ. Our proof relies on the following lemma. Recall that L is
the last exit time from the state b, and let L̂ := sup{t ≥ 0 : X̂t = b} denote
the dual object.

(4.2) Lemma. The distribution of L under Pb is the same as the distri-
bution of L̂ under P̂b.

Proof. As noted already in the proof of (2.22),

Pb[e−λL] = 1− λUλϕ(b),

and by the same token

P̂b[e−λL] = 1− λÛλϕ̂(b).

But Ûλϕ̂(b) = Uλϕ(b)—see the remark following the proof of (3.9)—and so
Pb[e−λL] = P̂b[e−λL] for all λ > 0. �

(4.3) Proposition. The excessive measure ϕ̂m is invariant for (Pt) if
δ = 0, otherwise it is purely excessive.

Proof. Evidently ϕ̂m is invariant (resp. purely excessive) for (Pt) if and
only if P̂tϕ̂ = ϕ̂, m-a.e. for all t > 0 (resp. lims→∞ P̂sϕ̂ = 0, m-a.e.). Define
σ̂ :=↓ lims→∞ P̂sϕ̂. Then σ̂ is invariant for (P̂t). Since {T̂b ◦ θ̂t <∞} = {L̂ >
t}, σ̂ = lims→∞ P̂•[L > s] = P̂•[L = ∞]. Now T̂b < ∞ on {L̂ = ∞} and so
using the moderate Markov property at the X̂-predictable time T̂b+ε (ε > 0),
we have

σ̂ = P̂•[L =∞, Tb + ε <∞] = P̂•[σ̂(XTb+ε) : Tb <∞].

Upon letting ε ↓ 0 we see as in the proof of (A.9) that σ̂ = P̂b[L = ∞]ϕ̂,
m-a.e. But (4.2) tells us that P̂b[L = ∞] = Pb[L = ∞], and (by the final
assertion of (2.17)) Pb[L <∞] is equal to 0 or 1 according as δ = 0 or δ > 0.
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Thus σ̂ = ϕ̂ and hence ϕ̂m is (Pt) invariant if and only if δ = 0, and σ̂ = 0,
m-a.e. if δ > 0. �

There is a classical construction, going back to T. Harris [H56] in the
context of Markov chains, of an invariant measure as the mean occupation
measure of an excursion. The same construction, in the context of right
processes, has been discussed by Getoor [G79, §8] (who credits the result to
M. Silverstein). The idea is simple: notice that the right side of (4.1) depends
on the excessive measure m only through the constant c(m). So let us forget
about m and use the right side of (4.1) to define a measure on (E, E):

(4.4) ξ := γεb + V∗,

where (`,P∗) is an exit system for the excursions from b, as described in
Section 2. In fact this measure is a special instance of a general construction
found in [FG88, §5], which is concerned with inverting the map m 7→ νmA from
excessive measure m to Revuz measure νmA of a general PCAF A of X. The
following result summarizes things in our situation.

(4.5) Theorem. Let the measure ξ be defined as in (4.4). Then
(i) ξPt ≤ ξ for all t > 0;
(ii) ξ is σ-finite on {ϕ > 0};
(iii) ξ is X-excessive if and only V∗ is σ-finite on Eb.

Let us now suppose that ξ is σ-finite, hence X-excessive. Then by [FG88,
(5.11)], the balayage of ξ on {b} is equal to ξ. In other words,

(4.6) ϕ̂ξ · ξ = ξ,

where ϕ̂ξ(x) := P̂x
ξ [Tb < ∞], and P̂x

ξ is the law of the moderate Markov
dual process (started at x) when the duality measure is taken to be ξ. Thus,
ϕ̂ξ = 1, ξ-a.e. Moreover, ξ is a (Pt)-invariant measure if and only if δ = 0.

5. Examples

In this section we present several simple examples illustrating some of the
results of Sections 3 and 4. To simplify things we normalize the local time `
so that c(m) = 1.

(5.1) Example. Let B = (Bt) be Brownian motion on R and define
Xt = Bt + µt where µ > 0. Thus X = (Xt) is Brownian motion with
constant drift µ to the right. Then X and X̂t = Bt − µt are in classical
duality with respect to Lebesgue measure, m, on R. Let b = 0, T = T0 and
β = (µ2 + 2λ)1/2. Then one easily calculates that

ϕλ(x) =

{
e−(µ+β)x, x > 0,
e−(µ−β)x, x ≤ 0,
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and

ϕ(x) =

{
e−2µx, x > 0,
1, x ≤ 0.

The dual object ϕ̂λ is obtained by replacing µ by −µ when λ > 0, and

ϕ̂(x) =

{
1, x > 0,
e2µx, x ≤ 0.

Thus one finds

(5.2) (ϕ̂λ, ϕ) =
2

µ+ β
= (ϕλ, ϕ̂).

Moreover (ϕ̂λ, ψ) = (ϕ̂λ, 1− ϕ) = µ/λ. Consequently from (3.6), (3.14), and
(3.21), L0(m0, ψ) = µ > 0 and

(5.3) g(λ) = µ+
2λ

µ+ (µ2 + 2λ)1/2
.

This reduces to g(λ) =
√

2λ when µ = 0, the familiar exponent for the inverse
local time for Brownian motion. The entrance law (Q∗t ) is also easily found.
Since the Laplace transform of Q∗t (f) is (ϕ̂λ, 1E0f) by (3.22), inverting the
Laplace transform one finds that Q∗t (dx) = q(t, x)dx, where

(5.4) q(t, x) =
|x|√
2πt3

eµxe−µ
2t/2e−x

2/2t.

Again this reduces to a well-known entrance law for Brownian motion when
µ = 0.

(5.5) Example. In the resolvent decomposition

(5.6) Uλf(b) =
γf(b) + V λ∗ (f)
δ + γλ+ λV λ∗ (ϕ)

,

the ingredients ϕ = P•[Tb < ∞] = P•[XR = b] and V λ∗ =
∫∞

0
e−λtQ∗t dt are

determined by the stopped process (Xt∧R)t≥0 and the entrance law (Q∗t )t>0.
In this example and the next we examine the extent to which γ and δ are free
parameters.

Fix γ̃ ≥ 0 and define a PCAF of X by the formula

(5.7) At = (t ∧ ζ) + (γ̃ − γ)`t, t ≥ 0.

That At is increasing follows from (2.9): If 0 ≤ s ≤ t,

(5.8) At −As ≥
∫ t

s

1b(Xs) ds+ (γ̃ − γ)(`t − `s) = γ̃(`t − `s).

Let us now use A to time change X. Thus define

(5.9) ρ(t) := inf{s > 0 : As > t}, t ≥ 0,
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and

(5.10) X̃t := Xρ(t), t ≥ 0.

It is standard that X̃ is a right Markov process. The PCAF A is strictly
increasing if γ̃ > 0, and even if γ̃ = 0 provided b is not a holding point. In
either of these cases the point b is regular for X̃, with local time at b given
naturally by

(5.11) ˜̀
t := `ρ(t).

Observe that

(5.12)
∫ t

0

1b(X̃s) ds =
∫ ρ(t)

0

1b(Xu) dAu = γ̃ ˜̀
t.

Since the time change has no effect on X during excursions from b, it is not
surprising (and not difficult to verify) that the resolvent of X̃ is given by

(5.13) Ũλf(x) = V λf(x) + ϕλ(x)
γ̃f(b) + V λ∗ (f)
δ + γ̃λ+ λV λ∗ (ϕ)

.

In short, by making a suitable time change one can alter the “stickiness”
parameter γ to be any non-negative real γ̃ (with the proviso that γ̃ > 0 if b is
a holding point), while leaving everything else unchanged.

(5.14) Example. We now consider alteration of the parameter δ in (5.6).
To this end we employ the resurrection procedure discussed in [Me75]. Run
the process X until it dies. If ζ = L, then restart the process in state b at
that time and continue until the next death, if any. At the second death
resurrect the process again, but only if ζ(2) = L(2) (where ζ(2) denote the
additional lifetime due to the first resurrection and L(2) has the analogous
meaning). Continue in this way forever, or until there occurs an excursion
that dies away from b. Let us use X to denote the process so constructed; this
is an instance of a general construction appearing in [Me75, §1], our “noyau
de renaissance” being the kernel N(ω, dx) = 1{ζ=L}(ω)εb(dx). We evidently
have (employing the obvious notation)

(5.15) P tf(x) = Ptf(x) +
∫

]0,t]

Px[ζ ∈ ds; ζ = L]P t−sf(b),

and so (by (2.19))

(5.16) U
λ
f(x) = Uλf(x) +

P∗[ζ = 0]
g(λ)

U
λ
f(b).

Therefore

(5.17) U
λ
f(x) = V λf(x) + ϕλ(x)U

λ
f(b),
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where

U
λ
f(b) = Uλf(b)/[1−P∗[ζ = 0]g(λ)−1](5.18)

=
γf(b) + V λ∗ (f)

g(λ)
· g(λ)
g(λ)−P∗[ζ = 0]

=
γf(b) + V λ∗ (f)

δmin + γλ+ λV λ∗ (ϕ)
,

and

(5.19) δmin := δ −P∗[ζ = 0] = P∗[ζ > 0, Tb =∞] = Lb(m0, ψ),

in view of (3.16). In short, suppression of all killing at b replaces δ by δmin.

We now show that any other δ̃ ≥ δmin is possible in (5.6). To save on ink
we suppose that the resurrection procedure of the preceding paragraph has
been performed and that we are starting with a process satisfying δ = δmin.
(In general, the discussion that follows must be applied to X.) Suppose
that δ̃ > δmin. Define k := δ̃ − δmin. Let us compute the resolvent (call it
(Uλ(k))) of the subprocess X(k) = (X, e−k`) corresponding to the multiplicative
functional e−k`t . Using the fact that ` is constant on the excursion intervals
from b, we have

Pb

∫ ∞
0

e−λte−k`tf(Xt) dt(5.20)

= f(b)Pb

∫ ∞
0

e−λte−k`tγ d`t

+ Pb
∑
s∈G

e−λse−k`s

(∫ R

0

e−λtf(Xt) dt

)
◦θs

=
[
γf(b) + V λ∗ (f)

]
·Pb

∫ ∞
0

e−λte−k`t d`t.

But

Pb

∫ ∞
0

e−λte−k`t d`t = Pb

∫ ∞
0

e−λτ(u)e−ku du(5.21)

=
∫ ∞

0

e−ku−g(λ)u du

= [k + g(λ)]−1,

and

(5.22) k + g(λ) = k + δmin + γλ+ λV λ∗ (ϕ) = δ̃ + γλ+ λV λ∗ (ϕ).

Therefore

(5.23) Uλ(k)f(b) =
γf(b) + V λ∗ (f)
δ̃ + γλ+ λV λ∗ (ϕ)

.
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In summary, the parameter δ is free subject only to the constraint that it be
at least δmin given in (5.19). As we noted just above (3.26), Rogers [R83]
assumes that P•[Tb > ζ] = 0; in view of (3.26) this means that in his context,

(5.24) δmin = P∗[ζ > 0, Tb =∞] = P∗[ζ = Tb =∞],

which is consistent with the discussion at the end of Section 3.

Appendix

In this appendix we shall prove the facts about the moderate Markov left-
continuous dual process X̂ of our Borel right process that, to the best of our
knowledge, are not readily available in the literature. Since this appendix is
intended for those interested in Borel right processes we shall not repeat the
basic definition of how X̂ is represented in terms of the stationary process Y
and the Kuznetsov measure Qm associated with X and m. A good summary
of the relevant facts is contained in Section 2 of [G99]. However we should
emphasize one point. The probabilities P̂x are only uniquely determined off an
m-polar set—actually off an m-exceptional set, see [FG03, (5.14)]. Therefore
functions involving the dual measures P̂x are only determined modulo m-
polars. This causes no difficulties when such functions are integrated with
respect to a measure that doesn’t charge m-polars. We shall not mention
this explicitly in what follows, but it should be kept in mind when reading
formulas involving the dual process.

We remind the reader of the “one hat” convention discussed below (3.1).
Let µ be a smooth measure as in Section 3 of [FG96] and κ = κµ be

the associated diffuse optional copredictable homogeneous random measure
(HRM) of Y . Let A and Â be the corresponding positive continuous additive
functionals of X and X̂ respectively. Then µ is the Revuz measure of both A
and Â. One may suppose that At = κ]0, t] if t < ζ and Ât = κ]− t, 0[ if t < ζ̂.
Our first result extends (3.7) and (4.6) of [G99].

(A.1) Proposition. Let µ and ν be smooth measures and let A, Â and
B, B̂ correspond to µ and ν respectively. If f, g ∈ pE∗ and λ ≥ 0, then∫

E

f · UλAg dν =
∫
E

g · ÛλBf dµ

where UλAf = P•
∫∞

0
e−λtf(Xt) dAt and ÛλBf = Ûλ

B̂
f = P̂•

∫∞
0
e−λtf(Xt) dBt

Proof. This result when one of the measures, say ν, is absolutely continuous
with respect to m is contained in [G99, (4.6)] or, more generally, in [FG03,
(5.12)]. In this case it takes the form (f, UλAg) =

∫
E
g · Ûλfdµ, and dually

(f, ÛλAg) =
∫
g · Uλfdµ. It suffices to consider λ > 0 and f, g ∈ bpE∗; also,

by replacing µ and ν by gµ and fν we can reduce to the case f = 1 = g.
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Our task then is to show that ν(UλA1) = µ(ÛλB1). Now βÛβ+λÛλB1 ↑ ÛλB1 as
β →∞ since ÛλB1 is λ-coexcessive. Therefore using the special case discussed
above,

µ(ÛλB1) = lim
β→∞

βµ
(
Ûβ+λÛλB1

)
= lim
β→∞

β
(
ÛλB1, Uβ+λ

A 1
)

= lim
β→∞

βν(UλUβ+λ
A 1).

A simple calculation shows that βUλUβ+λ
A 1 ≤ UλA1, and so µ(ÛλB1) ≤ ν(UλA1).

A similar argument gives ν(UλA1) ≤ µ(ÛλB1), and this establishes (A.1). �

Taking µ = ν in (A.1) we have

(A.2)
∫
E

f · UλA g dµ =
∫
E

g · ÛλAf dµ, f, g ∈ pE∗.

The following fact is needed in Section 3 only for Tb, but is valid much
more generally. Recall from [G90, §4] that the balayage R{b}m of the excessive
measure m on the singleton {b} is defined via the energy functionals Lλ, λ > 0,
of X as

R{b}m(f) :=↑ lim
λ↓0

Lλ(m,Pλ{b}U
λf), f ∈ pE ,

where Pλ{b}u := P•[e−λTbu(XTb)] = ϕλ ·u(b). The measure R{b}m is excessive
and is dominated by m.

(A.3) Proposition. R{b}m = ϕ̂m, where ϕ̂ = P•[Tb <∞].

Proof. By [G90, (7.9)],

R{b}m(f) = Qm[f(Y0); τb < 0],

where τb := inf{t : Yt = b}. But on {α < 0 < β} we have {τb < 0} =
θ̌−1

0 {T̂b <∞}, so

Qm[f(Y0); τb < 0] = Qm

[
f(Y0)P̂Y0 [Tb <∞]

]
= Qm[f(Y0)ϕ̂(Y0)] = m(fϕ̂). �

(A.4) Proposition. If b is regular for X, then P̂b[Tb = 0] = 1.

Proof. Let ` be the local time at b and κ the corresponding HRM normal-
ized so that the Revuz measure of `, or equivalently, of κ, is εb. Now κ is
copredictable and κ doesn’t charge α. If h : R →]0,∞[ with

∫
R
h(t)dt = 1,
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then

Qm

∫
R

h(t)1{T̂b◦θ̌t=0}κ(dt) = Qm

∫
R

h(t)P̂Y (t)[Tb = 0]κ(dt)

= P̂b[Tb = 0]εb(1)

= P̂b[Tb = 0],

where the second equality comes from [G90, (8.21)] and the fact that the HRM
κ is carried by {t : Yt = b}, Qm-a.e. On the other hand if Z = {t : Yt = b}−
where the “−” denotes closure, Z ∩ {t : T̂b◦θ̌t > 0} = Z ∩ {t : ∃ ε > 0, ]t −
ε, t[∩Z = φ}. Hence a t ∈ Z ∩ {t : T̂b◦θ̌t > 0} is the right endpoint of a
maximal open interval in R\Z. But there are at most a countable number of
such intervals and since κ is diffuse

Qm

∫
R

h(t)1{T̂b◦θ̌t=0}κ(dt) = εb(1) = 1.

Consequently P̂b[Tb = 0] = 1. �

(A.5) Remark. In general Blumenthal’s zero-one law does not hold for
X̂. Hence P̂b[Tb = 0] = 1 is not equivalent to P̂b[Tb = 0] > 0. Since {b} is
not m-semipolar, P̂b is uniquely determined.

The next result complements (A.4).

(A.6) Proposition. If b is regular, then P̂•[T̂b = 0] = 0 on Eb\S where
S is m-semipolar. Recall that Eb = E\{b}.

Proof. Let Γ = {x : d(x, b) > ε}, where d is a metric compatible with the
topology of E and ε > 0. Let g > 0 with m(g) <∞. Set f = g1Γ so that f > 0
on Γ and m(f) < ∞. Let µ be a finite measure not charging m-semipolar
sets. Then a fundamental theorem of the first-named author states that there
exists a diffuse optional copredictable HRM, κ, whose Revuz measure is µ. A
proof may be fashioned from Section 5, especially (5.22), of [Fi87]. See also
(3.10) and (3.11) of [FG03] in this connection. As in the proof of (A.4),

Qm

∫
R

h(t)P̂Y (t)[Tb = 0]f(Yt)κ(dt) = Qm

∫
R

h(t)1{T̂b◦θ̌t=0}f(Yt)κ(dt).

If T̂b ◦ θ̌t = 0 and f(Yt) > 0, then d(Yt, b) ≥ ε and for every η > 0, ]t −
η, t[∩Z 6= ∅. Consequently t is a discontinuity point of s→ Ys. But Y is right
continuous and E is a Lusin space and so Y has at most a countable number of
discontinuities. Thus, since κ is diffuse, the above integrals vanish. Moreover∫
R

P̂x[Tb = 0]f(x)µ(dx) is precisely the first integral in the above display; see
[G90, 8.21)]. Since µ is an arbitrary finite measure not charging m-semipolars,
it follows from a theorem of Dellacherie [D88, p. 70] that {x ∈ Γ : P̂x[Tb =
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0] > 0} is m-semipolar. Letting ε ↓ 0 through a sequence completes the proof
of (A.6). �

(A.7) Proposition. Fix B ∈ E and define, for λ ≥ 0 and f ∈ pE∗,

V λf = P•
∫ TB

0

e−λtf(Xt)dt and V̂ λf = P̂•
∫ TB

0

e−λtf(Xt)dt.

Then (f, V λg) = (V̂ λf, g).

Proof. It suffices to suppose f and g bounded. Then

Pm[f(X0)g(Xt);TB < t] = Pm [f(X0)g(Xt);Xs ∈ B for some s ∈]0, t[ ]

= Qm [f(Y0)g(Yt);Ys ∈ B for some s ∈]0, t[ ]

= Qm [f(Y−t)g(Y0);Ys ∈ B for some s ∈]− t, 0[ ]

= P̂m[g(X̂0)f(X̂t); T̂B < t].

Multiply by e−λt and integrate over [0,∞[ to obtain∫
E

m(dx)f(x)Px

∫ ∞
TB

e−λtg(Xt)dt =
∫
E

m(dx)g(x)P̂x

∫ ∞
TB

e−λtf(Xt)dt.

Now Uλf = V λf + P•
∫∞
TB
e−λtf(Xt)dt with a similar formula for Ûλf and

since (f, Uλg) = (Ûλf, g) we obtain (f, V λg) = (V̂ λf, g). �

(A.8) Remark. Of course Uλf = V λf + Pλ
BU

λf since X has the strong
Markov property. However since T̂B need not be predictable for X̂, it does
not follow that P̂•

∫∞
TB
e−λtf(Xt)dt = P̂λ

BÛ
λf off an m-polar set.

We next prove (3.3).

(A.9) Proposition. Using the notation of (3.3), Ûλ` f = ϕ̂λÛλ` f(b) if
(i) λ ≥ 0 and f ∈ pE∗ or (ii) λ > 0 and f ∈ bpE∗.

Proof. It suffices to prove this for λ > 0 and f ∈ bpE∗. Now dˆ̀
t is carried

by {t : X̂t = b}, so

Ûλ` f = P̂•
∫ ∞
Tb

e−λtf(Xt)d`t = lim
ε↓0

P̂•
∫
Tb+ε

e−λtf(Xt)d`t.

But for ε > 0, T̂b + ε is predictable for X̂ and so by the moderate Markov
property, P̂•

∫
Tb+ε

e−λtf(Xt)d`t = P̂•[e−λ(Tb+ε)Ûλ` f(XTb+ε)]. Since Ûλ` f is

λ-coexcessive (i.e., λ-excessive for X̂), t→ Ûλ` f(X̂t) has right limits on [0,∞[
and left limits on ]0,∞[. See Lemma 2 in [CG79] and also the paragraph
above (2.6) in [G99]. There exists a sequence (tn) depending on ω̂ decreas-
ing to T̂b with X̂(tn) = b for each n, a.s. on {T̂b < ∞}. Consequently
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limε↓0 Û
λ
` f(X̂T̂b+ε

) = Ûλ`f(b) a.s. on {T̂b < ∞}. In view of the above this
establishes (A.9). �

(A.10) Remark. Of course, as explained near the beginning of this sec-
tion, (A.9) is short for Ûλ` f = ϕ̂λÛλ` f(b) off an m–polar set and Ûλ` f(b) is
uniquely determined.

A similar argument yields the following:

(A.11) Corollary. Let λ > 0 and f ∈ pbE. Then Ûλf = V̂ λf +
Ûλf(b)ϕ̂λ.
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