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RANDOM WALK ON THE INCIPIENT INFINITE CLUSTER
ON TREES

MARTIN T. BARLOW AND TAKASHI KUMAGAI

Abstract. Let G be the incipient infinite cluster (IIC) for percolation
on a homogeneous tree of degree n0 + 1. We obtain estimates for the

transition density of the continuous time simple random walk Y on G;
the process satisfies anomalous diffusion and has spectral dimension 4

3
.

1. Introduction

We recall the bond percolation model on the lattice Zd: each bond is open
with probability p ∈ (0, 1), independently of all the others. Let C(x) be the
open cluster containing x; then if θ(p) = Pp(|C(x)| = +∞) it is well known
(see [Gm]) that there exists pc = pc(d) such that θ(p) = 0 if p < pc and
θ(p) > 0 if p > pc.

If d = 2 or d ≥ 19 (or d > 6 for ‘spread out’ models) it is known (see [Gm],
[HaS]) that θ(pc) = 0, and it is conjectured that this holds for d ≥ 2. At
the critical probability p = pc it is believed that in any box of side n there
exist with high probability open clusters of diameter of order n—see [BCKS].
For large n the local properties of these large finite clusters can, in certain
circumstances, be captured by regarding them as subsets of an infinite cluster
C̃, called the ‘incipient infinite cluster’ (IIC).

This was constructed when d = 2 in [Ke1], by taking the limit as N →∞
of the cluster C(0) conditioned to intersect the boundary of a box of side N
with center at the origin. See [Ja1], [Ja2] for other constructions of the IIC
in two dimensions. For large d a construction of the IIC in Zd is given in
[HJ], using the lace expansion. It is believed that the results there will hold
for any d > 6. [HJ] also gives the existence and some properties of the IIC
for all d > 6 for ‘spread-out’ models: these include the case when there is a
bond between x and y with probability pL−d whenever y is in a cube side L
with center x, and the parameter L is large enough. Rather more is known
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about the IIC for oriented percolation on Z+ × Zd (see [HHS], [HS]), but in
this discussion, which mainly concerns what is conjectured rather than what
is known, we specialize to the case of Zd. We write C̃d for the IIC in Zd. It is
believed that the global properties of C̃d are the same for all d > dc, both for
nearest neighbour and spread-out models. In [HJ] it is proved for ‘spread-out’
models that C̃d has one end—that is that any two paths from 0 to infinity
intersect infinitely often.

For large d, it is believed that the geometry of C̃d is also similar to that of
the IIC when ‘d =∞’—that is to the IIC on a regular tree; this is supported
by the results in [HHS] and [HJ]. For trees the construction of the IIC is
much easier than for lattices, and there is a close connection between the IIC
and a critical Bienaymé-Galton-Watson branching processes conditioned on
non-extinction. In [Ke2] Kesten gave the construction of the IIC G for critical
branching processes. This is an infinite subtree, which contains only one path
from the root to infinity. This tree is quite sparse, and has polynomial volume
growth: in the case when the offspring distribution has finite variance, a ball
B(x, r) in G has roughly r2 points. (This is when distance in G is measured
using the natural graph distance).

Let Y = (Yt, t ≥ 0) be the (continuous time) simple random walk on C̃d,
and qt(x, y) be its transition density (see Section 3 for a precise definition).
Define the spectral dimension of C̃d by

(1.1) ds(C̃d) = −2 lim
t→∞

log qt(x, x)
log t

,

(if this limit exists). Alexander and Orbach [AO] conjectured that, for any
d ≥ 2, ds(C̃d) = 4/3. While it is now thought that this is unlikely to be true
for small d, the results on the geometry of C̃d for spread out models in [HJ] are
consistent with this holding for d above the critical dimension. For the IIC
for oriented percolation on Z+ × Zd, the AO conjecture is proved in [BJKS]
for spread-out models for d > 6. Since mean field behaviour is expected to
hold for oriented percolation for d > 4, one might initially expect this result
for d > 4. However, an issue which arises for random walks on oriented
percolation clusters is that while the percolation is oriented, the random walk
is not, so that the random walk ‘sees’ connections in the cluster missed by the
percolation process. Given this, it is not clear if one should expect the AO
conjecture to hold for oriented percolation if d = 5, 6. See [BJKS] for a more
detailed discussion of this. We also remark that an annealed version of (1.1)
is obtained by [JW], using quite different methods.

Random walks on supercritical clusters in Zd are studied in [B2] (transition
density estimates) and [SS], [BeB], [MP] (invariance principles). In these cases
the large scale behaviour of the random walk approximates that of the random
walk on Zd, and the unique infinite cluster has spectral dimension d.
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In what follows, we will specialize to the case of critical percolation on a
regular rooted tree with degree n0 + 1, which we denote B. We write 0 for the
root of B. We keep n0 fixed, but (in view of possible future applications) wish
to obtain estimates which do not depend on n0. For bond percolation with
probability p on B, it is easy to see that if Xn is the number of vertices at
level n in C(0), then X = (Xn) is a branching process with Bin(n0, p) offspring
distribution. Thus pc = 1/n0. For the construction of the IIC see [Ke2]: we
obtain a subtree G ⊂ B with law P, on a probability space (Ω1,F ,P). Write
BN for the N -th level of B, and B≤N for the union of the first N levels of B.
Then the law of G is characterized by the fact that the law of G ∩B≤N under
P is the same as that of C(0) under Ppc , conditioned on C(0) reaching level N .

Motivated by [AO], in [Ke2] Kesten studied the simple random walk on
G(ω), and also on C̃2. Let X = (Xn, n ≥ 0, Qxω, x ∈ G(ω)) be the simple
random walk on G(ω). We define the annealed law P

∗ by the semi-direct
product P∗ = P×Q0

ω, and the rescaled height process Z(n) by

Z
(n)
t = n−1/3d(0, Xbntc), t ≥ 0,

where d(., .) is the graph distance in G(ω).
The following summarizes the main results in of [Ke2] in the tree case.

Theorem 1.1.

(a) ((1.19) in [Ke2].) Let TN = min{n : d(0, Xn) = N}. Then for all
ε > 0 there exist λ1, λ2 such that

P
∗(λ1 ≤ N−3TN ≤ λ2) ≥ 1− ε, for all N ≥ 1.

(b) ((1.16) in [Ke2], full proof in [Ke3].) Under P∗ the processes Z(n)

converges weakly in C[0,∞) to a process Z which is not the zero pro-
cess.

The continuum limit of the IIC on regular trees is the ‘continuum ran-
dom tree’ (CRT) of Aldous—see [A1], [A2], [A3]. A diffusion on the CRT
is constructed in [Kr]. In [C1] Croydon obtains transition density estimates
for this diffusion, and in [C2] proves that it is the scaling limit of random
walks on the discrete trees. These papers use the work of Kigami [Ki1] on
diffusions on dendrites, and the representation of the CRT as the integrated
super-Brownian excursion (see [DIP]).

To understand why the n−1/3 scaling arises in (b) it is helpful to consider
the behaviour of random walks on regular deterministic graphs with a large
scale fractal structure—see for example [Jo], [BB2], [HK], [GT1], [GT2] and
[BCK]. Let df ≥ 1 give the volume growth, so that |B(x, r)| ∼ rdf , and
suppose that the effective electrical resistance Reff(x,B(x, r)c) between x and
the exterior of B(x, r) satisfies Reff(x,B(x, r)c) ∼ rζ , where ζ > 0. In this
‘strongly recurrent’ case (see [BCK] for simple recent proofs using ideas that
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are also used in this paper) one finds that the mean time for X to escape from
B(x, r) scales as rdw where dw = df+ζ. While the IIC G is more irregular than
the sets considered in these papers, it still has properties similar to regular
graphs with df = 2. Further, by Proposition 2.10 below, only O(1) points on
∂B(x, r/4) are connected to B(x, r)c by a path outside B(x, r/4)c, so one has
Reff(x,B(x, r)c) ∼ r, giving ζ = 1 and dw = 3.

In this paper we study the simple random walk on G, and in particular
investigate both quenched and annealed properties of its transition densities.
For technical convenience we work with the continuous time simple random
walk on G, which we denote Y = (Yt, t ∈ [0,∞), P xω , x ∈ G(ω)). However, we
expect similar results for the discrete time random walkX—see the note at the
end of Section 5. Since we consider the law of Y with general starting points
x, we need to consider the measures Px = P(·|x ∈ G) and Px,y = P(·|x, y ∈ G).

Unlike [Ke2] we restrict our attention to branching processes with a Bi-
nomial offspring distribution. Our main reason for this is to maintain good
uniform control of the laws Px. It is clear by symmetry that Px(|B(x, r)| > λ)
is the same for any x ∈ BN , and in fact we have uniform bounds for all x ∈ B.
(These probabilities are not equal for all x, since a higher level x is likely to
be further from the backbone of the cluster.) For a general branching process,
the labels of the point x may give a substantial amount of information about
the size of the cluster near x.

We write τ(x, r) = inf{t : d(x, Yt) ≥ r}. We look at various quantities
measuring the behaviour of the process Y : the transition density qt(x, x), the
mean times to exit balls given by Exωτ(x, r) and the distance moved by the
process d(Y0, Yt). For each of these quantities we can discuss (i) tightness, (ii)
mean values and (iii) limiting behaviour.

Theorem 1.2.

(a) There exists δ > 0 such that

Px(θ−1 < qt(x, x)t2/3 < θ) ≥ c1 − e−c2θ
δ

, x ∈ B, t ≥ 1, θ > 1.

(b) There exist c2, c3, c4, S(x) such that for each x,

(1.2) Px(S(x) ≥ m) ≤ c2(logm)−1,

and on {ω : x ∈ G(ω)}

(1.3) c3t
−2/3(log log t)−17 ≤ qωt (x, x) ≤ c4t−2/3(log log t)3 for all t ≥ S(x).

(c) ds(G) = 4/3 P–a.s.

The cluster G contains large scale fluctuations, so that qt(x, x) does have
oscillations of order (log log t)c as t→∞—see Lemma 5.1.
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Theorem 1.3.

(a) There exists δ > 0 as such that

Px(θ−1 ≤ r−3Exω(τ(x, r)) ≤ θ) ≥ 1− e−c1θ
δ

, for x ∈ B, r ≥ 1, θ ≥ 1.

(b) For x ∈ B, r ≥ 1,

c2r
3 ≤ Ex

(
Exτ(x, r)

)
≤ c3r3.

Theorem 1.4.

(a) For t ≥ 1, we have

(1.4) c1t
1/3 ≤ Ex

(
Exωd(x, Yt)

)
≤ Ex

(
Exω sup

0≤s≤t
d(x, Ys)

)
≤ c2t1/3.

(b) There exists T (x) with Px(T (x) <∞) = 1 such that

(1.5) c3t
1/3(log log t)−12 ≤ Exω[d(x, Yt)] ≤ c4t1/3 log t for all t ≥ T (x).

We also obtain (annealed) off-diagonal bounds for qωt (x, y). These are of
the same form as the bounds

ct−df/dw exp(−c′(d(x, y)dw/t)1/(dw−1))

obtained for regular fractal graphs with df = 2, dw = 3.

Theorem 1.5.

(a) Let x, y ∈ B. Then, for t ≥ c0d(x, y), we have

(1.6) Ex,y

(
qωt (x, y)

)
≤ c1t−2/3 exp

(
− c2

(
d(x, y)3

t

)1/2)
.

(b) Let x, y ∈ B, with d(x, y) = R, and t ≥ c3(R ∨ 1). Then

(1.7) Ex,y

(
qωt (x, y)

)
≥ c4t−2/3 exp(−c5(R3/t)1/2).

Define the continuous time rescaled height process

Z̃
(n)
t = n−1/3d(0, Ynt), t ≥ 0.

By Theorem 1.3(a) the processes (Z̃(n), n ≥ 1) are tight with respect to the
annealed law given by the semi-direct product P∗ = P × P 0

ω . (This is much
easier to prove than the full convergence given in Theorem 1.1(b).) However,
the large scale fluctuations in G mean that we do not have quenched tightness.

Theorem 1.6. P-a.s., the processes (Z̃(n), n ≥ 1) are not tight with re-
spect to P 0

ω.

In Section 2 we recall various properties of branching processes, and obtain
the geometrical properties of G that we will require. In particular we show
that, with high probability, balls B(x, r) ⊂ G have roughly r2 points, and
O(1) disjoint paths between B(x, r/4) and B(x, r)c. Based on this, we define
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various types of possible ‘good’ behaviour of a ball B(x, r), and the cluster in
a neighbourhood of the path between points x, y ∈ G. In Section 3 we review
some general properties of random walks on graphs. Our main estimates are
given in Section 4, for the random walk on a deterministic subtree G of B for
which balls and paths are ‘good’ in the ways given in Section 2. Finally, in
Section 5 we tie together the results of Sections 2 and 4, and prove Theorems
1.2–1.6.

Throughout this article, fn ∼ gn means that limn→∞ fn/gn = 1. We use
c, c′ and c′′ to denote strictly positive finite constants whose values are not
significant and may change from line to line. We write ci for positive constants
whose values are fixed within each theorem, lemma etc. If we cite elsewhere
the constant c1 in Lemma 2.2, we denote it as c2.2.1. None of these constants
depend on the degree n0 of the tree.

2. The incipient infinite cluster

We begin with some estimates for the critical Bienaymé-Galton-Watson
branching processes Xn, n ≥ 0, with X0 = 1 and offspring distribution
Bin(n0, 1/n0) where n0 ≥ 2. These are quite well known, but as we did
not find them anywhere in exactly the form we needed, we give the proofs
(which are quite short) here.

Let f be the generator of the offspring distribution, so that

(2.1) f(s) = E(sX1) = n−n0
0 (s+ n0 − 1)n0 .

From [Har], p. 21, we have

(2.2) P (Xn > 0) ∼ 2
nf ′′(1)

=
2n0

(n0 − 1)n
.

Let

Yn =
n∑
k=0

Xk, gn(s) = E(sYn), fn(s) = EsXn .

Then conditioning on X1 we obtain that fn+1(s) = f(fn(s)), and

gn+1(s) = sf(gn(s)) =
s

nn0
0

(gn(s) + n0 − 1)n0 .

Set
hn(θ) = log gn(eθ), kn(θ) = log fn(eθ).

Lemma 2.1.

(a) Let 1 < α ≤ 2. Then

(2.3) hn(θ) ≤ (1 + αn)θ, provided 0 ≤ θ ≤ α− 1
(1 + αn)2

.
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(b)

(2.4) kn(θ) ≤ θ + 2nθ2, provided 0 < θ ≤ 1
6n
.

Proof. Note that hn and kn are continuous, strictly increasing and hn(0) =
kn(0) = 0.

For (a) we have

hn+1(θ) = log
(
eθ

n
n0
0

(ehn(θ) + n0 − 1)n0

)
= θ + n0 log

1
n0

(ehn(θ) + n0 − 1).

Let an = min{θ : hn(θ) = 1}. Then since ex ≤ 1 + x+ x2 on [0, 1], on [0, an],

(2.5) hn+1(θ) ≤ θ + n0 log(1 +
1
n0
hn(θ) +

1
n0
hn(θ)2) ≤ θ + hn(θ) + hn(θ)2.

We verify (2.3) by induction. Since h0(θ) = θ, (2.3) holds for n = 0. Writing
bn(α) = (α − 1)/(1 + αn)2, we have hn(θ) ≤ 1 for θ ∈ [0, bn(α)]. So, using
(2.5) and (2.3) for n

hn+1(θ) ≤ (1 + α(n+ 1))θ + (1 + αn)2θ2 − (α− 1)θ ≤ (1 + α(n+ 1))θ,

proving (2.3) for n+ 1.
(b) Similarly, provided kn(θ) ≤ 1,

(2.6) kn+1(θ) = n0 log
(

1 +
ekn(θ) − 1

n0

)
≤ kn(θ) + kn(θ)2.

Using (2.4) for n we obtain, since θ + 2nθ2 ≤ 4θ/3,

kn+1(θ) ≤ (θ+ 2nθ2) + (θ+ 2nθ2)2 ≤ (θ+ 2nθ2) + 16θ2/9 ≤ (θ+ 2(n+ 1)θ2),

proving (2.4) for n+ 1. �

Notation. Let ξ be a random variable. We write λξ[n] for a r.v. with

the distribution of λ
∑n

1 ξi, where ξi are i.i.d. with ξi
(d)
= ξ. We also write

Ber(p) and Bin(n, p) for the Bernoulli and Binomial distributions respectively.

Using this notation we have for example (ξ[n])[m] = ξ[nm], and Bin(n, p)
(d)
=

Ber(p)[n]. We write < for stochastic domination.

Lemma 2.2. For any λ > 0

(2.7) P (Xn[n] ≥ λn) ≤ c1e−λ/6,

(2.8) P (Yn[n] ≥ λn2) ≤ c2e−λ/5.

Proof. Let θ = 1/6n. Using (2.4)

logP (Xn[n] ≥ λn) ≤ −θλn+ nkn(θ)

≤ −nθ(λ− 2) = −(λ− 2)/6,

proving (2.7).
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If θ ≤ bn(α) then

P (Yn[n] ≥ λn2) = P (eθYn[n] ≥ eθλn
2
) ≤ e−θλn

2
EeθYn[n]

= exp(−θλn2 + nhn(θ)) ≤ exp(−θλn2 + (1 + αn)nθ).

So taking α = 2 and θ = bn(2) = (1 + 2n)−2

logP (Yn[n] ≥ λn2) ≤ −n
2(λ− 2)

(1 + 2n)2
+

n

(1 + 2n)2
∼ −1

4λ+ c3. �

Lemma 2.3.

(a) There exist c0 > 0, p0 > 0 such that

P (Yn > c0n
2) ≥ p0

n
.

(b) If ηn
(d)
= Bin(n, p0/n) then Yn[n] < c0n2ηn.

Proof. (a) This should be in the literature, but is also easy to prove directly.
Let An = {Xn/2 > 0}, and an = P (An). Then by (2.2) an ∼ (4n0/(n0 −
1))n−1. We have EYn = n + 1 and EY 2

n ≤ c1n
3, where c1 does not depend

on n0. On Acn we have Yn/2 = Yn, so

n+ 1 = EYn = E(Yn;An) + E(Yn;Acn) ≤ E(Yn|An)P (An) + EYn/2.

It follows that

E(Yn|An) ≥ n/2
an
≥ c2n2.

Also,
E(Y 2

n |An) ≤ P (An)−1E(Y 2
n ;An) ≤ c3n4.

Using the ‘Backwards Chebyshev’ inequality P (ξ ≥ 1
2Eξ) ≥ (Eξ)2/(4Eξ2)

with respect to P (·|An) then gives

P (Yn > 1
2c2n

2|An) ≥ P (Yn > 1
2E(Yn|An)|An) ≥ c22n

4

4c3n4
= c4.

So
P (Yn > 1

2c2n
2) ≥ P (Yn > 1

2c2n
2|An)P (An) ≥ c4an ≥ c5n−1,

and taking c0 = 1
2c2, p0 = c5, this proves (a).

(b) Let now Y
(j)
n be i.i.d. copies of Yn, and Fj = {Y (j)

n > c0n
2}. Then if

ξj = 1Fj , by (a) we have P (ξj = 1) ≥ p0/n. So,

Yn[n] =
n∑
j=1

Y (j)
n <

n∑
j=1

c0n
2ξj < c0n

2ηn,

proving (b). �
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Lemma 2.4. For 0 < λ < 1 and n ≥ c1/λ,

(2.9) exp(−c2/λ) ≤ P (Yn[n] ≤ λn2) ≤ exp(−c3/λ1/2).

Proof. To prove the upper bound let c0 = c2.3.0, and m = (λ/c0)1/2n.
Using Lemma 2.3 we have

Ym[n] =
n∑
i=1

Y (i)
m <

n∑
i=1

c0m
2ξi = λn2

n∑
i=1

ξi;

here ξi are i.i.d. Ber(p0/m) r.v. So

P (Ym[n] < λn2) ≤ P
( n∑
i=1

ξi < 1
)

= (1− p0/m)n ≤ exp(−p0n/m) = exp(−c1/20 p0/λ
1/2).

For the lower bound let k ≥ 1 and m = n/k. Let Gj = {X(j)
m = 0}, and

G =
⋂

1≤j≤nGj . Then P (G) ≥ (1− c/m)n so

P (Yn[n] < λn2) ≥ P (Yn[n] < λn2|G)P (G)

≥ (1− c/m)n
(

1− P (Yn[n] > λn2|G)
)

≥ c′e−c
′′k
(

1− P (Yn[n] > λn2|G)
)
.

On G we have Yn[n] =
∑n
j=1 Y

(j)
m , so for m = n/k ≥ 2c,

P (Yn[n] > λn2|G) ≤
E(
∑n
j=1 Y

(j)
m |G)

λn2
=
nE(Y (1)

m |G1)
λn2

≤ EY
(1)
m

λnP (G1)
≤ c′

kλ
.

Taking k such that c′/(kλ) = 1
2 , we have n ≥ c1/λ, which completes the

proof. �

To handle clusters off the ‘backbone’ we will need to consider the following
modified branching process. Let X̃ = (X̃n, n ≥ 0) be a branching process
with X̃0 = 1 and the same Bin(n0, 1/n0) offspring distribution as X, except

that at the first generation we have X̃1
(d)
= Bin(n0 − 1, 1/n0).

Lemma 2.5.

(a) For any λ > 0

(2.10) P (X̃n[n] ≥ λn) ≤ c1e−c2λ,

(2.11) P (Ỹn[n] ≥ λn2) ≤ c3e−c4λ.
(b) For 0 < λ < 1,

(2.12) exp(−c5/λ) ≤ P (Ỹn[n] ≤ λn2) ≤ exp(−c6/λ1/2).
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(c) There exists p1 > 0 such that Ỹn[n] < c7n2Bin(n, p1/n).

Proof. (a) and the lower bound in (b) are immediate from Lemmas 2.2 and
2.4, since X̃n 4 Xn and Ỹn 4 Yn.

For the upper bound in (b), we can write

Ỹn[n] = n+
M∑
i=1

Y
(i)
n−1,

where M
(d)
= Bin(n(n0 − 1), 1/n0), and Y (i) are independent copies of Y .

Similarly,

Ym[m] = m+
M ′∑
i=1

Y
(i)
m−1,

where M ′
(d)
= Bin(mn0, 1/n0). So if m = n(n0 − 1)/n0 then

(2.13) Ỹn[n] = n+
M∑
i=1

Y
(i)
n−1 ≥ m+

M ′∑
i=1

Y
(i)
m−1 = Ym[m].

(2.12) now follows from Lemma 2.4, since 1
2n ≤ m ≤ n.

(c) We have Ber(p) < 1
2Ber(p/2)[2]. So, using (2.13), with m as in (b),

Ỹn[n] < Ym[m] < c0m2Bin(m, p0/m)

< 1
2c0m

2Bin(2m, p0/2m)

< 1
2c0m

2Bin(n, p0/2m) < c1n2Bin(n, p1/n). �

We now define the random graph G we will be working with. We could
regard this either as critical percolation on the n0-ary tree B, conditioned on
the cluster containing the root 0 being infinite, or as the (critical) Bienaymé-
Galton-Watson process with Bin(n0, 1/n0) offspring distribution, conditioned
on non-extinction.

Let B be the n0-ary tree, and let 0 be the root. A point x in the nth gener-
ation (or level) is written x = (0, l1, · · · , ln), where li ∈ {1, 2, · · · , n0}. Let Bn
be the set of nn0 points in the nth generation, and let B≤n =

⋃n
i=0 Bi. If x ∈ Bk

we write |x| = k. If x = (0, l1, · · · , ln) ∈ Bn, let a(x, r) = (0, l1, · · · , ln−r) be
the ancestor of x at level |x| − r.

We regard B as a graph (in fact a tree) with edge set E(B) =
{
{x, a(x, 1)},

x ∈ B − {0}
}

. Let ηe, e ∈ E(B), be i.i.d. Bernoulli 1/n0 r.v. defined on a
probability space (Ω,F , P ). If ηe = 1 we say the edge e is open. Let

C(0) = {x ∈ B : there exists an η–open path from 0 to x}

be the open cluster containing 0. It is clear that Zn = |C(0) ∩ Bn| is a
critical GW process with Bin(n0, 1/n0) offspring distribution. Here and in the
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following, |A| is a cardinality of the set A. As Z has extinction probability 1,
the cluster C(0) is P–a.s. finite.

We have:

Lemma 2.6 ([Ke2, Lemma 1.14]). Let A ⊂ B≤k. Then

(2.14) lim
n→∞

P (C(0) ∩ B≤k = A|Zn 6= 0) = |A ∩ Bk|P (C(0) ∩ B≤k = A),

and writing P0(A) = |A ∩ Bk|P (C≤k = A), P0 has a unique extension to a
probability measure P on the set of infinite connected subsets of B containing 0.

Let G′ be a rooted labeled tree chosen with the distribution P: we call this
the incipient infinite cluster (IIC) on B. For more information on G′ see [Ke2]
and [vH] but we remark that P–a.s. G′ has exactly one infinite descending
path from 0, which we call the backbone, and denote H.

It will be helpful to use another construction of the IIC, obtained by modify-
ing the cluster C(0) rather than its law. We can suppose the probability space
(Ω,F , P ) carries i.i.d.r.v. ξi, i ≥ 1, uniformly distributed on {1, 2, · · · , n0},
and independent of (ηe). For n ≥ 0 let Ξn = (0, ξ1, . . . , ξn), and let

η̃e =

{
1 if e = {Ξn,Ξn+1} for some n ≥ 0,
ηe otherwise.

Then (see [vH]) if

G = {x ∈ B : there exists a η̃–open path from 0 to x},

G has law P. It is clear that the backbone of G is the set H = {Ξn, n ≥ 0}.
For x, y ∈ B let

Px(·) = P(·|x ∈ G), Pxy(·) = P(·|x, y ∈ G),

and let Ex and Exy denote expectation with respect to Px and Pxy respec-
tively. Given a descending path b = {0, b1, b2, . . . }, (which we call a possible
backbone) let

Px,b(·) = P(·|x ∈ G,H = b),

and define Px,y,b analogously.
For each x, y ∈ B, let γ(x, y) be the unique geodesic path connecting x

and y. We say that z is a middle point of γ(x, y) if z ∈ γ(x, y) and |d(x, z)−
1
2d(x, y)| ≤ 1

2 . We remark that the second construction of G makes it clear
that Px,y,b(ηe = 1) = 1 if the edge e lies in any of the paths b, γ(0, x) and
γ(0, y), and that under Px,y,b the r.v. ηe, e 6∈ b ∪ γ(0, x) ∪ γ(0, y) are i.i.d.
with Px,y,b(ηe = 1) = 1/n0.
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Notation. We consider the tree G = G(ω). Let d(x, y) be the graph dis-
tance between x and y, and

B(x, r) = {y ∈ G : d(x, y) < r}.

We write D(x) for the set of descendants of x. More precisely, y ∈ D(x) if
and only if x ∈ γ(0, y). Note that x ∈ D(x). If y ∈ D(x) we call x an ancestor
of y and y a descendants of x. We set

Dr(x) = {y ∈ D(x) : d(x, y) = r}, D≤r(x) =
r⋃
i=0

Di(x).

We also set

D(x; z) = {y ∈ D(x) : γ(x, y) ∩ γ(x, z) = {x}},

and write Dr(x; z) = Dr(x)∩D(x; z), D≤r(x; z) = D≤r(x)∩D(x; z). Thus if
z ∈ D(x) then y ∈ D(x; z) if and only if the lines of descent from x to y and
z are disjoint, except for x. (Note that D(x;x) = D(x).) For any A ⊂ G we
write

∂A = {y ∈ G −A : y ∼ x for some x ∈ A}.
The estimates at the beginning of this section lead to volume growth es-

timates for G. For x ∈ G let µx be the degree of x, and for A ⊂ G set
µ(A) =

∑
x∈A µx. We write

V (x, r) = µ(B(x, r)).

Note that as G is a tree, we have

(2.15) |B(x, r)| ≤ V (x, r) ≤ 2|B(x, r + 1)|.

Proposition 2.7.

(a) Let λ > 0, r ≥ 1 and x, y ∈ B, and b be a possible backbone. Then

(2.16) Px,y,b(V (x, r) > λr2) ≤ c0 exp(−c1λ),

and

(2.17) Px,y,b(V (x, r) < λr2) ≤ c2 exp(−c3/
√
λ).

(b) The bounds (2.16) and (2.17) also hold for the laws Px,b, Px,y, and
Px.

Proof. It is enough to prove (a), since the bounds for Px,b follow by taking
y = 0, and those for Px,y and Px then follow on integrating over b. Also, using
(2.15), it is enough to bound |B(x, r)|.

We will assume that |x| > r; if not we can use the same arguments with
minor modifications. Let xi = a(x, i) for 0 ≤ i ≤ r. If the backbone intersects
B(x, r) then let s be the smallest i such that xi ∈ H, and let v0 = xs and
vi, i ≥ 1, be the backbone descending from the point v0. Similarly if γ(0, y)
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intersects B(x, r) then let t be the smallest j such that yj ∈ B(x, r), and let
w0 = yt and wi, 1 ≤ i ≤ t, be the path γ(w0, y).

Then we have

B(x, r) ⊂
( r⋃
i=0

D≤r(xi;x)
)
∪
( r⋃
i=1

D≤r(vi; v3r)
)
∪
( r∧t⋃
i=1

D≤r(wi; y)
)
.

Under Px,y,b the r.v. |D≤r(·; ·)| above are i.i.d., with the same law as Ỹr. Thus
|B(x, r)| 4 Ỹr[r][3], and by Lemma 2.5(a),

Px,y,b(|B(x, r)| > λr2) ≤ c exp(−c′λ).

The proof of (2.17) is very similar. We have
⋃r/2
i=0D≤r/2(xi;x) ⊂ B(x, r),

so that |B(x, r)| < Ỹr/2[r/2], and using Lemma 2.5(b) leads to (2.17). �

We also wish to show that oscillations in n−2V (0, n) exist. Straightforward

calculations give that if W
(d)
= Bin(n, p/n) then

(2.18) P (W = k) ≥ c0e−k log(k/p), 0 ≤ k ≤ n1/2.

Proposition 2.8.

(a) For any ε > 0

lim sup
n→∞

V (0, n)
n2(log log n)1−ε =∞, P− a.s.

(b) There exists c0 <∞ such that

lim inf
n→∞

(log log n)V (0, n)
n2

≤ c0 P− a.s.

Proof. It is enough to prove these for the law Pb, for any fixed possible
backbone b = {0, y1, y2, . . . }.

(a) Let

Zn = |{x : x ∈ D(yi; yi+1), d(x, yi) ≤ 2n−2, 2n−1 ≤ i ≤ 2n−1 + 2n−2}|.

Thus Zn is the number of descendants off the backbone, to level 2n−2, of points
y on the backbone between levels 2n−1 and 2n−1 + 2n−2. So |B(0, 2n)| ≥ Zn,

the r.v. Zn are independent, and Zn
(d)
= Ỹ2n−2 [2n−2]. Using Lemma 2.5(c) we

have, if an = (logn)1−ε, and ηn
(d)
= Bin(n, p1/n),

Pb(|B(0, 2n)| ≥ an4n) ≥ Pb(Zn ≥ an4n)

≥ P (Ỹ2n−2 [2n−2] ≥ an4n)

≥ P (η2n−2 ≥ an) ≥ ce−an log an .

As Zn are independent, (a) follows by the second Borel-Cantelli Lemma.
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(b) Let nk = exp(2k log k), so that k2nk−1 ≤ nk, and let

Wk =
nk−1⋃
i=0

D(yi; ynk), Vk = D≤nk−nk−1(ynk−1).

Then the r.v. |Vk| are independent and B(0, nk) ⊂Wk−1 ∪ Vk.
Fix 0 < ε < 1/3 and let

F (i, k) = {Dk1+εnk(yi; yi+1) = ∅}.

Then since Xn < X̃n

P(F (i, k)) = P (X̃k1+εnk = 0) ≥ P (Xk1+εnk = 0) ≥ 1− c

k1+εnk
.

Let Gk =
⋂nk−1
i=0 F (i, k); we have

P(Gck) ≤ c/k1+ε.

On the event Gk we have that |Wk| 4
∑nk
i=1 Y

(i)
k1+εnk

, so

P(|Wk| ≥ k3n2
k) ≤ P(Gck) + P (Yk1+εnk [k1+εnk] ≥ k1−2ε(k1+εnk)2)

≤ ck−(1+ε) + e−c
′k1−2ε

≤ c′′k−(1+ε).

Thus |Wk| ≤ k3n2
k for all large k. Now |Vk| 4 Ynk [nk], so

P(|Vk| < c1(log k)−1n2
k) ≥ P (Ynk [nk] < c1(log k)−1n2

k) ≥ e−c log k ≥ k−1

if c1 is chosen large enough. As the r.v. |Vk| are independent, we deduce that
|Vk| < c1(log k)−1n2

k for all k in an infinite set J . For all large k ∈ J ,

|B(0, nk)| ≤ |Vk|+ (k − 1)3n2
k−1 ≤ (c1(log k)−1 + k−1)n2

k ≤
2c1n2

k

log log nk
. �

Remark. Let C∞ denote the unique infinite cluster for supercritical bond
percolation (i.e. p > pc) in Zd. Then writing Q(x,N) for the box side N and
center x

|C∞ ∩Q(x,N)|
|Q(x,N)|

→ θ(p).

Propositions 2.7 and 2.8 show that while the law of R−2V (0, R) is tight on
(0,∞), limR→∞R−2V (0, R) does not exist. Thus G is at large length scales
a much more irregular set than the clusters considered in [B2].

Definition 2.9. Let x ∈ G, r ≥ 1. Let M(x, r) be the smallest number
m such that there exists a set A = {z1, . . . , zm} with d(x, zi) ∈ [r/4, 3r/4] for
each i, such that any path γ from x to B(x, r)c must pass through the set A.
(Since G is a tree, the best choice of such a set A will in fact have the points
at a distance r/4 from x, but we will not need this.)
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Proposition 2.10. There exist c1, c2 > 0 such that for each r ≥ 1 and
each x, y ∈ B, and possible backbone b

Px,y,b(M(x, r) ≥ m) ≤ c1e−c2m.
Similar bounds hold for Px,y, Px,b and Px.

Proof. We just consider the case y = 0; the general case is similar but a
little more complicated since we would also need to consider offspring on the
branch γ(0, y). Let w0 = a(x, r/3). If w0 ∈ b then let w1 be the point in the
backbone at level |x|+ r/3, otherwise let w1 = w0. Let

A1 =
⋃

z∈γ(w0,x),z 6∈b

Dr/4(z;x), A2 =
⋃

z∈γ(w0,w1),z 6=w1

Dr/4(z;w1).

Let Ni = |Ai|; we have N1 4 Xr/4[1 + r/4] and N2 4 Xr/4[r/2]. Now let

A∗i = {z ∈ Ai : Dr/4(z) 6= ∅}.
Then any path from x to B(x, r)c must pass through A∗1 ∪ A∗2 ∪ {w0, w1}, so
M = M(x, r) ≤ 2 + |A∗1|+ |A∗2|.

Let pr = P (z ∈ A∗i |z ∈ Ai) = P (Xr/4 > 0), so that pr ≤ c/r. So, if κi are
i.i.d. Ber(pr) r.v. independent of Ni, we have

|A∗i |
(d)
=

Ni∑
j=1

κj .

Let

Wn =
n∑
i=1

(κi − pr);

then W = {Wn} is a martingale, Wn −Wn−1 ≤ 1, 〈W 〉n = npr(1− pr), and

|A∗i |
(d)
= WNi +Nipr. Choose r large enough so that pr < 1

2 . Then

(2.19) Px,b(|A∗i | ≥ m)

≤ Px,b(WNi +Nip ≥ m,Nip ≤ m/2) + Px,b(Nip > m/2).

For the first term in (2.19) we have

Px,b(WNi +Nip ≥ m,Nip ≤ m/2) ≤ Px,b(WNi ≥ m/2, 〈W 〉Ni
≤ m(1− p)/2)

≤ exp
(
− (m/2)2

2((m/2) +m(1− p)/2)

)
≤ e−cm,

where we used an exponential martingale inequality—see (1.6) in [F]. For
the second term, note that Ni 4 (Xr/4[r/4])[2] and so using Lemma 2.2 we
deduce that

Px,b(Nip > m/2) ≤ ce−c3m.
Combining these bounds completes the proof. �
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Definition 2.11. Let x ∈ B, r ≥ 1, λ ≥ 64. We say that B(x, r) is
λ–good if:

(a) x ∈ G.
(b) r2λ−2 ≤ V (x, r) ≤ r2λ.
(c) M(x, r) ≤ 1

64λ.
(d) V (x, r/λ) ≥ r2λ−4.
(e) V (x, r/λ2) ≥ r2λ−6.

Corollary 2.12. For x ∈ B and any possible backbone b

(2.20) Px,b(B(x, r) is not λ–good) ≤ c1e−c2λ.

Proof. By Propositions 2.7 and 2.10 the probability of each of conditions
(a)–(d) above failing is bounded by exp(−cλ). �

We now need to introduce some more complicated conditions on the tree
G, and will prove that these hold with high probability. These conditions de-
scribe various kinds of ‘good’ behaviour of balls with centers on a path γ(x, y),
and will be used when we consider off-diagonal bounds on the transition prob-
abilities of the random walk in Sections 4 and 5.

Fix λ1 ≥ 64 large enough so that the right hand side of (2.20) is less than
1
4 . For x, y ∈ B and k ∈ N, define the event

F1(x, y, r, k) = {x, y ∈ G and there exist at least k disjoint balls

B(z, r/2) with z ∈ γ(x, y) and which are λ1–good}.

For x, y ∈ B, let z0 be a middle point of γ(x, y). Define the events

A∗(z, r,N) = {z ∈ G and B(z, r) is N–good},
F∗(x, y,R, k; r,N) = F1(x, z0, R, k/2) ∩ F1(z0, y, R, k/2)

∩A∗(x, r,N) ∩A∗(z0, r,N) ∩A∗(y, r,N).

Definition 2.13. The vertex x ∈ B satisfies the condition G2(N,R) if:
(a) x ∈ G.
(b) For every z ∈ ∂B(x,NR) the event F1(x, z,R, 1

8N) holds.

Proposition 2.14. Let x0, y0 ∈ B, and b be a possible backbone.
(a) For R ≥ 1, N ≥ 8,

Px0,y0,b

(
x0 satisfies the condition G2(N,R)

)
≥ 1− c1 exp(−c2N).

(b) The same bounds as in (a) hold for the laws Px0,b, Px0,y0 , and Px0 .
(c) For x0, y0 ∈ B, 8 ≤ N < d(x0, y0)/8, r ≥ 1,

Px0,y0,b

(
F∗(x0, y0,

d(x0, y0)
N

, 1
8N ; r,N)

)
≥ 1− c3 exp(−c4N).



RANDOM WALK ON THE INCIPIENT INFINITE CLUSTER ON TREES 49

Proof. (a) We prove this for y0 = 0; as in Proposition 2.10 the general case
is handled by a similar argument.

Let
F0(y, s) = {y ∈ G and B(y, s) is λ1–good},

and write vi = a(x, i), R′ = RN/4. We assume that |x| ≥ NR and vR′ is on
the backbone b: the other cases can be handled by minor modifications to the
arguments below. Let w0 be the highest level point in both b and γ(0, x), and
wi, i ≥ 1, be the backbone b from w0 on.

Under Px,b the events F0(vRj , R2 ), 1 ≤ j ≤ N , are independent, and
Px,b(F0(vRj , R2 )c) ≤ 1

4 . So standard exponential bounds give

(2.21) Px,b(F1(x, vR′ , R,N/8)c) ≤ c exp(−c′N).

Similarly
Px,b(F1(w0, wR′ , R,N/8)c) ≤ c exp(−c′N).

Now let A1 = {vi, 0 ≤ i ≤ R′}∪{wi, 0 ≤ i ≤ R′}; note that under Px,b this
set is non-random. Let

A2 =
{
y ∈ B : a(y,R′) ∈ A1, γ(y, a(y,R′)) ∩A1 = {a(y,R′)}

}
.

For y ∈ A2 let

H1(y) = F1(a(y,R), a(y,R′), R,N/8)c,

H2(y) = {y ∈ G, DR′(y) 6= ∅}.
Then

Px,b

( ⋃
y∈A2

H1(y) ∩H2(y)
)
≤
∑
y∈A2

Px,y,b(H1(y) ∩H2(y))Px,b(y ∈ G).

Under Px,y,b the events H1(y) and H2(y) are independent, and as in (2.21)
we obtain Px,y,b(H1(y)) ≤ c exp(−c′N). So,

Px,b

( ⋃
y∈A2

H1(y) ∩H2(y)
)
≤ ce−c

′N
∑
y∈A2

Px,y,b(H2(y))Px,b(y ∈ G)

= ce−c
′N
∑
y∈A2

Px,b(H2(y))

= ce−c
′N
Ex,b

∑
y∈A2

1H2(y).

The final sum above is bounded by a constant c′ by the same argument as in
Proposition 2.10.

Finally, we have

{ G2(N,R) fails for x} ⊂

F1(x, vR′ , R,N/8)c ∪F1(w0, wR′ , R,N/8)c ∪
⋃
y∈A2

(H1(y) ∩H2(y)),
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so combining the bounds above completes the proof.
(b) follows on integrating the bounds in (a).
For (c), we first note that, by the argument for (2.21),

Px,y,b

(
F1(x, y,

d(x, y)
N

,
1
16
N)c

)
≤ c′ exp(−cN).

So, using Corollary 2.12, we have

Px,y,b

(
F c∗
)
≤ Px,y,b

(
F1(x, z0,

d(x, y)
N

,
1
16
N)c

)
+ Px,y,b

(
F1(z0, y,

d(x, y)
N

,
1
16
N)c

)
+

∑
w=x,z0,y

Px,y,b

(
A∗(w, r,N)c

)
≤ 2c′ exp(−cN) + 3c′ exp(−cN) = 5c′ exp(−cN). �

Definition 2.15. Let x, y ∈ B (with x 6= y), m,κ ∈ N, and c1 ≥ 1.
Define the condition G3(x, y,m, κ) as follows. Let r = d(x, y)/m, and let
z0 = x, z1, . . . , zm = y be points on the path γ(x, y) with |d(zi−1, zi)− r| ≤ 1.
(We choose these points in some fixed way—for example so that d(zi−1, zi)
are non-decreasing.) For each i = 1, . . . ,m let Θi be the smallest integer
λ ≥ max(64, c1) such that B(zi, λ20r) is λ–good, and |B(zi, r)| ≥ r2/λ2.
Then G3(x, y,m, κ) holds if:

(a) x, y ∈ G,
(b)

∑m
i=1 Θ54

i ≤ κm.

Proposition 2.16. For each backbone b and x, y ∈ B with x 6= y

Px,y,b

(
G3(x, y,m, κ) holds

)
≥ 1− c1κ−1.

Proof. By Proposition 2.7 and Corollary 2.12, Px,y,b(Θi = k) ≤ e−ck. Thus
Ex,y,bΘ54

i ≤ c′, and so

Px,y,b

(
G3(x, y,m, κ) fails

)
= Px,y,b

( m∑
i=1

Θ54
i > κm

)
≤ c′/κ. �

3. Markov chains on weighted graphs and trees

Let Γ be a infinite connected locally finite graph. Assume that the graph Γ
is endowed by a weight (conductance) µxy, which is a symmetric nonnegative
function on Γ×Γ such that µxy > 0 if and only if x and y are connected by a
bond (in which case we write x ∼ y). We call the pair (Γ, µ) a weighted graph.
We can also regard it as an electrical network, in which the bond {x, y} has
conductance µxy. We will be mainly concerned with the case when µxy = 1
if and only if {x, y} is an edge: we call these the natural weights on Γ. Let
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µx =
∑
y∈Γ µxy for each x ∈ Γ, and set µ(A) =

∑
x∈A µx for each A ⊂ Γ, so

that µ is then a measure on Γ.
We next define a quadratic form E on Γ by

E(f, g) =
1
2

∑
x,y∈Γ
x∼y

(f(x)− f(y))(g(x)− g(y))µxy,

and set
H2 = H2(Γ, µ) = {f ∈ RΓ : E(f, f) <∞}.

We sometimes abbreviate E(f, f) as E(f). Note that if f = max1≤i≤n gi then
since

|f(x)− f(y)|2 ≤ max
i
|gi(x)− gi(y)|2 ≤

∑
i

|gi(x)− gi(y)|2,

it follows that

(3.1) E(f, f) ≤
n∑
i=1

E(gi, gi).

Let Y = {Yt}t≥0 be the continuous time random walk on Γ associated with
E and the measure µ. When the natural weights are given on Γ, Y is called
the simple random walk on Γ. Y is the Markov process with generator

Lf(x) =
1
µx

∑
y

µxy(f(y)− f(x));

Y waits at x for an exponential mean 1 random time and then moves to a
neighbour y of x with probability proportional to µxy. We define the transition
density (heat kernel density) of Y with respect to µ by

(3.2) qt(x, y) = P
x(Yt = y)/µy.

If A ⊂ Γ we write

TA = inf{t ≥ 0 : Yt ∈ A}, τA = TAc .

The natural metric on the graph, obtained by counting the number of steps
in the shortest path between points, is written d(x, y) for x, y ∈ Γ. As before,
we write

B(x, r) = {y : d(x, y) ≤ r}, V (x, r) = µ(B(x, r)).
Let A,B be disjoint subsets of Γ. The effective resistance between A and

B is defined by:

(3.3) Reff(A,B)−1 = inf{E(f, f) : f ∈ H2, f |A = 1, f |B = 0}.
Let Reff(x, y) = Reff({x}, {y}), and Reff(x, x) = 0. In general R is a metric
on Γ—see [Ki2], Section 2.3. If (Γ, µ) has natural weights then Reff(x, y) ≤
d(x, y), and if in addition Γ is a tree then Reff(x, y) = d(x, y).

The following is an easy consequence of (3.3).
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Lemma 3.1. For all f ∈ RΓ and x, y ∈ Γ,

(3.4) |f(x)− f(y)|2 ≤ Reff(x, y)E(f, f).

Further, for each x, y ∈ Γ, there exists f so that the equality holds in (3.4).

We recall some basic properties of Green kernels. Let Y Bt be the continuous
time random walk on (Γ, µ) killed outside B := B(x0, r), and qBt (x, y) be the
transition density of Y Bt . The Green kernel gB(x, y) of Y Bt is defined by
gB(x, y) =

∫∞
0
qBt (x, y)dt. Then gB(·, ·) has the reproducing property that

E(gB(x, ·), f) = f(x)

for all f ∈ H2 such that f |Bc = 0.
Using this and the fact that pxB(y) := gB(x, y)/gB(x, x) is the equilibrium

potential for Reff(x,Bc), we have

(3.5) Reff(x,Bc)−1 = E(pxB , p
x
B) = gB(x, x)−1,

so that

(3.6) Reff(x,Bc) = gB(x, x) =
∫ ∞

0

qBt (x, x)dt ∀x ∈ Γ, B ⊂ Γ.

4. Heat kernel estimates on graphs and trees

Recall that for x ∈ Γ and r ≥ 0 we denote V (x, r) = µ(B(x, r)).

Theorem 4.1. Let (Γ, µ) be a weighted graph and suppose that the edge
weights satisfy µxy ≥ 1 for all x and y. Then

q2rV (x,r)(x, x) ≤ 2
V (x, r)

, x ∈ Γ, r ≥ 1.

Remark. This is similar to the bound in Proposition 3.3 of [BCK].

Proof. Fix x0 ∈ Γ, write B(r) = B(x0, r) and V (r) = V (x0, r). Set ft(y) =
qt(x0, y) and

ψ(t) = ||ft||22 = q2t(x0, x0) = f2t(x0);
note that ψ is decreasing. Let r ≥ 1; since∑

y∈B(r)

ft(y)µy ≤ 1,

there exists y = y(t, r) ∈ B(r) with ft(y) ≤ V (r)−1. Note that, since µe ≥ 1
for every edge e, it follows that Reff(x, y) ≤ d(x, y) for all x, y. Then by (3.4)

1
2ft(x0)2 ≤ ft(y)2 + |ft(x0)− ft(y)|2

≤ 1
V (r)2

+Reff(x0, y)E(ft, ft) ≤
1

V (r)2
+ rE(ft, ft).
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Hence

ψ′(t) = −2E(ft, ft) ≤
2V (r)−2 − ψ(t/2)2

r
.

Since −ψ(s/2) ≤ −ψ(t) for t ≤ s ≤ 2t, integrating the above inequality from
t to 2t we obtain

ψ(2t)− ψ(t) ≤ 2tr−1V (r)−2 − tr−1ψ(t)2.

So as ψ(2t) > 0,

tV (r)2ψ(t)2 ≤ 2t+ rV (r)2ψ(t) ≤ (4t) ∨ (2rV (r)2ψ(t)).

Hence

(4.1) ψ(t) ≤ 2
V (r)

∨ 2r
t
.

Taking r such that t = rV (r) completes the proof. �

Corollary 4.2. Let V (x, r) ≥ r2/A, r ≥ 1, and t = r3. Then

(4.2) q2t(x, x) ≤ 2(A ∨ 1)
r2

=
2(A ∨ 1)
t2/3

.

Proof. Let t = r3 and V (x, r) = λr2 in (4.1). This gives

ψ(t) ≤ 2
λr2
∨ 2r
r3

= 2r−2(1 ∨ λ−1) ≤ 2(A ∨ 1)
t2/3

,

since λ ≥ A−1. �

Lemma 4.3. Let ft(y) = qt(x0, y). Then

(4.3)
∣∣∣ ft(y)
ft(x0)

− 1
∣∣∣2 ≤ d(x0, y)

tft(x0)
.

Proof. Let e(t) = E(ft, ft). Then ψ′(t) = −2e(t), and e is decreasing, we
have

te(t) = 2e(t) · t/2 ≤ 2
∫ t

t/2

e(s)ds = ψ(t/2)− ψ(t) ≤ ψ(t/2) = ft(x0).

So, by (3.4),

|ft(x0)− ft(y)|2 ≤ d(x0, y)e(t) ≤ d(x0, y)ft(x0)
t

,

and dividing by ft(x0)2 completes the proof. �

From now on we assume that Γ is a graph with natural weights.

Proposition 4.4. Let x0 ∈ G, r ≥ 1, and let m ≥ 1, ε ≤ 1/(2m). Write
B = B(x0, r), B′ = B(x0,

1
2εr), V = V (x0, r), V ′ = V (x0,

1
2εr). Then
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(a)

(4.5) EzτB ≤ 2rV (x0, r), z ∈ B(x0, r).

Suppose further that

(4.4) Reff(x,Bc) ≥ r/m for x ∈ B(x0, εr).

Then
(b)

(4.6) ExτB ≥
rV ′

4m
for x ∈ B(x0,

1
2εr).

(c) For x ∈ B(x0,
1
2εr),

(4.7) P x(τB ≤ t) ≤
(

1− V ′

8mV

)
+

t

2rV
.

(d)

(4.8) q2t(x, x) ≥ c1(V ′)2

m2V 3
for t ≤ rV ′

8m
, x ∈ B(x0,

1
2εr).

Proof. For any z ∈ B we have

EzτB =
∑
y∈B

gB(z, y)µy.

(a) Since Reff(z,Bc) ≤ 2r for any z ∈ B,

EzτB =
∑
y∈B

gB(z, y)µy ≤
∑
y∈B

gB(z, z)µy = Reff(z,Bc)V (x, r) ≤ 2rV (x, r).

(b) As in (3.5), E(pxB , p
x
B) = gB(x, x)−1 and so if x, y ∈ B′

|1− pxB(y)|2 ≤ d(x, y)Reff(x,Bc)−1 ≤ mε ≤ 1
2 .

Hence pxB(y) ≥ 1− 2−1/2 ≥ 1
4 . So,

ExτB ≥
∑
y∈B′

gB(x, x)pxB(y)µy ≥ 1
4µ(B′)Reff(x,Bc) ≥ rµ(B′)/(4m).

(c) By the Markov property, (4.5) and (4.6), for x ∈ B′,
rV ′

4m
≤ Ex[τB ] ≤ t+ Ex[1{τB>t}E

Yt(τB)] ≤ t+ 2rV P x(τB > t),

for all t > 0. Rearranging this gives (c).
(d) By (4.7),

P x(Yt ∈ B) ≥ P x(τB > t) ≥ (rV ′/4m)− t
2rV

.

So, if t ≤ rV ′/(8m) then

(4.9) P x(Yt ∈ B) ≥ c2V
′

mV
.
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By Chapman-Kolmogorov and Cauchy-Schwarz

P x(Yt ∈ B)2 = (
∑
y∈B

qt(x, y)µy)2 ≤ µ(B)
∑
y∈B

qt(x, y)2µy ≤ q2t(x, x)V,

and using (4.9) gives (4.8). �

We will now use these bounds for a subtree G of B. From now on we
take Γ to be a subgraph of B, and define M(x, r), and the conditions λ–good,
G2(N,R) and G3(x, y,m, κ) as in Section 2.

Lemma 4.5. Let B = B(x0, r), r ≥ 1, and x ∈ B(x0, r/8). Then

r

8M(x0, r)
≤ gB(x, x) = Reff(x,Bc) ≤ 9r

8
.

Proof. Since x is connected to B(x0, r)c by a path of length 9r/8, the upper
bound is clear.

For the lower bound let m = M(x0, r) and A = {z1, . . . , zm} be the set
given in Definition 2.9: note that d(x, zi) ≥ r/8 for each i. Let hi be the
function on G such that hi(zi) = 1, hi(x) = 0 and hi is harmonic G− {x, zi}.
Then hi(y) = P

y(Tzi < Tx), and

E(hi, hi) = Reff(x, zi)−1 = d(x, zi)−1 ≤ 8
r
.

If y ∈ B(x, r)c then since any path from y to x passes through A, we have
hi(y) = 1 for at least one i. So if h = maxi hi then h(x) = 0 and h = 1 on
B(x, r)c. So, using (3.1),

Reff(x,Bc)−1 ≤ E(h, h) ≤ mmax
i
E(hi, hi) ≤

8M(x0, r)
r

,

proving the lower bound. �

Theorem 4.6. Let λ ≥ 64, and suppose that B = B(x0, r) is λ–good. Let
I = I(λ, r) = [r3λ−6, r3λ−5].

(a) For x ∈ B(x0, r/λ),

(4.10) 2
r3

λ5
≤ ExτB ≤ 2λr3.

(b) For each K ≥ 0

(4.11) q2t(x0, y) ≤ (1 +
√
K)t−2/3λ3 for t ∈ I, y ∈ B(x0,Kt

1/3).

(c) Let x ∈ B(x0, r/λ). Then

(4.12) q2t(x, y) ≥ c1t−2/3λ−17, if d(x, y) ≤ c2λ−19r, t ∈ I.
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Proof. (a) Since B is λ–good, we have M(x0, r) ≤ λ/64. Let m = λ/8 and
ε = 1/(2m) = 4/λ. Then

Reff(x,Bc) ≥ r

8M
≥ r

m
for x ∈ B(x0, εr).

Also V (x0, r) ≤ λr2, while since 1
2ε = 2/λ, V (x0,

1
2εr) ≥ V (x0, r/λ) ≥ r2λ−4.

(4.10) now follows from (4.5) and (4.6).
(b) Let t1 = (r/λ2)3. Then by Corollary 4.2 (taking A = λ2), if t ∈ I,

(4.13) q2t(x0, x0) ≤ q2t1(x0, x0) ≤ 2λ2t
−2/3
1 ≤ 2λ8/3t−2/3 ≤ λ3t−2/3.

Now, for t ∈ I and y ∈ B(x0,Kt
1/3), we have, using Lemma 4.3 and (4.13),

q2t(x0, y) ≤ q2t(x0, x0) + |q2t(x0, y)− q2t(x0, x0)|

≤ q2t(x0, x0) +

√
K

2t2/3
q2t(x0, x0) ≤ (1 +

√
K)t−2/3λ3,

proving (4.11).
(c) SinceB(x0,

1
2εr) ⊂ B(x0, 2r/λ), and rV ′/(8m) ≥ r3λ−5, by Proposition

4.4(d), for t ∈ I,

q2t(x, x) ≥ c2(V ′)2/(V 3m2) ≥ c2r−2λ−13 ≥ c2t−2/3λ−17.

Hence, by Lemma 4.3, if d(x, y) ≤ c2λ−19r,∣∣∣ q2t(x, y)
q2t(x, x)

− 1
∣∣∣2 ≤ d(x, y)

2tq2t(x, x)
≤ d(x, y)r2λ13

2c2t
≤ d(x, y)λ19

2c2r
≤ 1

2
,

from which (4.12) follows. �

Corollary 4.7. Let λ ≥ 64, and B(x, r) and B(x, λ−5r) be λ–good.
Then

Exd(x, Yt) ≥ c1λ−4t1/3, for
r3

λ6
≤ t ≤ r3

λ5
.

Proof. Let I = [r3λ−6, r3λ−5] and B′ = B(x, rλ−5). Let t ∈ I, and y ∈ B′.
Then since r ≤ λ2t1/3, d(x0, y) ≤ λ−5r ≤ λ−3t1/3, so by (4.11) (with K = 1)
we have q2t(x0, y) ≤ 2t−2/3λ3. Hence since B′ is λ–good,

P x(Y2t ∈ B′) =
∑
y∈B′

q2t(x0, y)µy ≤ µ(B′)2t−2/3λ3 ≤ 2λ−2 ≤ 1
2
.

Thus

Exd(x, Y2t) ≥ λ−5rP x(Y2t 6∈ B′)

= λ−5r(1− P x(Y2t ∈ B′)) ≥ 1
2rλ
−5 ≥ 1

2 t
1/3λ−10/3. �

Lemma 4.8. Suppose x satisfies G2(N,R). Then

P x(τB(x,NR) ≤ t) ≤ e−c1N provided N ≥ c2t/R3.
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Proof. We use the argument of [BB1]. Let

A = {y ∈ G : B(y,R/2) is λ1–good}.

Define stopping times (Ti), (Si) by taking T0 = min{t : Yt ∈ A}, and

Sn = min{t ≥ Tn−1 : Yt 6∈ B(YTn−1 , R/2)},
Tn = min{t ≥ Sn : Yt ∈ A}.

Since x satisfiesG2(N,R) we have TN/8 ≤ τB(x,NR) P
x -a.s. Let ξi = Si+1−Ti,

i ≥ 1. Then by Proposition 4.4(c) and Lemma 4.5, there exist p = p(λ1) < 1
and c3 = c3(λ1) > 0 such that

(4.14) P x
(
ξi ≤ s|σ(Yu, 0 ≤ u ≤ Ti)

)
≤ p+ c3R

−3s.

Lemma 1.1 of [BB1] (see also Lemma 3.14 of [B1]) gives that, writing a =
c3/R

3, (4.14) implies that

logP x
(N/8∑
i=1

ξi ≤ t
)
≤ − 1

8N log(1/p) + 2
(aNt

8p

)1/2

.

Substituting for a we deduce that

logP x(τB(x,NR) ≤ t) ≤ −N
(

2c4 − c5(t/(R3N))1/2
)
≤ −c4N,

provided N ≥ (c5/c4)2 · (t/R3). �

Theorem 4.9. Let x, y ∈ G, t ≥ 64d(x, y) be such that N := [
√
d(x, y)3/t]

≥ 8 and suppose the event F∗(x, y, d(x, y)/N,N/8; d(x, y)3t−2/3, N) holds.
Then

(4.15) qt(x, y) ≤ c1t−2/3 exp(−c2N).

Proof. Define Tz0 = inf{t : Yt = z0} and R = d(x, y)/N , where z0 is a
middle point in γ(x, y). Let Gx be the set of points w in G such that γ(x,w)
does not contain z0, and let Gy = G −Gx. Then, we have

qt(x, y)µxµy = µxP
x(Yt = y)(4.16)

= µxP
x(Yt/2 ∈ Gy, Yt = y) + µxP

x(Yt/2 ∈ Gx, Yt = y)

= µxP
x(Yt/2 ∈ Gy, Yt = y) + µyP

y(Yt/2 ∈ Gx, Yt = x),
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where in the last line we used the µ–symmetry of Y . The two terms in (4.16)
are bounded in the same way. For the first,

P x(Yt/2 ∈ Gy, Yt = y) ≤ P x(Tz0 ≤ t/2, Yt = y)

= Ex
(
1(Tz0≤t/2)P

z0(Yt−Tz0 = y)
)

≤ P x(Tz0 ≤ t/2) sup
t/2≤s≤t

qs(z0, y)µy.

≤ µy
√
qt/2(y, y)qt/2(z0, z0)P x(Tz0 ≤ t/2)

≤ µyN3t−2/3P x(Tz0 ≤ t/2),

where we used (4.11) with λ = N, r = N2t1/3 in the last inequality. Now,
t/R3 ∼ (d(x, y)3/t)1/2 ∼ N , so N ≥ ct/R3. Thus, by Lemma 4.8 we have

P x(Tz0 ≤ t/2) ≤ e−cN and P y(Tz0 ≤ t/2) ≤ e−cN .

Combining these facts

qt(x, y) ≤ c′N3t−2/3e−cN ≤ ct−2/3e−c
′′N ,

which completes the proof. �

Theorem 4.10. Let x, y ∈ G with x 6= y, m ≥ 1, κ ≥ 1 and suppose
G3(x, y,m, κ) holds. Then if T = d(x, y)3κ/m2

(4.17) q2T (x, y) ≥ c1T−2/3e−c2(κ+c3)m.

Proof. Let r = d(x, y)/m, and (zi), (Θi) be the points and integers given
by the condition G3(x, y,m, κ) in Definition 2.15. Take the constant c2.15.1 =
3c−1

4.6.2. Let Bi = B(zi,Θ20
i r), and B′i = B(zi, r). Applying (4.12) to Bi we

deduce that if d(y, y′) ≤ c4.6.2Θ−19(Θ20
i r), and

(4.18) Θ54
i r

3 ≤ ti ≤ Θ55
i r

3,

then

(4.19) q2ti(y, y
′) ≥ c4t−2/3

i Θ−17
i .

If yi ∈ B′i then by the choice of Θi

d(yi−1, yi) ≤ 3r ≤ c4.6.2Θ−19
i (Θ20

i r) = c4.6.2Θir,

and so the bound in (4.19) holds for q2ti(y, y
′). Therefore for yi−1 ∈ B′i−1 and

ti satisfying (4.18),∫
B′i

q2ti(yi−1, yi)µ(dyi) ≥ c4t−2/3
i Θ−17

i µ(B′i) ≥ c4Θ−c5i ;
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we used here the fact that µ(B′i) ≥ Θ−2
i r2. So if ti satisfy (4.18), and s =

∑
ti

then since
∑

log Θi ≤
∑

Θ54
i ≤ mκ,

q2s(x, y)

≥
∫
B′1

. . .

∫
B′m−1

q2t1(x, y1)q2t1(y1, y2) . . . q2tm(ym−1, y)µ(dy1) . . . µ(dym−1)

≥ (ct−2/3
m Θ−17

m )cm−1
4 Πm−1

i=1 Θ−c5i

≥ s−2/3 exp(−c6m− c5
∑

log Θi)

≥ s−2/3e−(c5κ+c6)m.

As G3(x, y,m, κ) holds we have r3
∑

Θ54
i ≤ mκr3 = T . If T ≤ r3

∑
Θ55
i

we can choose (ti) satisfying (4.18) so that s = T . If not, let s′ = T − s, so
that s′ ≤ mκr3. Fix a j such that Θj is minimal and in the chaining argument
above add m′ extra steps (of time length t′ satisfying (4.18) for i = j) between
B′j−1 and B′j . Since c54

7 ≤ Θ54
j ≤ κ, we have c8r3 ≤ t′ ≤ κr3. Then choose

m′, t′ so that m′t′+s = T ; we have m′ ≤ cm. Each extra step gives a factor of
c4Θ−c5j in the lower bound in the chaining argument, so the total contribution
multiplies the lower bound by a number greater than e−c(κ+c′)m. Thus (4.17)
holds. �

5. Random walk on the conditioned critical GW-branching process

In this section, we state and prove our main results on the random walk
on the IIC. As in Section 2 we write G for the IIC on B, and P for its law.
Let Y = {Yt}t≥0 be the simple random walk on G(ω) defined in Section 3; we
write Exω for its law of Y started at x. Let qωt (x, y) be the transition density
of Y .

Proof of Theorem 1.2. (a) Note that Theorem 4.6(b) and (c) give that, if
B(x, r) is λ–good, then if t = λ−6r3 then

(5.1) c6λ
−17 ≤ t2/3qt(x, x) ≤ c7λ3.

Given θ ≥ 1 choose λ ≥ 64 as small as possible such that c6λ−17 ≤ θ−1 ≤ θ ≤
c7λ

3. Let r = λ2t1/3. Then the probability that B(x, r) is λ–good is at least
ce−c

′λ, and using (5.1) completes the proof.
(b) Fix x ∈ B, and let c3 = c2.12.2. Let a = 2/c3 and λn = e+ a log n, and

rn satisfy r3
nλ
−6
n = en. Let Fn be the event that B(x, rn) is λn–good. Then

by Corollary 2.12

P(F cn) ≤ ce−c3a logn = c′n−2,
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so by Borel-Cantelli F cn occurs for only finitely many n, P–a.s. Let N be the
largest m such that F cm occurs; then

P(N > m) ≤
∞∑
m+1

P(F cn) ≤ cm−1.

Set S(x) = eN . For n ≥ (logS(x)) + 1 we have, by (4.11) and (4.12),

(5.2) c′t−2/3λ−17
n ≤ q2t(x, x) ≤ c′′t−2/3λ3

n

for en ≤ t ≤ λne
n. Let n(t) be the unique integer such that log t ∈ [n(t) −

1, n(t)). Hence, if t ≥ S(x), n(t) > N and so (5.2) holds for n = n(t). Since

λn(t) = e+ a log n(t) ∼ a log log t,

we obtain (1.3).
(c) is immediate from (b). �

While the powers of the terms in log log t given in Theorem 1.2 are not the
best possible, we do have oscillations in t−2/3qωt (., .) of that order.

Lemma 5.1.

(5.3) lim inf
t→∞

(log log t)1/6t2/3qω2t(0, 0) ≤ 2, P− a.s.

Proof. Define an by V (0, 2n) = an22n, and let tn = 2nV (0, 2n) = an23n.
Then by Theorem 4.1,

qω2tn(0, 0) ≤ 2
V (0, 2n)

=
2t−2/3
n

a
1/3
n

.

By Proposition 2.8(a), an > (log n)1/2 for infinitely many n, a.s., giving (5.3).
�

Proof of Theorem 1.3. (a) follows from Theorem 4.6(a) and Corollary 2.12
by an easy argument similar to that used for Theorem 1.2(a). (b) is then
immediate from (a). �

Proof of Theorem 1.4. (a) The lower bound in (1.4) is an immediate con-
sequence of Corollaries 2.12 and 4.7. For the upper bound, let R = t1/3,
TM = τB(x,MR), and Zt = sup0≤s≤t d(x, Ys). Let Kt(x)(ω) be the largest n
such that x does not satisfy G2(n,R). Then by Proposition 2.14

(5.4) Px(Kt(x) ≥ k) ≤
∞∑
l=k

Px(x does not satisfy G2(l, R)) ≤ c′e−ck.
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Then {Zt ≥ nR} ⊂ {Tn ≤ t}, and so by Lemma 4.8,

ExωZt ≤ R
∞∑
n=0

P xω (Tn ≤ t)(5.5)

≤ R
(

1 +Kt(x) +
∞∑

n=Kt(x)+1

P xω (Tn ≤ t)
)

≤ R
(

1 +Kt(x) +
∞∑

n=Kt(x)+1

e−cn
)
≤ R(c+Kt(x)).

Since ExKt(x) ≤ c′ this completes the proof.
(b) Let m(t) = btc; Since

|Exωd(x, Yt)− Exωd(x, Ym(t))| ≤ Exωd(Ym(t), Yt) ≤ c,

it is enough to prove (1.5) for integer t. Using (5.4) and Borel-Cantelli there
exists c′ such that

Px(Kn(x) > c′ log n i.o.) = 0.

and so by (5.5)

Exωd(x, Yn) ≤ c′′n1/3 log n

for all sufficiently large n. The lower bound in (1.5) follows from Corollary
4.7 by the same argument as in Theorem 1.2. �

Proof of Theorem 1.5. We begin with the on-diagonal case x = y. Let
λn = n and rn be defined by 2r3

n/λ
6
n = t. Let Fn = {B(x, rn) is λn–good },

and N(ω) = min{n : ω ∈ Fn}. By Corollary 2.12 Px(N > n) ≤ Px(F cn) ≤
e−cn. On Fn we have, by (4.11), qωt (x, x) ≤ ct−2/3n3, so

(5.6) Ex[qωt (x, x)] ≤ ct−2/3
ExN

3 ≤ c′t−2/3,

proving the on-diagonal upper bound in (1.6).
For the on-diagonal lower bound choose m0 such that Px(Fm0) ≥ 1

2 and
then on Fm0 , by the lower bound in (4.12),

qωt (x, x) ≥ ct−2/3m−17
0 .

For the off-diagonal bounds, when d(x, y) ≤ 64t1/3, (1.6) can be proved
similarly to (5.6) using Theorem 4.6(b). So we will assume d(x, y) > 64t1/3.
Now, let N := [

√
d(x, y)3/t] ≥ 8 and define

F0 = F∗(x, y, d(x, y)N−1,
1
8
N ; d(x, y)3t−2/3, N).

Let λ0 = N and define λn = N + n − 1 for n ≥ 1. For each n ≥ 1, set
rn = t1/3λ2

n and let Fn = {B(x, rn) is λn-good }. Then, Px,b(F cn) ≤ e−cλn .
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We now apply Theorem 4.6 (b) with K = λ2
n and obtain the following. (Note

that we can apply the theorem because d(x, y)/t1/3 ≤ cN2/3 ≤ cλ2
n.)

(5.7) q2t(x, y) ≤ c(1 +
√
λ2
n)t−2/3λ3

n ≤ c′t−2/3λ4
n.

Let M(ω) = min{n ≥ 0 : ω ∈ Fn}. Then, Px(M = 0) = Px(F0) ≥ 1 − 4e−N

and Px(M > n) ≤ Px(F cn) ≤ ce−c′λn . Thus, using Theorem 4.9 and (5.7), we
obtain

Ex,y[qωt (x, y)] = Ex,y[qωt (x, y) : M = 0] + Ex,y[qωt (x, y) : M > 0]

≤ ct−2/3 exp(−c′N) + c′′t−2/3
E[λ4

M : M > 0].

Since E[λ4
M : M > 0] ≤ c

∑∞
k=1(N + k − 1)4e−c

′(N+k−1) ≤ ce−c′′N , we obtain
(1.6).

We next prove (b). Choose κ = 2c2.16.1, so that

Px,y(G3(x, y,m, κ) holds ) ≥ 1
2 .

Now choose m = (R3κ/t)1/2; by Theorem 4.10, for ω such that G3(x, y,m, κ)
holds,

qω2t(x, y) ≥ ct−2/3 exp(−c′(κ+ c′′)m).

Taking expectations gives (1.7). �

Let
Z̃

(n)
t = n−1/3d(0, Ynt), t ≥ 0.

By Theorem 1.3(a) the process Z̃(n) is tight with respect to the annealed law
given by the semi-direct product P∗ = P × P 0

ω . (See Theorem 1.1 for the
analogous result for the discrete time simple random walk.)

Proof of Theorem 1.6. Let Un = sup0≤s≤1 Z
(n)
s . Then, by (4.5),

P 0
ω(Un ≤ λ) = P 0

ω(sup
t≤n

d(0, Ys) ≤ λn1/3)

= P 0
ω(τB(0,λn1/3) ≥ n) ≤ 2λn1/3V (0, λn1/3)

n
.

So by Proposition 2.8(b), we have, for any λ > 0, that lim infn→∞ P 0
ω(Un ≤

λ) = 0, which shows that the r.v. Un (and hence the processes Z(n)) are not
tight. �

Remark 5.2. This result illustrates the difference in the type of results
that can arise between the quenched and annealed cases. For the case of
supercritical bond percolation in Zd, while an invariance principle was proved
in the annealed case in [DFGW] in 1989, the quenched case was only proved
recently in [SS], [BeB], [MP].
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Remark 5.3. In this paper we have for simplicity treated the continuous
time random walk Y on G. Similar proofs work for the discrete time random
walk X = (Xn, n ≥ 0, Qxω, x ∈ G(ω)). Some of the modifications are minor,
but the arguments in Section 4 using the relation d

dt ||qt||
2
2 = E(qt, qt) are more

complicated in discrete time. For a general treatment of discrete time walks,
see [BCK].

Write pn(x, y) = Qx(Xn = y)/µy, and set gn(x) = pn(x0, x) + pn+1(x0, x).
See [BCK], Proposition 3.2 for a discrete time version of Theorem 4.1. We
have (see for example (3.4) in [BCK]) E(gn, gn) = g2n(x0)− g2n+2(x0). Using
this, and the bound nE(gn, gn) ≤ cp2bn/2c(x0, x0) (see Lemma 3.10 in [BCK]),
one obtains Lemma 4.3 for gn.

Since the mean time between jumps of Y is 1, mean hitting times are the
same for X and Y , so Proposition 4.4(a) and (b) also hold for X. The proofs
of (c) and (d) just use the Markov property, and so these also hold for X.

The arguments for the remainder of Sections 4 and 5 are based on the first
four results in Section 4. No real issues arise in working with discrete rather
than continuous time, but a careful proof would have to ensure that all the
times considered were integers.

Acknowledgment. The authors thank Ichiro Fujii, Antal Járai, Harry
Kesten and Gordon Slade for valuable comments.
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