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STOCHASTIC FLOWS ASSOCIATED TO COALESCENT
PROCESSES III: LIMIT THEOREMS

JEAN BERTOIN AND JEAN-FRANÇOIS LE GALL

Abstract. We prove several limit theorems that relate coalescent pro-
cesses to continuous-state branching processes. Some of these theorems

are stated in terms of the so-called generalized Fleming-Viot processes,
which describe the evolution of a population with fixed size, and are
duals to the coalescents with multiple collisions studied by Pitman and
others. We first discuss asymptotics when the initial size of the popu-
lation tends to infinity. In that setting, under appropriate hypotheses,

we show that a rescaled version of the generalized Fleming-Viot process
converges weakly to a continuous-state branching process. As a corol-
lary, we get a hydrodynamic limit for certain sequences of coalescents

with multiple collisions: Under an appropriate scaling, the empirical
measure associated with sizes of the blocks converges to a (determinis-

tic) limit which solves a generalized form of Smoluchowski’s coagulation

equation. We also study the behavior in small time of a fixed coalescent
with multiple collisions, under a regular variation assumption on the tail

of the measure ν governing the coalescence events. Precisely, we prove
that the number of blocks with size less than εx at time (εν([ε, 1]))−1

behaves like ε−1λ1(]0, x[) as ε → 0, where λ1 is the distribution of the

size of one cluster at time 1 in a continuous-state branching process with
stable branching mechanism. This generalizes a classical result for the

Kingman coalescent.

1. Introduction

J. L. Doob was a pioneer in the development of the theory of martin-
gales and its applications to probability theory, potential theory or functional
analysis. The fundamental contributions that he made in this field form the
cornerstones of one of the richest veins explored in mathematics during the
last half-century. In particular, martingales and stochastic calculus provide
nowadays key tools for studying the asymptotic behavior of random processes;
see the classical books by Ethier and Kurtz [10] and Jacod and Shiryaev [12].
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In the present work, we shall apply such techniques to investigate a class of
stochastic flows related to certain population dynamics.

The general motivation for the present work is to get a better understand-
ing of the relations between the so-called coalescents with multiple collisions,
which were introduced independently by Pitman [16] and Sagitov [17], and
continuous-state branching processes. Note from [17] that coalescents with
multiple collisions can be viewed as asymptotic models for the genealogy of a
discrete population with a fixed size, and so the existence of connections with
branching processes should not come as a surprise. Such connections were al-
ready derived in [3], where the Bolthausen-Sznitman coalescent was shown to
describe the genealogical structure of a particular continuous-state branching
process introduced by Neveu, and in [6], where similar relations were ob-
tained between the so-called beta-coalescents and continuous-state branching
processes with stable branching mechanism. Here, we do not focus on exact
distributional identities, but rather on asymptotics for functionals of coales-
cent processes, where the limiting objects are given in terms of branching
processes. In order to get such asymptotics, we apply the machinery of limit
theorems for semimartingales [12] to the so-called generalized Fleming-Viot
processes, which were shown in [4] to be duals to the coalescents with multiple
collisions.

Generalized Fleming-Viot processes, which model the evolution of a con-
tinuous population with fixed size 1, have appeared in articles by Donnelly
and Kurtz [7], [8], and were studied more recently in our work [4], [5]. It
is convenient to view a generalized Fleming-Viot process as a stochastic flow
(Ft, t ≥ 0) on [0, 1], such that for each t ≥ 0, Ft : [0, 1]→ [0, 1] is a (random)
right-continuous increasing map with Ft(0) = 0 and Ft(1) = 1. We should
think of the unit interval as a population, and then of Ft as the distribution
function of a (random) probability measure dFt(x) on [0, 1]. The evolution of
the latter is related to the dynamics of the population as follows: For every
0 ≤ r1 < r2 ≤ 1, the interval ]Ft(r1), Ft(r2)] represents the sub-population
at time t which consists of descendants of the sub-population ]r1, r2] at the
initial time. The transitions of the flow are Markovian, and more precisely, for
every s, t ≥ 0, we have Ft+s = F̃s ◦ Ft, where F̃s is a copy of Fs independent
of (Fr, 0 ≤ r ≤ t). The distribution of the flow is then characterized by a
measure ν on ]0, 1] such that

∫
]0,1]

x2ν(dx) < ∞. To explain this, consider
the simple case where ν is a finite measure. Let ((Ti, Ui, ξi), i ∈ N) denote the
sequence of atoms of a Poisson random measure on [0,∞[×[0, 1]× [0, 1] with
intensity dt⊗du⊗ν(dx), ranked in the increasing order of the first coordinate.
The process (Ft, t ≥ 0) starts from F0 = Id, remains constant on the intervals
[Ti−1, Ti[ (with the usual convention that T0 = 0), and for every i ∈ N

FTi = ∆i ◦ FTi−1
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where

∆i(r) = ξi1{Ui≤r} + r(1− ξi) , r ∈ [0, 1].

In terms of the population model, this means that at each time Ti, an indi-
vidual in the population at time Ti−1 is picked uniformly at random and gives
birth to a sub-population of size ξi. Simultaneously, the rest of the population
shrinks by factor 1 − ξi, so the total size of the population remains 1. The
previous description does not apply when ν is infinite, since then the Poisson
measure will have infinitely many atoms on a finite time interval. Still, the
Fleming-Viot flow can be constructed via a suitable limiting procedure ([4],
Theorem 2).

Our first motivation for studying generalized Fleming-Viot processes came
from their remarkable connection [4] with the class of coalescents with mul-
tiple collisions considered by Pitman [16] and Sagitov [17]. To describe this
connection, fix some time T > 0 viewed as the present date at which the
population is observed, and pick a sequence of individuals labelled 1, 2, . . .
independently and uniformly over [0, 1]. For every t ≤ T , we obtain a par-
tition Π(t) of N by gathering individuals having the same ancestor at time
T − t. The process (Π(t), 0 ≤ t ≤ T ) is then a Markovian coalescent process
on the space of partitions of N. In the terminology of [16], it is a Λ-coalescent,
with Λ(dx) = x2ν(dx), started from the partition of N into singletons. As a
consequence of Kingman’s theory of exchangeable partitions, for every t ≥ 0,
each block of Π(t) has an asymptotic frequency, also called the size of the
block, and the ranked sequence of these frequencies yields a Markov process
called the mass-coalescent. As a consequence of the preceding construction,
the mass-coalescent at time t has the same distribution as the ranked sequence
of jump sizes of Ft.

The first purpose of the present work is to investigate the asymptotic
behavior of a rescaled version of the preceding population model. Specif-
ically, we consider a family (ν̃(a), a > 0) of measures on ]0, 1] such that∫

]0,1]
x2ν̃(a)(dx) <∞ for every a > 0, and the associated generalized Fleming-

Viot processes F̃ (a). For each a > 0, we rescale F̃ (a) by a factor a in space
and time, i.e., we set

F
(a)
t (r) := aF̃

(a)
at (r/a) , r ∈ [0, a], t ≥ 0 .

So the process F (a) describes the evolution of a population with fixed size a.
Roughly speaking, considering F (a) in place of F̃ (a) enables us to focus on
the dynamics of a sub-population having size of order 1/a. Denote by ν(a)

the image of ν̃(a) under the dilation x → ax, and assume that the measures
(x2∧x)ν(a)(dx) converge weakly as a→∞ to a finite measure on ]0,∞[, which
we may write in the form (x2 ∧ x)π(dx). Then Theorem 1 shows that F (a)

converges in distribution to the critical continuous-state branching process Z
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with branching mechanism

Ψ(q) =
∫

]0,∞[

(e−qx−1 + qx)π(dx) , q ≥ 0 .

As a consequence of this limit theorem, we derive a hydrodynamic limit
for the associated coalescent processes (Theorem 2). Precisely, we show that
under the same assumptions as above, for every t ≥ 0, the empirical measure
corresponding to the jumps of F̃ (a)

t (or equivalently to the block sizes in the
associated coalescent) converges, modulo a suitable rescaling, towards a de-
terministic measure λt. Informally, λt is the distribution of a cluster at time
t, that is, a collection of individuals sharing the same ancestor at the initial
time, in the continuous-state branching process with branching mechanism Ψ.
In a way analogous to the derivation of Smoluchovski’s coagulation equation
from stochastic models (see Aldous [1], Norris [15] and the references therein
for background) we prove that the family (λt, t > 0) solves a generalized
coagulation equation of the form

d〈λt, f〉
dt

=
∞∑
k=2

(−1)kΨ(k)(〈λt, 1〉)
k!

Ik(f)

where

Ik(f) =
∫

]0,∞[k
(f(x1 + · · ·+ xk)− (f(x1) + · · ·+ f(xk)))λt(dx1) . . . λt(dxk)

and f can be any continuous function with compact support on ]0,∞[ (Propo-
sition 3).

In the last part of this work, we study the small time behavior of generalized
Fleming-Viot processes and Λ-coalescents, under a regular variation assump-
tion on the measure ν (recall that Λ(dx) = x2ν(dx)). Precisely, we assume
that the tail ν([ε, 1]) is regularly varying with index −γ when ε goes to 0. We
are interested in the case when the Λ-coalescent comes down from infinity (i.e.,
for every t > 0, Πt has finitely many blocks), which forces 1 ≤ γ ≤ 2. Leaving
aside the boundary cases we suppose that 1 < γ < 2. As a consequence of
Theorem 1, we prove that the rescaled Fleming-Viot process

F εt (x) :=
1
ε
Ft/(εν([ε,1]))(εx)

converges in distribution to the continuous-state branching process with stable
branching mechanism:

Ψγ(q) =
Γ(2− γ)
γ − 1

qγ .

We then use this result to investigate the small time behavior of the size of
blocks in the Λ-coalescent. Write Nt(]0, x[) for the number of blocks with size
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less than x in the Λ-coalescent at time t. If g(ε) = (εν([ε, 1]))−1, Theorem 4
states that

sup
x∈]0,∞[

∣∣∣εNg(ε)(]0, εx[)− λ1(]0, x[)
∣∣∣ −→
ε→0

0,

in probability. Furthermore, the measure λ1 can be characterized by its
Laplace transform∫

(1− e−qr)λ1(dr) = (Γ(2− γ) + q1−γ)1/(1−γ).

Theorem 4 is analogous to a classical result for the sizes of blocks in the King-
man coalescent in small time (see Aldous [1]). The proof uses an intermediate
estimate for the total number of blocks in a Λ-coalescent, which is closely
related to the recent paper [2] dealing with beta-coalescents.

The paper is organized as follows. Section 2 gives a few preliminary re-
sults about continuous-state branching processes. In particular, the Poisson
representation (Proposition 2) may have other applications. Section 3 states
our first limit theorem for generalized Fleming-Viot processes. The derivation
of the hydrodynamic limit is developed in Section 4, which also discusses the
generalized coagulation equation for the family (λt, t ≥ 0). Finally Section 5
is devoted to the behavior in small time of generalized Fleming-Viot processes
and Λ-coalescents.

Notation. We use the notation 〈µ, f〉 for the integral of the function f
with respect to the measure µ. We denote by MF the space of all finite
measures on ]0,∞[, which is equipped with the usual weak topology. We also
denote by MR the space of all Radon measures on ]0,∞[. The set MR is
equipped with the vague topology: A sequence (µn, n ∈ N) in MR converges
to µ ∈ MR if and only if for every continuous function f :]0,∞[→ R with
compact support, limn→∞〈µn, f〉 = 〈µ, f〉.

2. Stochastic flows of branching processes

In this section, we give a few properties of continuous-state branching pro-
cesses that will be needed in the proof of our limit theorems. A critical
branching mechanism is a function Ψ : [0,∞[→ [0,∞[ of the type

(1) Ψ(q) = βq2 +
∫

]0,∞[

(
e−rq −1 + rq

)
π(dr)

where β ≥ 0 is the so-called Gaussian coefficient and π is a measure on ]0,∞[
such that

∫
(r ∧ r2)π(dr) < ∞. The continuous-state branching process with

branching mechanism Ψ (in short the Ψ-CSBP) is the Markov process with
values in R+, whose transition kernels Qt(x, dy) are determined by the Laplace
transform

(2)
∫
Qt(x, dy) e−qy = exp(−xut(q)) , x, t ≥ 0, q ≥ 0 ,
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where the function ut(q) solves

(3)
∂ut(q)
∂t

= −Ψ(ut(q)) , u0(q) = q .

The criticality of Ψ implies that a Ψ-CSBP is a nonnegative martingale. If
Z1 and Z2 are two independent Ψ-CSBP’s started respectively at x1 and x2,
then Z1 +Z2 is also a Ψ-CSBP, obviously with initial value x1 +x2. From this
additivity or branching property, we may construct a two-parameter process
Z = (Z(t, x), t, x ≥ 0), such that:

• For each fixed x ≥ 0, (Z(t, x), t ≥ 0) is a Ψ-CSBP with càdlàg paths
and initial value Z(0, x) = x.
• If x1, x2 ≥ 0, Z(·, x1 + x2) − Z(·, x1) is independent of the processes

(Z(·, x), 0 ≤ x ≤ x1) and has the same law as Z(·, x2).
These properties entail that for each fixed t ≥ 0, Z(t, ·) is an increasing

process with independent and stationary increments. Its right-continuous
version is a subordinator with Laplace exponent ut determined by (2) and
(3). By the Lévy-Khintchin formula, there exists a unique drift coefficient
dt ≥ 0 and a unique measure λt on ]0,∞[ with

∫
]0,∞[

(1 ∧ x)λt(dx) <∞ such
that

(4) ut(q) = qdt +
∫

]0,∞[

(1− e−qx)λt(dx) , q ≥ 0 .

One refers to λt as the Lévy measure of Z(t, ·). Measures λt play an important
role in this work. Informally, we may say that λt is the ‘distribution’ of the
size of the set of descendants at time t of a single individual at time 0. This
assertion is informal since λt is not a probability distribution (it may even
be an infinite measure). A correct way of stating the above (in the case
dt = 0) is as follows: Z(t, x) is the sum of the locations of the atoms of a
Poisson measure on ]0,∞[ with intensity xλt(·). Moreover, the study of the
genealogical structure of the Ψ-CSBP (see, e.g., [9]) allows one to interpret
each of these atoms as the size of a family of individuals at time t that have
the same ancestor at the initial time.

From now on, we assume that β = 0 and we exclude the trivial case π = 0.
We start by recalling in our special case an important connection between

continuous-state branching processes and Lévy processes due to Lamperti [14].
Let x > 0 be fixed, and let ξ = (ξt, t ≥ 0) denote a real-valued Lévy process
with no negative jumps, started from ξ0 = x, and whose Laplace exponent is
specified by

E [exp(−q(ξt − ξ0))] = exp tΨ(q) , q ≥ 0 .

In particular π is the Lévy measure of ξ. The criticality of the branching
mechanism Ψ ensures that the Lévy process ξ has centered increments and
thus oscillates. Hence the first passage time ζ := inf {t ≥ 0 : ξt = 0} is finite
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a.s. Next, introduce for every t ≥ 0

γ(t) =
∫ t∧ζ

0

ds

ξs
, Ct = inf {s ≥ 0 : γ(s) > t} ∧ ζ .

Then the time-changed process (ξ ◦ Ct, t ≥ 0) has the same distribution as
(Z(t, x), t ≥ 0).

It follows from this representation that (Z(t, x), t ≥ 0) is a purely discontin-
uous martingale. We can also use the Lamperti transformation to calculate
the compensator of the jump measure of this martingale. By the Lévy-Itô
decomposition, the compensator of the jump measure of ξ,∑

{t:∆ξt 6=0}

δ(t,∆ξt),

is dt ⊗ π(dx). By a time change argument, we can then deduce that the
compensator of the measure ∑

{t:∆Z(t,x) 6=0}

δ(t,∆Z(t,x))

is Z(t, x)dt⊗ π(dr).
Since (Z(t, x), t ≥ 0) is a purely discontinuous martingale, the knowledge

of the compensator of its jump measure completely determines the character-
istics of this semimartingale, in the sense of [12], Chapter II. We will need the
fact that the distribution of (Z(t, x), t ≥ 0), and more generally of the multi-
dimensional process ((Z(t, x1), Z(t, x2), . . . , Z(t, xp)); t ≥ 0) for any choice of
p and x1, . . . , xp, is uniquely determined by its characteristics.

Fix an integer p ≥ 1 and define

(5) Dp := {x = (x1, . . . , xp) : 0 ≤ x1 ≤ x2 ≤ · · · ≤ xp},

and then a σ-finite measure U(y1, . . . , yp; dz1, . . . , dzp) on Rp+\{0} for every
(y1, . . . , yp) ∈ Dp by setting, for any measurable function ϕ : Rp+ → R+ that
vanishes at 0,∫

U(y1, . . . , yp; dz1, . . . , dzp)ϕ(z1, . . . , zp)(6)

=
∫
π(dr)

∫ ∞
0

duϕ(r1{u≤y1}, . . . , r1{u≤yp}).

Proposition 1. Let (x1, . . . , xp) ∈ Dp and let (Z1, . . . , Zp) be a p-dimen-
sional semimartingale taking values in Dp, such that (Z1

0 , . . . , Z
p
0 ) = (x1,

. . . , xp). The following two properties are equivalent:

(i) The processes ((Z1
t , . . . , Z

p
t ); t ≥ 0) and ((Z(t, x1), . . . , Z(t, xp)); t ≥

0) have the same distribution.
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(ii) The process ((Z1
t , . . . , Z

p
t ); t ≥ 0) is a purely discontinuous local mar-

tingale, and the compensator of its jump measure is the measure

θ(dt, dz1 . . . dzp) = dt U(Z1
t , . . . , Z

p
t ; dz1, . . . , dzp).

Proof. The implication (i)⇒(ii) is a straightforward consequence of the re-
marks preceding the statement and the branching property of continuous-state
branching processes. We concentrate on the proof of the converse implication
(ii)⇒(i). Let q = (q1, . . . , qp) ∈]0,∞[p, and let Yt = (Y 1

t , . . . , Y
p
t ) be defined

by Y it = Zit −Zi−1
t if i ≥ 2 and Y 1

t = Z1
t . Notice that Y it ≥ 0. Using property

(ii), an application of Itô’s formula (cf. Theorem II.2.42 in [12]) yields that
the process

exp(−q · Yt)− exp(−q · Y0)

−
p∑
i=1

∫
[0,t]×[0,∞[×]0,∞[

exp(−q · Ys)
(
e−qir −1 + qir

)
1{u≤Y is }ds du π(dr)

is a local martingale. This local martingale is bounded over the time interval
[0, t] for any t ≥ 0, hence is a martingale. Taking expectations leads to

(7) E[e−q·Yt ] = E[e−q·Y0 ] +
p∑
i=1

Ψ(qi)
∫ t

0

dsE[Y is e−q·Ys ].

It is immediate to verify from (ii) that each Y i is also a nonnegative local
martingale, and so E[Y is ] ≤ E[Y i0 ] = xi − xi−1 (by convention x0 = 0). If we
set ft(q) = E[e−q·Yt ] we have

∂ft(q)
∂qi

= −E[Y it e−q·Yt ]

and so we deduce from (7) that

(8)
∂ft(q)
∂t

+ Ψ(q) · ∇ft(q) = 0 ,

where we write Ψ(q) = (Ψ(q1), . . . ,Ψ(qp)). In order to solve (8), fix t1 > 0,
and consider the function g(t) = (ut1−t(q1), . . . , ut1−t(qp)) for t ∈ [0, t1], where
ut(q) is as in (3). Since

g′(t) = (Ψ(ut1−t(q1)), . . . ,Ψ(ut1−t(qp))),

it follows that
∂ft ◦ g
∂t

=
∂ft
∂t
◦ g + g′(t) · ∇ft(g(t)) = 0

by (8). Hence ft ◦ g(t) is constant over [0, t1], and

ft1(q) = ft1(g(t1)) = f0(g(0)) = exp
(
−

p∑
i=1

(xi − xi−1)ut1(qi)
)
.
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This shows that

(Y 1
t1 , . . . , Y

p
t1)

(d)
= (Z(t1, x1), Z(t1, x2)− Z(t1, x1), . . . , Z(t1, xp)− Z(t1, xp−1))

and so

(Z1
t1 , . . . , Z

p
t1)

(d)
= (Z(t1, x1), Z(t1, x2), . . . , Z(t1, xp)).

Iterating this argument, we obtain that the processes ((Z1
t , . . . , Z

p
t ); t ≥ 0)

and ((Z(t, x1), . . . , Z(t, xp)); t ≥ 0) have the same finite-dimensional marginal
distributions. The desired result follows since both processes have càdlàg
paths. �

We now turn our attention to the representation of critical CSBP as sto-
chastic flows on [0,∞[ solving simple stochastic differential equations. On a
suitable filtered probability space (Ω,F , (Ft),P), we consider:

• an (Ft)-Poisson random measure

M =
∞∑
i=1

δ(ti,ui,ri) ,

on R+ × [0,∞[×]0,∞[, with intensity dt⊗ du⊗ π(dr),
• a collection (Xt(x), t ≥ 0), x ∈ R+ of càdlàg (Ft)-martingales with

values in R+,
• the stochastic differential equation

(9) Xt(x) = x+
∫

[0,t]×[0,∞[×]0,∞[

M(ds, du, dr) r 1{u≤Xs−(x)} .

The Poissonian stochastic integral in the right-hand side should be understood
with respect to the compensated Poisson measure M (see, e.g., Section II.1
of [12]). This stochastic integral is well defined according to Definition II.1.37
of [12], since the increasing process

t −→

(∫
[0,t]×[0,∞[×[0,∞[

M(ds, du, dr) r2 1{u≤Xs−(x)}

)1/2

is locally integrable under our assumption on π.
A pair (M, (X·(a), a ≥ 0)) satisfying the above conditions will be called a

weak solution of (9).

Proposition 2. The equation (9) has a weak solution which satisfies the
additional property that Xt(x1) ≤ Xt(x2) for every t ≥ 0, a.s. whenever
0 ≤ x1 ≤ x2. Moreover, for every such solution (M,X), for every p ∈ N and
0 ≤ x1 ≤ . . . ≤ xp, the process ((Xt(x1), . . . , Xt(xp)), t ≥ 0) has the same
distribution as ((Z(t, x1), . . . , Z(t, xp)), t ≥ 0).
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Proof. The second part of the statement is immediate from the implication
(ii)⇒(i) in Proposition 1. The first part can be deduced from Theorem 14.80
in [11] by the same arguments that were used in the proof of Theorem 2 in
[5]. We leave details to the reader as this result is not really needed below
except for motivation. �

3. Generalized Fleming-Viot flows and their limits

We now recall some results from [4], [5] on generalized Fleming-Viot pro-
cesses and related stochastic flows. Let ν denote a σ-finite measure on ]0, 1]
such that

∫
]0,1]

x2ν(dx) < ∞. According to Section 5.1 in [4], one can asso-
ciate with ν a Feller process (Ft, t ≥ 0) with values in the space of distribution
functions of probability measures on ]0, 1] (i.e., for each t ≥ 0, Ft is a càdlag
increasing map from [0, 1] to [0, 1] with Ft(0) = 0 and Ft(1) = 1), whose evo-
lution is characterized by ν and has been described in Section 1 in the special
case when ν is finite.

In [5], we have shown that such generalized Fleming-Viot processes can be
described as the solution to a certain system of Poissonian SDE’s. More pre-
cisely, on a suitable filtered probability space (Ω,F , (Ft),P), one can construct
the following processes:

• an (Ft)-Poisson point process N on R+×]0, 1[×]0, 1] with intensity
dt⊗ du⊗ ν(dr),
• a collection (Yt(x), t ≥ 0), x ∈ [0, 1], of adapted càdlàg processes

with values in [0, 1] with Yt(x1) ≤ Yt(x2) for all t ≥ 0 a.s. when
0 ≤ x1 ≤ x2 ≤ 1,

in such a way that for every r ∈ [0, 1], a.s.

(10) Yt(x) = x+
∫

[0,t]×]0,1[×]0,1]

N(ds, du, dr) r
(
1{u≤Ys−(x)} − Ys−(x)

)
.

The Poissonian stochastic integral in the right-hand side should again be
understood with respect to the compensated Poisson measure N .

Weak uniqueness holds for this system of SDE’s (Theorem 2 in [5]). Fur-
thermore, for every integer p ≥ 1 and every 0 ≤ x1 ≤ . . . ≤ xp ≤ 1, the
processes ((Yt(x1), . . . , Yt(xp)), t ≥ 0) and ((Ft(x1), . . . , Ft(xp)), t ≥ 0) have
the same distribution. Note the similarity with Proposition 2: Compare (9)
and (10). This strongly suggests to look for asymptotic results relating the
processes Z(t, x) and Ft(x).

For every integer p ≥ 1 and every a > 0, set

Dap = Dp ∩ [0, a]p = {(x1, . . . , xp) ∈ Rp+ : 0 ≤ x1 ≤ x2 ≤ . . . ≤ xp ≤ a}.
From (10) we see that the process (Ft(x1), . . . , Ft(xp)) is a purely discontinu-
ous martingale for every (x1, . . . , xp) ∈ D1

p, and the compensator of its jump
measure is

dt R(Ft(x1), . . . , Ft(xp); dz1, . . . , dzp),
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where for every (y1, . . . , yp) ∈ D1
p, the measure R(y1, . . . , yp; dz1, . . . , dzp) on

R
p\{0} is determined by∫

R(y1, . . . , yp; dz1, . . . , dzp)ϕ(z1, . . . , zp)

=
∫
ν(dr)

∫ 1

0

duϕ(r(1{u≤y1} − y1), . . . , r(1{u≤yp} − yp)).

Consider now a family (ν̃(a), a > 0) of measures on ]0, 1] with
∫

]0,1]
r2ν̃(a)(dr) <

∞, and for each a > 0, let F̃ (a) be the associated Fleming-Viot process. We
then write

F
(a)
t (x) := aF̃

(a)
at (x/a) , x ∈ [0, a], t ≥ 0

for the rescaled version of the Fleming-Viot flow. So, for each t ≥ 0, F (a)
t is

the distribution function of a measure on ]0, a] with total mass a. For every
fixed real number a > 0, we also denote by ν(a) the measure on ]0,∞[, which
is 0 on ]a,∞[ and whose restriction to ]0, a] is given by the image of ν̃(a)

under the dilation r → ar from ]0, 1] to ]0, a]. In particular r2ν(a)(dr) is a
finite measure on ]0,∞[.

By a scaling argument, we see that, for every (x1, . . . , xp) ∈ Dap , the process

(F (a)
t (x1), . . . , F (a)

t (xp)) is a purely discontinuous martingale, with values in
Dap , and the compensator of its jump measure is

(11) µ(a)(dt, dz1 . . . dzp) = dtR(a)(F (a)
t (x1), . . . , F (a)

t (xp); dz1, . . . , dzp)

where∫
R(a)(y1, . . . , yp; dz1, . . . , dzp)ϕ(z1, . . . , zp)(12)

=
∫
ν(a)(dr)

∫ a

0

duϕ(r(1{u≤y1} − a
−1y1), . . . , r(1{u≤yp} − a

−1yp)).

Let π be as in Section 2 a nontrivial measure on ]0,∞[ such that
∫

(r ∧
r2)π(dr) < ∞, and let Ψ be as in (1). Denote by (Z(t, x), t ≥ 0, x ≥ 0) the
associated flow of continuous-state branching processes constructed in Section
2.

Assumption (H). The measures (r∧r2)ν(a)(dr) converge to (r∧r2)π(dr)
as a→∞, in the sense of weak convergence in MF.

Theorem 1. Under Assumption (H), for every (x1, . . . , xp) ∈ Dp,

((F (a)
t (x1), . . . , F (a)

t (xp)); t ≥ 0)
(d)−→
a→∞

((Z(t, x1), . . . , Z(t, xp)); t ≥ 0)

in the Skorokhod space D(R+,R
p).



158 JEAN BERTOIN AND JEAN-FRANÇOIS LE GALL

Proof. The proof only uses the facts that (F (a)
t (x1), . . . , F (a)

t (xp)) is a
purely discontinuous martingale and that the compensator of its jump mea-
sure is given by (11) and (12). The latter properties indeed characterize the
law of the process (F (a)

t (x1), . . . , F (a)
t (xp)) (cf. Lemma 1 in [5]), but we do

not use this uniqueness property in the proof. We fix a sequence (an) tending
to +∞, and (x1, . . . , xp) ∈ Dp. To simplify notation we write

Y nt = (Y n,1t , . . . , Y n,pt ) = (F (an)
t (x1), . . . , F (an)

t (xp)),

which makes sense as soon as an ≥ xp, hence for all n sufficiently large. We
also set

Zt = (Z1
t , . . . , Z

p
t ) = (Z(t, x1), . . . , Z(t, xp)).

We rely on general limit theorems for semimartingales with jumps, which
can be found in the book [12]. To this end, we first need to introduce a
truncation function h : R → R, that is, a bounded continuous function such
that h(x) = x for every x ∈ [−δ, δ], for some δ > 0. We may and will assume
that h is nondecreasing, |h(x)| ≤ |x| ∧ 1 for every x ∈ R, and that h is
Lipschitz continuous with Lipschitz constant 1, that is, |h(x)−h(y)| ≤ |x−y|
for every x, y ∈ R. We can then consider the associated (modified) triplet of
characteristics of the p-dimensional semimartingale Y n:

(Bn, C̃n, µ(an)).

See Definition II.2.16 in [12]. To be specific, µ(an) is defined in (11). Then,
since Y nt is a purely discontinuous martingale, we have Bnt = (Bn,it )1≤i≤p,
with

Bn,it = −
∫

[0,t]×Rp
µ(an)(dt, dz1 . . . dzp) (zi − h(zi)).

Similarly, C̃nt = (C̃i,j,nt )1≤i,j≤p, with

C̃i,j,nt =
∫

[0,t]×Rp
µ(an)(dt, dz1 . . . dzp)h(zi)h(zj).

Write C∗(Rp) for the space of all bounded Lipschitz continuous functions
on Rp that vanish on a neighborhood of 0. We fix g ∈ C∗(Rp) such that
|g| ≤ 1, and we choose α > 0 such that g(z1, . . . , zp) = 0 if |zi| ≤ α for every
i = 1, . . . , p. Following the notation in [12], we set

(g ∗ µ(an))t =
∫

[0,t]×Rp
µ(an)(dt, dz1 . . . dzp) g(z1, . . . , zp).
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From formula (11) we have

Bn,it =
∫ t

0

ds βn,i(Y n,1s , . . . , Y n,ps ),

C̃n,i,jt =
∫ t

0

ds γn,i,j(Y n,1s , . . . , Y n,ps ),(13)

(g ∗ µ(an))t =
∫ t

0

dsϕn(Y n,1s , . . . , Y n,ps ),

where the functions βn,i, γn,i,j , ϕn are defined by

βn,i(y1, . . . , yp) = −
∫
Rp

R(an)(y1, . . . , yp; dz1, . . . , dzp) (zi − h(zi)),

γn,i,j(y1, . . . , yp) =
∫
Rp

R(an)(y1, . . . , yp; dz1, . . . , dzp)h(zi)h(zj),

ϕn(y1, . . . , yp) =
∫
Rp

R(an)(y1, . . . , yp; dz1, . . . , dzp) g(z1, . . . , zp).

Similarly, the (modified) characteristics of the semimartingale Z are

(B, C̃, θ)

where θ is as in Proposition 1, and

Bit =
∫ t

0

ds βi(Z1
s , . . . , Z

p
s ),

C̃i,jt =
∫ t

0

ds γi,j(Z1
s , . . . , Z

p
s ),(14)

(g ∗ θ)t =
∫ t

0

dsϕ(Z1
s , . . . , Z

p
s ),

where the functions βi, γi,j , ϕ are respectively defined by

βi(y1, . . . , yp) = −
∫
Rp

U(y1, . . . , yp; dz1, . . . , dzp) (zi − h(zi)),

γi,j(y1, . . . , yp) =
∫
Rp

U(y1, . . . , yp; dz1, . . . , dzp)h(zi)h(zj),

ϕ(y1, . . . , yp) =
∫
Rp

U(y1, . . . , yp; dz1, . . . , dzp) g(z1, . . . , zp).
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Lemma 1. For every (y1, . . . , yp) ∈ Dp,

|βn,i(y1, . . . , yp)| ≤ 2yi
∫
ν(an)(dr) r 1{r>δ},

|γn,i,j(y1, . . . , yp)| ≤ (yi + yj)
∫
ν(an)(dr) (r ∧ r2),

|ϕn(y1, . . . , yp) ≤
2
α
yp

∫
ν(an)(dr) r 1{r>α}.

Moreover,

lim
n→∞

βn,i(y1, . . . , yp) = βi(y1, . . . , yp),

lim
n→∞

γn,i,j(y1, . . . , yp) = γi,j(y1, . . . , yp),

lim
n→∞

ϕn(y1, . . . , yp) = ϕ(y1, . . . , yp),

uniformly on bounded subsets of Dp.

Let us postpone the proof of the lemma and complete that of the theorem.
The first step is to check that the sequence of the laws of the processes Y n

is tight in the space of probability measures on D(R+,R
p). This will follow

from Theorem VI.4.18 in [12] provided we can check that:
(i) We have for every N > 0 and ε > 0,

lim
b↑∞

(
lim sup
n→∞

P [µ(an)([0, N ]× {z ∈ Rp : |z| > b}) > ε]
)

= 0.

(ii) The laws of the processes Bn,i, C̃n,i,j , g ∗ µ(an) are tight in the space
of probability measures on C(R+,R).

To prove (i), set
TnA = inf{t ≥ 0 : Y p,nt > A}

for every A > xp. Since Y n,p is a (bounded) nonnegative martingale, a clas-
sical result states that

(15) P[sup{Y n,pt , t ≥ 0} > A] = P[TnA <∞] ≤ xp
A
.

From formulas (11) and (12), we have on the event {sup{Y p,nt , t ≥ 0} ≤ A}

µ(an)([0, N ]× {z ∈ Rp : |z| > b}) ≤ N
(
Aν(an)(]

b

p
,∞[) + an ν(an)(]

ban
pA

,∞[)
)
.

Under Assumption (H), we have

lim
n→∞

an ν(an)(]
ban
pA

,∞[) = 0

and so, on the event {sup{Y p,nt , t ≥ 0} ≤ A},

lim sup
n→∞

µ(an)([0, N ]× {z ∈ Rp : |z| > b}) ≤ NAπ([
b

p
,∞[).
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If we first choose A so that xp/A is small, and then b large enough so that
NAπ([ bp ,∞[) < ε, we see that the statement in (i) follows from (15). Part
(ii) is a straightforward consequence of formulas (13), the bounds of the first
part of Lemma 1 and (15) again. This completes the proof of the tightness of
the sequence of the laws of the processes Y n.

Then, we can assume that, at least along a suitable subsequence, Y n con-
verges in distribution towards a limiting process Y∞ = (Y∞,1, . . . , Y∞,p). We
claim that Y∞ is a semimartingale whose triplet of (modified) characteristics
(B∞, C̃∞, µ∞) is such that

B∞,it =
∫ t

0

ds βi(Y∞,1s , . . . , Y∞,ps ),

C̃∞,i,jt =
∫ t

0

ds γi,j(Y∞,1s , . . . , Y∞,ps ),(16)

(g ∗ µ∞)t =
∫ t

0

dsϕ(Y∞,1s , . . . , Y∞,ps ),

with βi, γi,j , ϕ as above. To see this, it is enough to verify that the 4-tuples
(Y n, Bn, C̃n, g ∗µ(an)) converge in distribution to (Y∞, B∞, C̃∞, g ∗µ∞) (see
Theorem IX.2.4 in [12]). The latter convergence readily follows from the con-
vergence of Y n towards Y∞, formulas (13) and the second part of Lemma 1.

Finally, knowing the triplet of characteristics of Y∞, Theorem II.2.34 in
[12] shows that Y∞ is a purely discontinuous martingale, and the compensator
of its jump measure is

dt U(Y∞,1t , . . . , Y∞,pt ; dz1, . . . , dzp).

By Proposition 1, this implies that Y∞ has the same distribution as Z, and
this completes the proof of Theorem 1. �

Proof of Lemma 1. By definition, for (y1, . . . , yp) ∈ Danp ,

βn,i(y1, . . . , yp)

= −
∫
ν(an)(dr)

∫ an

0

du
(
r(1{u≤yi} − a

−1
n yi)− h(r(1{u≤yi} − a

−1
n yi))

)
= −

∫
ν(an)(dr) yi(r(1− a−1

n yi)− h(r(1− a−1
n yi)))

+
∫
ν(an)(dr) (an − yi)(a−1

n ryi + h(−a−1
n ryi)).

Recalling that h(x) = x if |x| ≤ δ, we immediately get the bound

βn,i(y1, . . . , yp) ≤ 2yi
∫
ν(an)(dr) r1{r>δ}.
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Furthermore, using the fact that h is Lipschitz with Lipschitz constant 1, we
have ∣∣∣∣∣βn,i(y1, . . . , yp) + yi

∫
ν(an)(dr) (r − h(r))

∣∣∣∣∣
≤ 2a−1

n y2
i

∫
ν(an)(dr) r1{r>δ} + yi

∫
ν(an)(dr) r1{a−1

n ryi>δ}

and it is easy to verify from Assumption (H) that the right-hand side tends
to 0 as n→∞, uniformly when yi varies over a bounded subset in R+. Since
Assumption (H) also implies that

lim
n→∞

∫
ν(an)(dr) (r − h(r)) =

∫
π(dr) (r − h(r)),

we get the first limit of the lemma.
Consider now, for (y1, . . . , yp) ∈ Danp , and 1 ≤ i ≤ j ≤ p,

γn,i,j(y1, . . . , yp)(17)

=
∫
ν(an)(dr)

∫ an

0

duh(r(1{u≤yi} − a
−1
n yi))h(r(1{u≤yj} − a

−1
n yj))

)
=
∫
ν(an)(dr) yi h(r(1− a−1

n yi))h(r(1− a−1
n yj))

+
∫
ν(an)(dr) (yj − yi)h(−a−1

n ryi)h(r(1− a−1
n yj))

+
∫
ν(an)(dr) (an − yj)h(−a−1

n ryi)h(−a−1
n ryj).

Using the bounds |h| ≤ 1 and |h(x)| ≤ |x|, we get

|γn,i,j(y1, . . . , yp)| ≤ yj
∫
ν(an)(dr)(r2 ∧ 1) + yi

∫
ν(an)(dr) r(r ∧ 1),

which gives the second bound of the lemma. Then, using the Lipschitz prop-
erty of h,∣∣∣∣∣

∫
ν(an)(dr)h(r(1− a−1

n yi))h(r(1− a−1
n yj))−

∫
ν(an)(dr)h(r)2

∣∣∣∣∣
≤ 2a−1

n yj

∫
ν(an)(dr) rh(r) −→ 0

as n→∞. Notice that

lim
n→∞

yi

∫
ν(an)(dr)h(r)2 = yi

∫
π(dr)h(r)2 = γi,j(y1, . . . , yp),

uniformly when (y1, . . . , yp) varies over a bounded set. To complete the veri-
fication of the second limit in the lemma, we need to check that the last two
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terms in the right-hand side of (17) tend to 0 as n→∞. We have first∫
ν(an)(dr)h(−a−1

n ryi)h(r(1− a−1
n yj)) ≤

∫
ν(an)(dr) ra−1

n yi h(r) −→ 0

as n→∞. It remains to bound∣∣∣∣∣an
∫
ν(an)(dr)h(−a−1

n ryi)h(−a−1
n ryj)

∣∣∣∣∣
≤
∫
ν(an)(dr) ryi((a−1

n ryj) ∧ 1)

≤ yi
∫
ν(an)(dr) r1{r>A} + yiyja

−1
n

∫
ν(an)(dr) r21{r≤A}

where A > 0 is arbitrary. If η > 0 is given, we can first choose A sufficiently
large so that

lim sup
n→∞

∫
ν(an)(dr) r1{r>A} ≤

∫
π(dr) r1{r≥A} < η.

On the other hand, we have also

lim
n→∞

a−1
n

∫
ν(an)(dr) r21{r≤A} = 0,

and together with the preceding estimates, this gives the second limit of the
lemma.

Finally, we have

ϕn(y1, . . . , yp)

=
∫
ν(an)(dr)

∫ an

0

du g(r(1{u≤y1} − a
−1
n y1), . . . , r(1{u≤yp} − a

−1
n yp)).

Since |g| ≤ 1 and g(z1, . . . , zp) = 0 if sup |zi| ≤ α, we easily get the bound

|ϕn(y1, . . . , yp)| ≤ yp
∫
ν(an)(dr) 1{r>α} + an

∫
ν(an)(dr) 1{a−1

n ryp>α}

≤ yp
∫
ν(an)(dr) 1{r>α} +

yp
α

∫
ν(an)(dr) r1{r>α},

which gives the third bound of the lemma. Then, if M denotes a Lipschitz
constant for g,∣∣∣∣∣ϕn(y1, . . . , yp)−

∫
ν(an)(dr)

∫ an

0

du g(r1{u≤y1}, . . . , r1{u≤yp})

∣∣∣∣∣
≤Mp

∫
ν(an)(dr)

∫ an

0

du(a−1
n ryp 1{r>α,u≤yp} + a−1

n ryp 1{a−1
n ryp>α,u>yp})

≤Mp

(∫
ν(an)(dr) r1{r>α}

)
a−1
n y2

p +Mpyp

∫
ν(an)(dr) r1{a−1

n ryp>α},
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which tends to 0 as n tends to ∞, uniformly when yp varies over a compact
subset of R+. The last convergence of the lemma now follows from Assumption
(H). This completes the proof. �

4. Hydrodynamic limits for exchangeable coalescents

The motivation for this section stems from hydrodynamic limit theorems
leading from stochastic coalescents to Smoluchowski’s coagulation equation,
which we now summarize.

4.1. Stochastic coalescents and Smoluchowski’s coagulation equa-
tion. Consider a symmetric measurable function K :]0,∞[×]0,∞[→ R+,
which will be referred to as a coagulation kernel. A stochastic coalescent with
coagulation kernel K can be viewed as a Markov chain in continuous time
C = (Ct, t ≥ 0) with values in the space of finite integer-valued measures on
]0,∞[ with the following dynamics. Suppose that the process starts from some
state

∑k
i=1 δxi , where k ≥ 2 and xi ∈]0,∞[ for i = 1, . . . , k. For 1 ≤ i < j ≤ k,

let ei,j be an exponential variable with parameter K(xi, xj), such that to dif-
ferent pairs correspond independent variables. The first jump of the process C
occurs at time min1≤i<j≤k ei,j , and if this minimum is reached for the indices
1 ≤ ` < m ≤ k (i.e., ` and k are the indices such that min1≤i<j≤k ei,j = e`,m),
then the state after the jump is

δx`+xm +
∑
i 6=`,m

δxi .

In other words, a stochastic coalescent with coagulation kernel K is a finite
particle system in ]0,∞[ such that each pair of particles (xi, xj) in the system
merges at rate K(xi, xj), independently of the other pairs.

Now consider a sequence (C̃(n)
t , t ≥ 0)n∈N of stochastic coalescents with

coagulation kernel K and set C(n)
t = n−1C̃

(n)
t/n for t ≥ 0. Suppose that the

sequence of initial states C(n)
0 converges in probability inMR to a Radon mea-

sure µ0. Then under some technical assumptions on the coagulation kernel
K (see, e.g., Norris [15]), the sequence (C(n)

t , t ≥ 0) converges in probability
on the space of càdlàg trajectories with values in MR towards a determinis-
tic limit (µt, t ≥ 0). Moreover this limit is characterized as the solution to
Smoluchowski’s coagulation equation

(18)
d〈µt, f〉
dt

=
1
2

∫
]0,∞[2

(f(x+ y)− f(x)− f(y))K(x, y)µt(dx)µt(dy) ,

where f :]0,∞[→ R denotes a generic continuous function with compact sup-
port.
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4.2. Hydrodynamic limits. Let ν denote a σ-finite measure on ]0, 1]
such that

∫
]0,1]

r2ν(dr) <∞, and write Λ(dr) = r2ν(dr), which is thus a finite
measure on ]0, 1]. The so-called Λ-coalescent (or coalescent with multiple
collisions, see [16]) is a Markov process (Πt, t ≥ 0) taking values in the set
of all partitions of N, whose dynamics can be characterized as follows. For
every N ∈ N, the coalescent process restricted to the space of partitions of
[N ] := {1, . . . , N} is a Markov chain in continuous time such that when the
process has k ≥ 2 blocks, for every ` = 2, . . . , k, each `-tuple of blocks merges
to form a single block at rate∫

]0,1]

x`(1− x)k−`ν(dx) .

Unless otherwise specified, we assume that Π0 is the partition of N into sin-
gletons.

For every t ≥ 0, write Dt for the sequence of asymptotic frequencies of the
blocks of Πt, ranked in nonincreasing order (if the number k of blocks is finite,
then the terms with indices greater than k in the sequence are all equal to 0).
Then ([16], Section 2.2) the process (Dt, t ≥ 0) is a time-homogeneous Markov
process with values in the space S↓1 of nonincreasing numerical sequences
s = (s1, . . .) with

∑∞
i=1 si ≤ 1.

The following connection with generalized Fleming-Viot processes can be
found in [4]. Let (Ft, t ≥ 0) be the generalized Fleming-Viot process associated
with ν, and for every t ≥ 0, let Jt be the sequence of sizes of jumps of the
mapping x→ Ft(x), ranked again in nonincreasing order, and with the same
convention if there are finitely many jumps. Then, for each fixed t ≥ 0, Jt
and Dt have the same distribution (Theorem 1 in [4] indeed gives a deeper
connection, which has been briefly described in Section 1).

For each a > 0, let ν̃(a), ν(a), F̃ (a) and F (a) be as in Section 3. Denote
by µ̃

(a)
t the point measure whose atoms are given by the jump sizes of the

increasing process x→ F̃
(a)
t (x):

µ̃
(a)
t =

∑
{x∈]0,1]:F̃

(a)
t (x)−F̃ (a)

t (x−)>0}

δ
F̃

(a)
t (x)−F̃ (a)

t (x−)
.

Fom the preceding observations, the atoms of µ̃(a)
t also correspond to the sizes

of the blocks in a Λ-coalescent at time t, for Λ(dr) = r2ν̃
(a)
t (dr). We then

consider the rescaled version µ
(a)
t , given as the image of a−1µ̃

(a)
at under the

dilation r → ar. Equivalently, µ(a) is a−1 times the sum of the Dirac point
masses at the jump sizes of the mapping x→ F

(a)
t (x).

Theorem 2. Suppose that (H) holds and let (Z(t, x); t, x ≥ 0) be the flow
of continuous-state branching processes associated with π. Then for every
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t ≥ 0, µ(a)
t converges to the Lévy measure λt of the subordinator Z(t, ·) as

a→∞ in probability in MR.

Theorem 2 is an immediate consequence of Theorem 1 and the following
lemma.

Lemma 2. Let σ = (σt, t ≥ 0) be a subordinator with Lévy measure λ.
For each a > 0, let X(a) = (X(a)

t , 0 ≤ t ≤ a) be an increasing càdlàg process
with exchangeable increments, with X(a)

0 = 0 and X(a)
a = a a.s. Suppose that

X(a) converges to σ as a→∞ in the sense of finite-dimensional distributions.
Then the random point measure

a−1
∑

0<t<a

δ
∆X

(a)
t

converges to λ in probability in MR as a→∞.

Proof. Pick some continuous function f :]0,∞[→ R with compact support
and write

c :=
∫

]0,∞[

f(x)λ(dx) .

By the Lévy-Itô decomposition for subordinators, the random point mea-
sure

∑
∆σt>0 δ(t,∆σt) on R+×]0,∞[ is Poisson with intensity dt⊗ λ(dx). Let

ρ > 0. The law of large numbers ensures the existence of a real number aρ > 0
such that

(19) E

[∣∣∣a−1
ρ

∑
0<t<aρ

f(∆σt)− c
∣∣∣] < ρ .

Then consider for a > aρ the bridges with exchangeable increments,
bounded variation and no negative jumps on the time interval [0, aρ], defined
by

B
(a)
t := X

(a)
t − ta−1

ρ X(a)
aρ , Bt = σt − ta−1

ρ σaρ , t ∈ [0, aρ] .

Our assumptions entail that B(a) converges in the sense of finite dimensional
distributions to B, so according to Kallenberg [13], the random measure∑

0<t<aρ

δ
∆B

(a)
t

=
∑

0<t<aρ

δ
∆X

(a)
t

converges in law on MR towards∑
0<t<aρ

δ∆Bt =
∑

0<t<aρ

δ∆σt ,

and in particular, when a→∞,

(20) a−1
ρ

∑
0<t<aρ

f(∆X(a)
t )

(d)−→ a−1
ρ

∑
0<t<aρ

f(∆σt) .
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Let us check that the variables∣∣∣∣∣ ∑
0<t<aρ

f(∆X(a)
t )

∣∣∣∣∣ , a ∈ [aρ,∞[

are uniformly integrable. Let [u, v] be a compact subinterval of ]0,∞[ such that
the support of f is contained in [u, v]. Denote by Na

[u,v] the number of jumps
of the process X(a) with size in [u, v]. By classical results about processes
with exchangeable increments, conditionally on Na

[u,v] = n, the number

N
(a,aρ)

[u,v] :=
∑

0<t<aρ

1[u,v](∆X
(a)
t )

has a binomial B(n, aρa ) distribution. Notice that Na
[u,v] ≤

a
u since X(a)

a = a.

We see that N (a,aρ)

[u,v] is bounded above in distribution by a binomial B([ au ], aρa )
distribution, and the desired uniform integrability readily follows.

It then follows from (19) and (20) that

lim
a→∞

E

[∣∣∣a−1
ρ

∑
0<t<aρ

f(∆X(a)
t )− c

∣∣∣] = E

[∣∣∣a−1
ρ

∑
0<t<aρ

f(∆σt)− c
∣∣∣] ≤ ρ .

Moreover, an easy exchangeability argument shows that we have also

lim sup
a→∞

E

[∣∣∣a−1
∑

0<t<a

f(∆X(a)
t )− c

∣∣∣] ≤ ρ .
Since ρ may be taken arbitrarily small, we have thus shown that

lim
a→∞

a−1
∑
t≤a

f(∆X(a)
t ) =

∫
]0,∞[

f(x)λ(dx) ,

in L1 for every continuous function f with compact support. The conclusion
now follows by a standard argument. �

We will now show that the family (λt, t > 0) of Lévy measures, which ap-
pears in Theorem 2, solves a certain coagulation equation with multiple col-
lisions. To this end, we introduce the following additional assumption, which
also plays a key role in the study of the genealogical structure of continuous-
state branching processes (see, e.g., [9]).

Assumption (E). The Ψ-CSBP becomes extinct almost surely.

Equivalently, this assumption holds iff P[Z(t, x) = 0] > 0 for every t > 0
and x ≥ 0. By solving (3), it is easy to verify that Assumption (E) is equivalent
to

(21)
∫ ∞

1

du

Ψ(u)
<∞.
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In particular, Assumption (E) holds in the so-called stable case Ψ(u) = uγ ,
γ ∈]1, 2[, that will be considered in Section 5 below.

From (4), we see that under Assumption (E) we have dt = 0, and the total
mass λt(]0,∞[) = − logP[Z(t, 1) = 0] is finite for every t > 0. Moreover the
function t→ λt(]0,∞[) is nonincreasing.

We denote by C•(R+) the space of all bounded continuous functions f on
R+ such that f(0) = 0 and f(x) has a limit as x→ +∞. The space C•(R+)
is equipped with the supremum norm, which is denoted by ‖f‖. For every
integer k ≥ 2 and q > 0, we denote by Ψ(k)(q) the k-th derivative of Ψ at q.
It is immediately checked that

(22) Ψ(k)(q) = (−1)k
∫
π(dr) rk e−qr .

Obviously, (−1)kΨ(k)(q) ≥ 0 for every k ≥ 2 and q > 0.

Proposition 3. Under Assumption (E), for every f ∈ C•(R+), the func-
tion t→ 〈λt, f〉 solves the equation

(23)
d〈λt, f〉
dt

=
∞∑
k=2

(−1)kΨ(k)(〈λt, 1〉)
k!

Ik(f)

where

Ik(f) =
∫

]0,∞[k
(f(x1 + · · ·+ xk)− (f(x1) + · · ·+ f(xk)))λt(dx1) . . . λt(dxk)

and the series in the right-hand side of (23) converges absolutely.

It is interesting to observe that (23) also holds when Ψ(q) = cq2 for some
constant c > 0. Take Ψ(q) = 1

2q
2 for definiteness (then the Ψ-CSBP is the

classical Feller diffusion) in such a way that (23) exactly reduces to (18) with
K ≡ 1. Then ut(q) = 2q (2 + qt)−1, and it follows that

(24) λt(dx) =
4
t2

exp(−2x
t

) dx

so that the density of λt is the classical solution, arising from infinitesimally
small initial clusters, of the Smoluchovski equation (18) in the case K ≡ 1 (cf.
Section 2.2 of [1]).

We can rewrite equation (23) in a somewhat more synthetic way by in-
troducing the following notation. If µ is a measure on ]0,∞[ such that∫

]0,∞[
(1 ∧ x)µ(dx) < ∞, we write µ⊕ for the distribution on [0,∞[ of the

sum of the locations of the atoms of a Poisson random measure on ]0,∞[ with
intensity µ. Note that µ⊕ is a probability measure and that, by Campbell’s
formula,

(25)
∫

[0,∞[

e−qx µ⊕(dx) = exp
{
−
∫

]0,∞[

(1− e−qx)µ(dx)
}
, q ≥ 0.



STOCHASTIC FLOWS 169

As we will see in the proof below, (23) follows from the equation

(26)
d〈λt, f〉
dt

=
∫

]0,∞[

π(da)
(
〈(aλt)⊕, f〉 − 〈aλt, f〉

)
.

Informally, we may think of λt(dx) as the density at time t of particles with
size x in some infinite system of particles. The right-hand side in (26) can be
interpreted by saying that at rate π(da), a ‘quantity’ a of particles coagulates
at time t. More precisely, this ‘quantity’ is sampled in a Poissonian way,
viewing aλt as an intensity measure for the sampling (so, loosely speaking,
the particles involved into the coagulation are sampled uniformly at random
amongst the particles present at time t).

As the proof below will show, (26) still holds without Assumption (E), at
least for functions f of the type f(x) = 1 − exp(−qx), provided that dt = 0
for every t > 0 (recall from Silverstein [19] that the latter holds whenever∫

]0,1[
rπ(dr) = ∞). In that case however, the measures λt may be infinite,

and then coagulations involve infinitely many components, so that one cannot
write an equation of the form (23).

Proof. We first prove (26). For q > 0, let f(q) ∈ C•(R+) be defined by
f(q)(x) = 1− e−qx. By (25) and (4),

〈(aλt)⊕, f(q)〉 = 1− exp

(
− a

∫
λt(dr)(1− e−qr)

)
= 1− exp(−aut(q)).

On the other hand, by (4) again,

〈λt, f(q)〉 = ut(q).

Thus when f = f(q) the right-hand side of (26) makes sense and is equal to∫
]0,∞[

π(da)
(

1− exp(−aut(q))− aut(q)
)

= −Ψ(ut(q)).

Therefore (26) reduces to (3) in that case. Note that we have not used As-
sumption (E) at this stage (except for the fact that dt = 0 for every t > 0).

Denote by H the subspace of C•(R+) that consists of linear combinations
of the functions f(q). Then H is dense in C•(R+). Obviously, for every f ∈ H,
(26) holds, and the right-hand side of (26) is a continuous function of t ∈]0,∞[.
Fix f ∈ C•(R+) and a sequence (fn)n≥1 in H that converges to f . If we also
fix 0 < ε < t, we have for every n ≥ 1,

(27) 〈λt, fn〉 = 〈λε, fn〉+
∫ t

ε

ds

∫
π(da)

(
〈(aλs)⊕, fn〉 − 〈aλs, fn〉

)
.

Plainly, for every s > 0,

〈λs, fn〉 −→
n→∞

〈λs, f〉 and 〈(aλs)⊕, fn〉 −→
n→∞

〈(aλs)⊕, f〉.
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We claim that there exists a constant Cε such that, for every s ≥ ε and n ≥ 1,
and every h ∈ C•(R+),

(28) |〈(aλs)⊕, h〉 − 〈aλs, h〉| ≤ Cε(a2 ∧ a) ‖h‖.
As the quantities 〈λs, 1〉, s ∈ [ε,∞[, are bounded above, it is clearly enough
to consider a ≤ 1. Since h(0) = 0, the definition of (aλs)⊕ immediately gives

〈(aλs)⊕, h〉 = e−a〈λs,1〉 a〈λs, h〉+O(a2‖h‖)
where the remainder O(a2‖h‖), which corresponds to the event that a Poisson
measure with intensity aλs has at least two atoms, is uniform in h ∈ C•(R+)
and s ≥ ε. The estimate (28) follows.

Using (28) and dominated convergence, we get

lim
n→∞

∫
π(da)

(
〈(aλs)⊕, fn〉 − 〈aλs, fn〉

)
(29)

=
∫
π(da)

(
〈(aλs)⊕, f〉 − 〈aλs, f〉

)
uniformly in s ∈ [ε,∞[, and the right-hand side of (29) is a continuous function
of s. Equation (26) in the general case follows by passing to the limit n→∞
in (27).

Next, to derive (26) from (23), we write λkt (dx) = λt(dx1) . . . λt(dxk) and
set

Ik(f) :=
∫

]0,∞[k
(f(x1 + · · ·+ xk)− (f(x1) + · · ·+ f(xk)))λkt (dx).

Then∫
]0,∞[

π(da)
(
〈(aλt)⊕, f〉 − 〈aλt, f〉

)
=
∫
π(da)

(( ∞∑
k=1

ak

k!
e−a〈λt,1〉

∫
f(x1 + · · ·+ xk)λkt (dx)

)
− a〈λt, f〉

)

=
∫
π(da)

∞∑
k=1

ak

k!
e−a〈λt,1〉 Ik(f) .

Notice that the term k = 1 in the last series vanishes. Moreover, bounding the
other terms by their absolute values gives a convergent series, whose sum is
integrable with respect to π(da). Hence we may interchange the sum and the
integral with respect to π(da), and we get the statement of the proposition
from (26). �

Remark. To conclude this section, let us observe that Assumption (E) is
closely related to the property for a Λ-coalescent to come down from infinity
(cf. Pitman [16] and Schweinsberg [18]). Let ν denote a σ-finite measure on
]0, 1] such that

∫
]0,1]

r2ν(dr) < ∞, and let Λ(dx) = x2ν(dx). Let Ψ be given



STOCHASTIC FLOWS 171

by (1) with π = ν (and β = 0). Then the Λ-coalescent comes down from
infinity if and only if the Ψ-CSBP becomes extinct almost surely. To see this,
recall from Schweinsberg [18] that a necessary and sufficient condition for the
Λ-coalescent to come down from infinity is

(30)
∞∑
b=2

(
b∑

k=2

(k − 1)
(
b

k

)∫
rk(1− r)b−kν(dr)

)−1

<∞.

Using the binomial formula, we can rewrite this condition as

∞∑
b=2

(∫
(br − 1 + (1− r)b) ν(dr)

)−1

<∞,

or equivalently, if we put Φ(q) =
∫

(qr−1+(1−r)q) ν(dr) for every real q ≥ 1,

(31)
∫ ∞

2

dq

Φ(q)
<∞.

(Note that the function Φ is nondecreasing on [1,∞[.) Simple estimates give
the existence of a constant c ∈]0, 1[ such that, for every q ≥ 2,

cΨ(q) ≤ Φ(q) ≤ Ψ(q).

It follows that (30) and (21) are equivalent. In the spirit of the present work,
it would be interesting to give a direct probabilistic proof of the equivalence
between the property for a Λ-coalescent to come down from infinity and As-
sumption (E) for the associated branching process.

5. Small time behavior of flows and coalescents

In this section, we fix a measure ν on ]0, 1] such that
∫
r2ν(dr) < ∞ and

we consider the associated generalized Fleming-Viot process (Ft, t ≥ 0).
From now on until the end of the section, we make the following assumption

on ν.

Assumption (A). The function ν([ε, 1]) is regularly varying with index
−γ as ε→ 0, for some γ ∈]1, 2[.

As a consequence, there exists a function L(ε), ε ∈]0, 1], that is slowly
varying as ε→ 0, such that, for every ε ∈]0, 1],

ν([ε, 1]) = ε−γL(ε).

Fix ε0 > 0 such that ν([ε0, 1]) > 0. For ε ∈]0, ε0] we have L(ε) > 0 and so
we can set

F εt (x) =
1
ε
FL(ε)−1εγ−1t(εx)
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for 0 ≤ x ≤ ε−1 and t ≥ 0. We also let νε be the measure on [0, ε−1] defined
by ∫

νε(dr)ϕ(r) = L(ε)−1εγ
∫
ν(dr)ϕ(

r

ε
).

A simple scaling transformation shows that for every (x1, . . . , xp) ∈ D1/ε
p ,

(F εt (x1), . . . , F εt (xp)) is a purely discontinuous martingale, with values inD1/ε
p ,

and the compensator of its jump measure is

dtRε(F εt (x1), . . . , F εt (xp); dz1, . . . , dzp)

where ∫
Rε(y1, . . . , yp; dz1, . . . , dzp)ϕ(z1, . . . , zp)(32)

=
∫
νε(dr)

∫ 1/ε

0

duϕ(r(1{u≤y1} − εy1), . . . , r(1{u≤yp} − εyp)).

Let πγ be the measure on ]0,∞[ such that πγ(]a,∞[) = a−γ for every a > 0,
and let

Ψγ(q) =
∫
πγ(dr) (e−qr −1 + qr) =

Γ(2− γ)
γ − 1

qγ .

We let (Z(t, x), t ≥ 0, x ≥ 0) be the flow of continuous-state branching pro-
cesses constructed in Section 2, with Ψ = Ψγ .

Theorem 3. Under Assumption (A), for every (x1, . . . , xp) ∈ Dp,

((F εt (x1), . . . , F εt (xp)); t ≥ 0)
(d)−→
ε→0

((Z(t, x1), . . . , Z(t, xp)); t ≥ 0)

in the Skorokhod space D(R+,R
p).

Proof. This is a simple consequence of Theorem 1, or rather of its proof.
Indeed, we immediately see that the kernel Rε(y1, . . . , yp; dz1, . . . , dzp) coin-
cides with R(1/ε)(y1, . . . , yp; dz1, . . . , dzp) defined in (12), provided we take
ν(1/ε) = νε. From the observation at the beginning of the proof of Theorem 1,
we see that Theorem 3 will follow if we can check that Assumption (H) holds
in the present setting, that is, if

(33) lim
ε→0

(r ∧ r2) νε(dr) = (r ∧ r2)πγ(dr)

in the sense of weak convergence in MF.
In order to prove (33), first note that when ε→ 0+,∫

[0,ε]

x2ν(dx) = 2
∫ ε

0

yν([y, 1])dy − ε2ν([ε, 1]) ∼ γ

2− γ
ε2−γL(ε),

where the equivalence follows from Assumption (A) and a classical property
of integrals of regularly varying functions. We immediately deduce that

(34) lim
ε→0

r2 νε(dr) = r2 πγ(dr)
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in the sense of vague convergence in the space of Radon measures on [0,∞[.
Next, note that∫

νε(dr) (r − r ∧ a) =
∫ ∞
a

dr νε([r,∞[)(35)

= εγL(ε)−1

∫ ∞
a

dr ν([rε, 1]) −→
a→∞

0

uniformly in ε ∈]0, ε0]. From (34) and (35) the family ((r∧r2) νε(dr), 0 < ε <
1) is tight for the weak topology inMF. Together, with (34), this establishes
the weak convergence (33). �

Remark. Suppose that (Ft, t ≥ 0) is the flow of bridges associated with
the Kingman coalescent, corresponding to Λ = δ0 in our notation (cf. Section
4 in [5]). If we fix (y1, . . . , yp) ∈ D1

p, the process (Ft(y1), . . . , Ft(yp)) is a
diffusion process in D1

p with generator

Ag(x) =
1
2

p∑
i,j=1

xi∧j(1− xi∨j)
∂2g

∂xi∂xj
(x)

(see Theorem 3 in [5]). Putting F εt (x) = 1
εFεt(εx), it is a simple mat-

ter to verify that our Theorem 3 still holds in that setting, provided we
let (Z(t, x), t ≥ 0, x ≥ 0) be the flow associated with the Feller diffusion
(Ψ(q) = 1

2q
2). Indeed, if we specialize to the case p = 1 and if we let

(Bt, t ≥ 0) be a standard linear Brownian motion, this is just saying that,
for the Fisher-Wright diffusion (Xt(x), t ≥ 0) solving

dXt =
√
Xt(1−Xt) dBt , X0 = x,

the rescaled processes Xε
t := 1

εXεt(εx) converge in distribution as ε → 0
towards the Feller diffusion Yt(x) solving

dYt =
√
Yt dBt , Y0 = x.

We will now use Theorem 3 to derive precise information on the sizes of
blocks in a Λ-coalescent (for Λ(dr) = r2ν(dr)) in small time. As previously,
we denote by λ1(dr) the Lévy measure of the subordinator (Z(1, x), x ≥ 0).
We have for every q ≥ 0

exp−x
∫

(1− e−qr)λ1(dr) = E(exp−qZ(1, x)) = exp−xu1(q)

and the function u1(q) can be calculated from equation (3), with Ψ = Ψγ . It
follows that ∫

(1− e−qr)λ1(dr) = (Γ(2− γ) + q1−γ)1/(1−γ)
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and in particular the total mass of λ1 is

(Γ(2− γ))1/(1−γ).

We will need the fact that λ1 has no atoms. An easy way to derive this
property is to argue by contradiction as follows. Suppose that a > 0 is an
atom of λ1. From the Lévy-Itô decomposition of Z(1, x) (see the discussion
after (4)), it follows that a is also an atom of the distribution of Z(1, x), for
every x > 0. By a simple scaling argument, for every s > 0, the image of
λ1(dr) under the mapping r → s1/(γ−1)r is s1/(γ−1)λs(dr). Therefore, for
every s ∈]0, 1[, s1/(γ−1)a is also an atom of λs, hence of the distribution of
Z(s, x) for every x > 0. However, applying the Markov property to the process
(Z(t, 1))t≥0 at time 1− s, this would imply that for every s ∈]0, 1[, s1/(γ−1)a
is an atom of the distribution of Z(1, 1), which is absurd.

We set g(ε) = L(ε)−1εγ−1 for every ε ∈]0, ε0].

Theorem 4. Assume that (A) holds and let Λ(dr) = r2ν(dr). For every
t ≥ 0 and r ∈ [0,∞], denote by Nt(]0, r[) the number of blocks at time t with
frequencies less than r in a Λ-coalescent started from the partition of N in
singletons. Then,

sup
x∈]0,∞[

∣∣∣εNg(ε)(]0, εx[)− λ1(]0, x[)
∣∣∣ −→
ε→0

0

in probability.

Again Theorem 4 is a generalization of classical results for the Kingman
coalescent. In that case, one has

sup
x∈]0,∞[

∣∣∣εNε(]0, εx[)− 2(1− 2 e−2x)
∣∣∣ −→
ε→0

0

almost surely (cf. Section 4.2 of [1]). This is consistent with Theorem 4 since
in the case Ψ(q) = 1

2q
2, (24) shows that

2(1− 2 e−2x) =
∫ x

0

4 e−2x dx = λ1(]0, x[).

Proof. By the results of [4] recalled at the beginning of Subsection 4.2,
we know that, for each t ≥ 0 the collection (Nt(]0, r[), r ≥ 0) has the same
distribution as ( ∑

0<u<1

1{0<Ft(u)−Ft(u−)≤r} , r ≥ 0

)
,

where (Ft, t ≥ 0) is the generalized Fleming-Viot process associated with ν.
It then follows from our definitions that(

εNg(ε)(]0, xε[), x ≥ 0
)

(d)
=

(
ε
∑

0<u<1/ε

1{0<F ε1 (u)−F ε1 (u−)≤x} , x ≥ 0

)
.
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By combining Theorem 3 and Lemma 2, we get that

(36) ε
∑

0<u<1/ε

δF εt (u)−F εt (u−) −→
ε→0

λ1

in probability in MR. This is indeed the same result as Theorem 2 in our
present setting. The preceding convergence is not quite sufficient to conclude:
Recalling that λ1 has no atoms and using Dini’s theorem, we see that the
statement of the theorem will follow if we can prove that the convergence
(36) holds in the sense of weak convergence in the space MF. To get this
strengthening of (36), it suffices to prove the convergence of the total masses.
Therefore the proof of Theorem 4 will be complete once we have established
the following lemma.

Lemma 3. We have

lim
ε→0

εNg(ε)(]0,∞[) = λ1(]0,∞[) = (Γ(2− γ))1/(1−γ),

in probability.

Remark. The recent paper [2] gives closely related results that were ob-
tained independently of the present work.

Proof. Write Nt = Nt(]0,∞[) to simplify notation. Then, for every t ≥ 0
and x ∈]0, 1], we have

E[xNt ] = P[Ft(x) = 1]
(cf. formula (8) in [5]). By exchangeability,

P[Ft(x) = 1] = P[Ft(x) = Ft(1)] = P[Ft(1− x) = 0].

Hence, for x ∈]0, 1[,
P[Ft(x) = 0] = E[(1− x)Nt ],

and it follows that

P[F ε1 (x) = 0] = E[(1− εx)Ng(ε) ].

From the convergence in distribution in Theorem 3, we have for every x > 0,

lim sup
ε→0

P[F ε1 (x) = 0] ≤ P[Z(1, x) = 0] = exp−xλ1(]0,∞[).

We have thus obtained that, for every x > 0,

lim sup
ε→0

E[(1− εx)Ng(ε) ] ≤ exp−xλ1(]0,∞[).

By standard arguments, this implies that for every η > 0,

(37) lim
ε→0

P[εNg(ε) < λ1(]0,∞[)− η] = 0.

To complete the proof, we need to verify that we have also, for every η > 0,

(38) lim
ε→0

P[εNg(ε) > λ1(]0,∞[) + η] = 0.
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From now on, we fix η > 0 and we prove (38). We will use a different method
based on the knowledge of the law of the process of the number of blocks in
a Λ-coalescent. For every integer n ≥ 1, write Nn

t for the number of blocks
at time t in a Λ-coalescent started initially with n blocks. Then according
to Pitman [16] (Section 3.6), the process (Nn

t , t ≥ 0) is a time-homogeneous
Markov chain with values in {1, 2, . . . , n}, with only downward jumps, such
that for 2 ≤ k ≤ b ≤ n, the rate of jumps from b to b− k + 1 is

αb,k =
(
b

k

)∫
]0,1]

xk(1− x)b−kν(dx).

The total rate of jumps from b is thus

αb =
b∑

k=2

αb,k =
∫

]0,1]

(1− (1− x)b − b(1− x)b−1)ν(dx).

Lemma 4. Under Assumption (A), we have

lim
b→+∞

(bγL(1/b))−1 αb = Γ(2− γ)

and, for every integer k ≥ 2,

lim
b→+∞

(bγL(1/b))−1 αb,k =
γΓ(k − γ)

k!
.

We leave the easy proof to the reader. Note that

(39)
∞∑
k=2

γΓ(k − γ)
k!

= Γ(2− γ).

This is easily proved by using the definition of the function Γ and then an
integration by parts. Similarly, we have

(40)
∞∑
k=2

γΓ(k − γ)
k!Γ(2− γ)

(k − 1) =
1

γ − 1
.

Let us fix ρ ∈]0, 1/8[ sufficiently small so that

(Γ(2− γ)1/(1−γ) + η)1−γ < (1− 6ρ)Γ(2− γ).

Thanks to (39) and (40), we may choose an integer K ≥ 2 ∨ ε−1
0 sufficiently

large so that

1
Γ(2− γ)

K∑
k=2

γΓ(k − γ)
k!

≥ 1− ρ

and

(41)
K∑
k=2

γΓ(k − γ)
k!Γ(2− γ)

(k − 1) ≥ 1
γ − 1

− ρ.
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Then, for every k ∈ {2, 3, . . . ,K}, we may choose ρk ∈]0, γΓ(k − γ)/k![ suffi-
ciently small so that

(42)
1

Γ(2− γ)

K∑
k=2

(k − 1)ρk < ρ.

Now set

βb,k =
(γΓ(k − γ)

k!
− ρk

)
bγL(

1
b

)

for b ≥ K and k ∈ {2, 3, . . . ,K}. We also put

βb =
K∑
k=2

βb,k.

Notice that

(43) βp =
K∑
k=2

(γΓ(k − γ)
k!

− ρk
)
bγL(

1
b

) ≥ (1− 2ρ)Γ(2− γ) bγL(
1
b

).

By Lemma 4, we can choose an integer B ≥ 2K sufficiently large so that, for
every b ≥ B −K, b′ ∈ {b, b+ 1, . . . , b+K} and k ∈ {2, . . . ,K}, one has

(44) βb′,k ≤ αb,k.

Denote by (Unt )t≥0 the continuous-time Markov chain with values in N, with
initial value Un0 = n, which is absorbed in the set {1, . . . , B−1} and has jump
rate βb,k from b to b − k + 1 when b ≥ B and k ∈ {2, 3, . . . ,K}. Fix n ≥ B.
Then, thanks to inequality (44), we can couple the Markov chains (Unt )t≥0

and (Nn
t )t≥0 in such a way that

Unt ≥ Nn
t , for every t ≤ TnB := inf{s : Uns < B}.

Now it is easy to describe the behavior of the Markov chain (Unt ). Note
that for k ∈ {2, . . . ,K} and b ≥ K the ratio βb,k/βb does not depend on b.
Then denote by Si = ξ1 + · · ·+ ξi (i = 0, 1, 2, . . .) a discrete random walk on
the nonnegative integers started from the origin and with jump distribution

P[ξi = k − 1] =
βb,k
βb

=
(γΓ(k − γ)/k!)− ρk∑K
`=2((γΓ(`− γ)/`!)− ρ`)

, 2 ≤ k ≤ K.

From (41) and (42) we have

(45) E[ξi] ≥
1

γ − 1
− 2ρ.

Let e0, e1, . . . be a sequence of independent exponential variables with mean
1, which are also independent of the random walk (Si)i≥0. We can construct
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the Markov chain (Unt ) by setting:

Unt = n if 0 ≤ t < e0

βn
,

Unt = n− S1 if
e0

βn
≤ t < e0

βn
+

e1

βn−S1

,

and more generally,
Unt = n− Sp

if
e0

βn
+

e1

βn−S1

+ · · ·+ ep−1

βn−Sp−1

≤ t < e0

βn
+

e1

βn−S1

+ · · ·+ ep
βn−Sp

provided p ≤ pnB := inf{i : n− Si < B}.
Recall that our goal is to prove (38). To this end, note that for a > B,

(46) P[Nn
g(ε) > a] ≤ P[Ung(ε) > a] ≤ P

[
g(ε) ≤ e0

βn
+

e1

βn−S1

+ · · ·+
epna

βn−Spna

]
where pna := inf{i : n− Si < a}.

Lemma 5. For ε > 0 set a(ε) = (λ1(]0,∞[) + η)/ε. Then,

lim
ε→0

(
sup
n≥a(ε)

P

[
g(ε) ≤ e0

βn
+

e1

βn−S1

+ · · ·+
epn

a(ε)

βn−Spn
a(ε)

])
= 0.

The desired bound (38) immediately follows from Lemma 5. Indeed, stan-
dard properties of Λ-coalescent give

P[εNg(ε) > λ1(]0,∞[) + η] = lim
n↑∞
↑ P[εNn

g(ε) > λ1(]0,∞[) + η]

= lim
n↑∞
↑ P[Nn

g(ε) > a(ε)]

and by combining (46) and Lemma 5, we see that the latter quantity tends
to 0 as ε→ 0.

Proof of Lemma 5. By (43), we have for a > B,

(47)
e0

βn
+

e1

βn−S1

+· · ·+
epna

βn−Spna
≤ ((1−2ρ)Γ(2−γ))−1

pna∑
i=0

ei
(n− Si)γL( 1

n−Si )
.

Note that

E

[ pna∑
i=0

ei
(n− Si)γL( 1

n−Si )

∣∣∣ Si, i ≥ 0

]
=

pna∑
i=0

1
(n− Si)γL( 1

n−Si )
.

Let m ≥ 2 be an integer. For a > B and n > ma, a trivial bound shows that

aγ−1L(
1
a

)
pnma∑
i=0

1
(n− Si)γL( 1

n−Si )
≤ aγ−1L(

1
a

)
∞∑

j=[ma]−K

1
jγL( 1

j )
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and the right-hand side tends to 0 as m → ∞, uniformly in a > B. On the
other hand, an easy argument using the law of large numbers for the sequence
(Si)i≥0 shows that, for each fixed m ≥ 2,

lim
a→∞

(
sup
n>ma

E

[∣∣∣aγ−1L(
1
a

)
pna∑

i=pnma

1
(n− Si)γL( 1

n−Si )
− 1
E[ξ1]

∫ m

1

dx

xγ

∣∣∣]) = 0.

Now recall the bound (45) for E[ξ1]. It follows from the preceding considera-
tions that

(48) lim
a→∞

(
sup
n>a

P

[
aγ−1L(

1
a

)
pna∑
i=0

1
(n− Si)γL( 1

n−Si )
>

1
1− 3ρ

])
= 0.

Now we can also get an estimate for the conditional variance

var

( pna∑
i=0

ei
(n− Si)γL( 1

n−Si )

∣∣∣ Si, i ≥ 0

)
=

pna∑
i=0

1
(n− Si)2γL( 1

n−Si )
2

≤
n∑

j=[a−K]

1
j2γL( 1

j )2

≤ Ca1−2γL(
1
a

)−2

for some constant C independent of a and n. From this estimate, (48) and an
application of the Bienaymé-Cebycev inequality, we get

(49) lim
a→∞

(
sup
n>a

P

[
aγ−1L(

1
a

)
pna∑
i=0

ei
(n− Si)γL( 1

n−Si )
>

1
1− 4ρ

])
= 0.

Recalling (47), we get that

inf
n≥a(ε)

P

[ e0

βn
+

e1

βn−S1

+ · · ·+
epn

a(ε)

βn−Spn
a(ε)

≤
a(ε)1−γL( 1

a(ε) )−1

(1− 2ρ)(1− 4ρ)Γ(2− γ)

]
tends to 1 as ε→ 0. However, from our choice of ρ, we have for ε sufficiently
small

g(ε) >
a(ε)1−γL( 1

a(ε) )−1

(1− 2ρ)(1− 4ρ)Γ(2− γ)
,

and this completes the proof. �

Remark. It is rather unfortunate that the simple argument we used to
derive (37) does not apply to (38). On the other hand, it is interesting to
observe that the techniques involved in our proof of (38) would become more
complicated if we were trying to use them to get (37).



180 JEAN BERTOIN AND JEAN-FRANÇOIS LE GALL
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