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ASYMPTOTIC CAPACITIES FOR FINELY DIVIDED
BODIE AND STOPPED DIFFUSIONS

BY

J.R. BAXTER AND N.C. JAIN

1. Introduction

In Rd, d > 3, let B denote Brownian motion and let Dn be a sequence of
dosed sets. Let denote the first hitting time of D. We shall give (in
Theorems 1.2 and 1.3) conditions under which the stopping times have, in
the sense of [2], a weak limit, denoted by T. More precisely, the sequence n
converges stably to T, as defined in Section 2 (for a discussion of stable
convergence in other contexts see [1]). The limit T is a randomized stopping
time, and represents an "exponential killing time", where the rate h is a
function of position in Rd. In applications to certain random media problems
the sets D are to be thought of as consisting of many small bodies, which
become ever smaller and more densely distributed as n --, oo. The function h
represents a "limiting capacity density" for these bodies (Definition 1.1
below). If f: Rd R is bounded Borel and we define

(1.0)

and

(1.1) x, t)

then the stable convergence of % to T implies a fairly strong kind of
convergence of u to u (Theorem 2.2). As is well known, the u satisfy the
diffusion equations

(1.2) cgu,(x, t)/’igt 1/2 Au,(x, t) for t> 0, x e Dnc,

with boundary and initial conditions

(1.3)
(1.4)

Un(X, t) =0 fort>0, x gDn,

u(x,O) f(x) for x D.
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When the D have irregular boundaries or f is not continuous conditions
(1.3) and (1.4) must of course be stated in a more general form, but the same
interpretation is valid.

Since T arises from exponential killing with rate h, it follows that u will
also satisfy a diffusion equation

(1.5) Ou(x, t)/Ot 1/2 Au(x, t) h(x)u(x, t) fort>0, xRa,
with initial condition

(1.6) u(x, 0) f(x) for x Rd.

Thus the stable convergence of the stopping times % to T can be applied to
study the convergence of solutions of such diffusion equations.

This type of problem has been considered for a variety of situations, in [3],
[4], [5], [6], [8], [9], [10], [11], [13], and [14]. Additional references are given in
[5]. The case we are concerned with here was formulated in [10], and gener-
alized in [3] as follows:

Let Di(n), 1,..., k(n), be compact sets, for each n 1, 2 Let there
exist a sequence Pn > 0, #n--’ 0, such that diameter(Di(n))< 0n for each
and each n. Let

Dn=DI(n) tO’..

Let (n) denote the classical equilibrium measure on D(n), and let

x() x() + +x)().

Suppose the sequence h(n) is bounded in total mass, and that there exists a
finite measure A such that:

(1.7)
(1.8)

X(n)--, X vaguely as n -, oo,

r.(x,(.), x(.)) -. <x, x> s. -. oo,

where E* denotes the sum over all/and j with i, j, and for any measures
and v,

(1.9) ftx y]-a+Zl(dx)v(dy),

the classical energy inner product. Here gd is a normalizing factor defined
below in (1.12).

Intuitively, we may say that (1.7) specifies a limiting density for the bodies
D(n), and that (1.8) requires that these bodies be rather evenly spread out (see
also lemma 6.1).
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Suppose that f is a continuous function with compact support in Rd. Under
some extra assumptions in [10], and in general in [3], it was shown:

TrIOIEM 1.1. Suppose (1.7) and (1.8) hold and the limit measure above
has bounded density h with respect to Lebesgue measure m on Rd. Let un and u
be defined by (1.0) and (1.1), respectively, then given any e > 0 and o < o
there exists an integer n o such that for all n > n o,

O< t< o

The function u defined by (1.1) can be expressed in terms of the exponential
killing rate h referred to earlier, by

For this reason, Theorem 1.1 is a consequence of the next theorem, Theorem
1.2, which follows from Theorems 2.1, 2.3, and 1.2 of [3]. Theorem 1.2 is a
probabilistic statement concerning stable convergence on the sample space of
Brownian motion. As explained in [3], Theorem 1.2 implies Theorem 1.1,
because stable convergence of stopping times ,, implies norm convergence for
the corresponding distributions of B on the sets { % > t }. A more precise
statement of this result is given in Theorem 2.2 of [3] and in Theorem 2.2 in
the next section. Of course, Theorem 1.2 also gives information about the
convergence of the stopped distributions corresponding to the stopping
times %.

It should be noted that, in addition to the setting of Theorem 1.1, Theorem
1.2 can also be applied in situations where no partial differential equation
exists, for example to the case of Brownian motion with a general nonantic-
ipating drift.

TnEOV.EM 1.2. Assume D satisfies (1.7) and (1.8), and that the limiting
measure h has bounded density h with respect to Lebesgue measure m on Rd. Let
h be the additive functional defined by

(1.11) At =fto, tlh(B’) ds.

Let F be the multiplicative functional exp(-At), and let T be the randomized
stopping time associated with F as in Section 2. Then from any subsequence
n(k), we can extract another subsequence n(k(i)), such that, for m-a.e, x in Rd,
(k(O) converges stably to T with respect to px.
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Because convergence of stopping times is metrizable (Section 2), Theorem
1.2 immediately shows that if , is a probability measure on Rd, v absolutely
continuous with respect to m, then the full sequence z converges stably to T,
with respect to P. Theorem 1.2 also gives a kind of "in measure" convergence
for the full sequence with respect to P for "most" points x (cf. Theorem
1.2 of [3]).

In the present paper we will prove, in Theorem 1.3, weak convergence for a
more general setting than that described above in (1.7)-(1.8). Thus Theorem
1.3 implies Theorem 1.2 and hence Theorem 1.1. Our method of proof is new
as wall as more general and gives a more direct relation (Sections 3 and 4)
between the equilibrium measures hi(n) and the rate h which appears in the
limit above.
To state the results of the present paper we need the notion of the classical

potential, associated with a measure #, which we write as Pot/, defined by

(1.12)
Pot wh,r e.

For any measure #, and any function f, we write f/t to mean the measure y
defined by y(A) f4fdl. Thus Pot Xn/t denotes the potential of the measure
X nbt. We denote Lebesgue measure on Ra by m. If pt has a density h with
respect to Lebesgue measure we may write Pot h for Pot/t. A property which
is true except on a polar set in Ra is said to hold quasi-everywhere (q.e.).
Associated with any bounded potential g is an additioe functional A defined
by the property that g(x) E"[Aoo for every x in Ra. We recall that g. B
is a continuous supermartingale (Theorem 2.IX.12 of [7]), and A is the
increasing process such that g. B + A is a martingale. Of course if g Pot h
then

At f[o h o Bsds’
,t]

and a reader who is unfamiliar with the general case will lose little by
restricting himself to this situation in what follows. If h is a measure on Ra

such that Pot XKX is bounded on Ra for each bounded ball K, then we can
define an additive functional associated with )k, even if Pot , is oo on Ra; we
set

(1.13) A lira At(n),

where A,(n) is the additive functional associated with Pot Xx()h, for any
sequence of bails K(n) such that K(n)’t Ra. To see that the limit in (1.13)
exists finite, we note that for any fixed bounded open set U, for all sufficiently
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large n and m the functions Pot Xrt.)h- Pot Xr(m)k a1"e harmonic on U.
Thus

Pot XIC()X(Bt) Pot XK(m)(Bt)
is a martingale with respect to any initial point x in U, for times up until the
first exit time of U. Since

Pot Xr(n)X(Bt) Pot XK(m)X(Bt) + At(n ) At(m )

is a martingale for all time, it follows that At(n) At(m) is constant for time
intervals such that B is ill U. In particular, from an initial point x in U,
At(n) At(m) for all times up until the first exit time of U. Thus from any
initial point, and for any fixed t, the value of At(n ) is eventually independent
of n. This shows the existence of a finite limit in (1.13).

For W compact, we write c(W) for the classical capacity of W.

DEFINITION 1.1. Let D be any sequence of dosed sets in Rd. The total
capacity measure for the sequence D is defined to be the minimal measure
such that

limsupc(D. W) < X(W)

for every compact set W in Ra. It is shown in Section 3 that exists. If every
subsequence of D has the same total capacity measure, we will say that the
sequence D has a limiting capacity measure

In Section 4 we give a construction of the limiting capacity measure for a
sequence D.. Using this construction, in Section 5 we prove:

THEOREM 1.3. Let D, be a sequence of closed sets. Suppose D has limiting
capacity measure , such that Pot Xrh is bounded on Ra for each bounded ball
K. Let A be the additive functional associated with , let Ft be the multiplicative
functional exp(-At), and let T be the randomized stopping time constructed
from F as in Section 2. Let v be any finite measure on Ra that does not charge
polar sets. Then from any subsequence n(k), we can extract another subsequence
n(k(i)), such that, for v-a.e, x in Rd, ’tn(k(i) converges stably to T with respect
to px.

Just as in the observation after Theorem 1.2, Theorem 1.3 implies weak
convergence for the full sequence % with respect to P, for any probability
on Rd which does not charge polar sets. Again, Theorem 1.3 implies a more
general version of Theorem 1.1, in which the limit u(x, t) is defined by

(1.14) u(x, t) EX[f(Bt)exp(-At)],
instead of (1.10).
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The proof that Theorem 1.3 implies Theorem 1.2 is completed in Section 6,
where it is shown that if (1.7) and (1.8) hold then the sequence D has a
limiting capacity measure ,.

In connection with Theorem 1.3, it should be noted that the variational
methods of [5] give a general compactness principle applicable to parabolic
equations (U. Mosco, private communication). If these variational methods
are combined with the stopping time compactness proved in [2], a compact-
ness principle for multiplicative functionals can be obtained, for a much wider
class of multiplicative functionals than those studied in Theorem 1.3. It seems
unclear, however, whether the convergence result given in Theorem 1.3 can be
extended to a wider class. The existence of a limiting capacity measure
appears to depend on geometrical properties of the sets D, in particular on
the fact that the sets D become rather sparse as n

Finally, we note that the method of proof used here gives an explicit
criterion for convergence of (n) with respect to P" or a particular x, as is
seen in Lemma 5.1.

2. Notation

We shall follow the definitions and notation of [3], Section 2. We will
usually use as our basic sample space for Brownian motion the space C of
continuous functions 0 from [0, oo) into Ra, with the usual topology on C of
uniform convergence on compacts. We define Bt: C Ra by Bt(o) o(t)
for all to in C. We define t o(Bs: s < t), t t+, ’oo foo f. Let t
denote the Borel sets of [0,1] and let denote the Borel sets of [0, oo].
A randomized stopping time T is a map T: C x [0,1] --, [0, oo] such T(, .)

is left continuous and increasing, T(to, 0) 0, and T is a t x t-stopping
time. An ordinary stopping time can be regarded as a randomized stopping
time T defined by T(to, a) (to) for a > 0. Associated with T is the stopping
time probability measure F: C x --, [0,1], defined by

(2.1) F(to, [0, t]) sup{ a: T(to, a) < t}.

Then

(2.2) F(., [0, l) is t-measurable for each t.

We will sometimes write F(., (t, oo]) as F((t, oo1) or Ft. In our application F
will turn out to be a multiplicative functional, as intuitively it must, but this
property will not be explicitly used.
We can recover T from F by

(2.3) T(to, a) inf{ t: F(to, [0, t]) > a ).
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Given any F for which (2.2) holds, T defined by (2.3) is a randomized
stopping time, and (2.1) holds. Thus the notions of randomized stopping time
and stopping time measure are equivalent.

Probabilities and expectations involving a randomized stopping time should
clearly use the probability P x mr, where mt is Lebesgue measure on [0,1].
However, we will usually only write P explicitly, since the meaning is clear
from the context.
For any probability P on (C, ), and any randomized stopping time T, we

write Q for the distribution on C x [0, oo] of the map (identity, T) from
C [0,1] to C x [0, 00]. Let F be the stopping time measure associated with
T. Then clearly

fY(o)f(t)Q(do, dt) fYff(t)F(dt) dP.

We often write Q P (R) F. The measure Q obtained in this way is called a
stopped process. It is proved in [1] and [2] that:

THEOREM 2.1. A weak limit of stopped processes with a common marginal P
on C is again a stopped process.

Since a sequence Q P @ F, is always tight, this gives a useful compact-
ness principle.

DEFINITION 2.1. If T,, T are randomized stopping times with stopping
time measures F,, F, respectively, and P is a probability on (C, ), then we
say that Tn converges stably to T, with respect to P, if P (R) F, converges weakly
toP (R) F.

It is easy to show that T T stably if and only if T, laxi0,11 converges to

TI a x to, 11 in distribution for every A in
The relevance of this sample space weak convergence for state space

questions is shown by the following result:

THEOREM 2.2. Let T,, T be randomized stopping times, and let Fn, F be the
associated stopping time measures. Let be a probability measure on Rd, and let
P’ denote the Wiener measure with initial distribution I. Suppose T converges
stably to T with respect to P. Let Y be bounded and f-measurable on C. Let t
be such that P’(T t) O. Define vn, v, signed measures, by

fgdv. E[Yg(Bt)Fn((t, oo1)], fgdv E[Yg(Bt)F((t, oo1)],

for all g bounded Borel on Rd. Then vn converges to v in total variation norm as
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Theorem 2.2 is proved in [3] with Y 1. The present version has the same
proof.

In Sections 4 and 5 we will need the resolvent potentials Pot, defined for
a > 0, # a measure on Rd, by

(2.4) Pot# (x) ff[0, e-atcpt ( X y ) tlt, ( dy ) dt,

where %(x, y) is the usual Brownian transition density. We note that Pot
Pot, where Pot is defined in (1.12).

Let Pt be the Markov semigroup for Brownian motion. Let
Clearly

Pot #t(x) + ff[o,t]Ds(X’ y) ds#(dy) Pot #(x).

Let V be an "exponential a-killing time" so that P’(V > t)= e-at for all
t > 0 and every t, and V is independent of the process (Bt: > 0). Given
let v denote the distribution of Bv wth respect to P. Then

rio ae-at# dt,1/
,00)

and hence

(2.5) Pot# Pot # Pot

Let tt , the Dirac measure concentrated at x. Let be a third measure.
Integrating (2.5) with respect to l and using symmetry,

Potful (x) Pot 1 (x) f Pot 1 dv.
That is,

(2.6) Pot(x ) E [Pot /(Bo) Pot 1 (B)].
One can also deduce (2.6) from (2.4) by computing that

E[Pt (Bv)] ff[o, oo)
(1 e’)q,(x, y)l(dy) dt.

3. Limiting capacities

We study a sequence D, of closed subsets of Rd. We will study the limiting
capacity measure for D (Definition 1.1).
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Notation. For any compact set K in Rd, i will denote the equilibrium
measure on K. As noted earlier, c(K) kr(K) will denote the capacity of K.

DEFINITION 3.1. For every W c Rd, W compact, let

(3.1) ,(W) limsupc(D, 3 W).

Lr.MMA 3.1. For every Z, W compact, /(W t3 Z) < y(W) + (Z).

Proof

,(WU Z)= limsupc(Dn t3 [WU Z])

limsupc([D, n W] U [D,, n Z])

< limsup {c(D,, t3 W) + c(D,, t3 Z)}
n oo

< lim sup c (D 3 W) + lim sup c (D C3 Z)

(w) + (z).

This proves Lemma 3.1.

DEFINITION 3.2. For any subset A of Rd, let

fl(A)= sup( -/(Ki)" K,...,KncompactdisjointsubsetsofA ).
i--1

Obviously fl() 0 and/3 is montone, i.e.,

(3.2) A c S :* (A) (S),

and fl >_ , on compacts.

LEMIA 3.2. For any A, B open sets in Rd,

(3.3) (A u s) (A) +

Proof. Let K be compact, KcAtAB. Then K-A and K-B are
disjoint compact sets, with K- A c B and K- B c A. Hence there exist
sets U,V open, disjoint, such that K-A c V and K-Bc U. Then
K- U,K- Vare compact, K- VcA, and K- UcB, and K=(K-
V) t3 (K- U).
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We have shown that any compact subset K of A B can be written as the
union of a compact subset W of A and a compact subset Z of B.
Now let K,..., K be compact disjoint subsets of A B. Write K

W,. w Z, where W is a compact subset of A and Z is a compact subset of B.
Then

n n

E < E (v(w,) + v(z,)) s +
i=1 i=1

This proves the lemma.

Remark 3.1. fl is actually strongly subadditive on open sets, i.e., if A and
B are open, then fl(A 0 B) + fl(A t B) < fl(A) + fl(B). The proof is nearly
the same as that of Lemma 3.2, and does not use the strong subadditivity of
capacities.

LEMMA 3.3. Let An be open, An increasing, A Un__tAn. Then

(3.4) lim fl(An) fl(A).

Proof. Follows at once from the definitions.

DEFINITION 3.3. For any subset A of Rd, let

(3.5) fl*(A) inf( fl(G): A c G, G open).

/3* will be called the total capacity set function for the sequence

Remark 3.2. Let t’ be a collection of bounded open sets forming a base
for the usual topology on Rd and closed under finite unions. Then for B open,
/3(B) is easily seen to be determined by the values of , on ", the collection
of closures of sets in t’. Hence fl* is completely determined by the values of 3’

LEMMA 3.4. (i) fl*(G) fl(G), for G open;
(ii) fl* is an outer measure;
Off) "t < fl* on compact sets.

Proof. Follows immediately from Lemmas (3.2) and (3.3).

LV.MMA 3.5. Let A and B be disjoint subsets of Rd. Then

(3.6) a(A n) #(A) + a(n).
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Proof. Again, this lemma follows at once from the definition.

COROLLARY. fl* is countably additioe on disjoint open sets.

DEFINITION 3.4. Let

(3.7) .,W= ( A fl*( B ) fl*(A B) + fl*( A* B)for all B Rd )
(3.8) .W= ( A" fl*( cgA) 0).

Here OA denotes the boundary of A.
By the extension theorem of Caratheodory, is a o-algebra and fl* is

countably additive on ’.

LEMMA 3.6. (i) X’= (A" fl*(G) fl*(A n G) + fl*(Ac N G) for all open
G c Rd};

(ii) .’ is an algebra;
(1) .c.
Proof. (i) Let f#= (A" fl*(G)= fl*(A G) + fl*(Ac G) for all open

G c Rd}. Clearly f’c f#. Let A be in . Then for any subset B of Rd,
consider G open, B c G. Then

fl(G) fl*(G) fl*(A G) + fl*(A G) > fl*(A B) + fl*(Ac B).

Taking the infimum over G, and noting that/3* is subadditive proves (i).
(ii) This follows at once from the subadditive property of fl*.
(iii) Let A be in .’. Let G be open. Let U denote the interior of A, V the

interior of Ac, and let B denote the boundary of A. Then

*(u G) < fl*(a G) < fl*(U O) + *( G) *(U G)

by the corollary to Lemma 3.5. Thus fl*(A G)-- fl*(U G), and in the
same way fl*(A G) fl*(V G). Hence

and hence A is in ,, by (i). This proves Lemma 3.6.

LEMMA 3.7. .,’f’ contains the Borel sets.

Proof. This follows immediately from the corollary to Lemma 3.5 via
Proposition 32, p. 285 of [12].
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Since the total capacity set function for a sequence is induced by a measure
X (by Lemma 3.7), we have shown the existence of the total capacity measure
for the sequence. We are particularly interested in the case in which all
subsequences of D, induce the same total capacity measure h, and, following
Definition 1.1, we shall refer to in this case as the limiting capacity measure
of the sequence D.
We have:

LEMMA 3.8. Let be a collection of bounded open sets forming a base for
the usual topology on Rd and closed underfinite unions._ Suppose D is a sequence
of closed sets such that limn ooc(D f U) v(U) for all U in //. Then D has
a limiting capacity measure . Also, if, in addition to the condition on (D),
is Radon measure, then

(3.9) lim c (D W) v(W) for all compact W in ..
Proof. The first statement follows at once from Remark 3.2. To prove (3.9),

given compact W in .oq’, let U be its interior. Choose Uk in t’, Uk c U,
Uk increasing to U. Then by Lemma 3.1 we have (W) < /(Uk) + (W Uk),
SO

v(w) v(w- >_ v(w) x(w-
> lim infc(D, k) "/(k) by hypothesis.

Thus liminfn_.ooc(Dn N W) > v(Uk) > "t(W) X(W- Uk). Since X(W-
U) 0 as k oo the lemma follows.

Remark 3.3 If Dn is a sequence of dosed sets with a Radon total capacity
measure then we can choose a countable base t’ c . dosed under finite
unions. By choosing a subsequence of D. and re-labelling we can make
Lemma 3.8 applicable, and thus obtain a subsequence which has a limiting
capacity measure. Of course, if the original sequence D already has a limiting
capacity measure, the subsequence will have the same limiting capacity mea-
sure as the original sequence, and after re-labelling will satisfy (3.9).

4. Resolvent capacities

In this section we will prove a new formula for the limiting capacity
measure defined in Section 1. In what follows we use the notation of Section 3.
Let D be a sequence of closed sets in Ra, d > 3. We assume that all the sets

Dn are contained in a single compact set D. We also assume that the sequence
D has a finite limiting capacity measure h, and equation (3.9) holds.
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Associated with the resolvent potential Pota there is a corresponding notion
of a-equilibrium measure and a-capacity. The a-equilibrium measure tk,r
for a compact set K is the unique measure on K such that Pota r 1 q.e.
on K. The a-capacity ca(K) of K is just tka, r(K). We note that ca(K)
increases with a.

DEFINITION 4.1.
-/a(K), ’a(K) by

For any compact K in Rd, any a > 0, define

(4.1) /a(K) limsupca(Dn K), a(K) liminfca(D K).
noo

We note that /0 is the -/of (3.1), and that ,a, .a are nondecreasing in a.

DEFINITION 4.2. Let .W be the collection of sets defined in Definition 3.4.
A locally finite .W--partition of Rd is a collection of disjoint sets in .W such
that each bounded subset of Rd is contained in a finite union of members
of -.
LEMMA 4.1. Let a > O, K compact. Then

(4.2) a(K) < ,(K).

Proof. Given e > 0, we can find r > 0 such that

(1 + e)Poty(x) > Pot iy(x) for Ix -Yl < r,

where 8y denotes the Dirac measure concentrated at y. It follows easily that if
W is compact with diameter < r, then

(1 + e)Potw > Pot tk w 1 q.e. on W,

so (1 + e)c(W) >_ ca(W). Let # be a locally finite .W-partition such that every
set A in has diameter less than r. Then

c’(O, n K) Ec’(O, n K n X) E(1 + e)c(D, N K n

Hence

),a(K) < E(1 + e)3’(K n ) < E(1 + e)X(K n Z).

E(1 + ,)X(K n A),

so ,(K) < (1 + e)A(K). This proves Lemma 4.1.
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L.MMA 4.2. Let W, i---1,..., k, be compact disjoint sets in .Z. Let
W= W U Wk. Then

(4.3) tim +

Proof Let K1,..., Kk be any compact disjoint sets, K Kx,..., Kk. Let

r mJn d(Ki, Kj).
ij

For any e > 0, there exists a > 0 such that

Pot 8y(X) <e Pot 8y(x)

for all a > a whenever Ix -Yl > r. Then Ek__Pot%r, < 1 + ke everywhere
on K, for a > a, so Ek__c(K) < (1 + ke)c(K). Letting K D IV,,., we
have

k

E n w,) < (1 + ke)c (Dn n w).
i--I

Letting n --, o and using (3.9) gives

k

E (W) < (1 + ke)"(W) < (1 + ke) lim "(W).
i=1

a---,

This proves Lemma 4.2.

LEMMA 4.3. For any open set U,

sup(a(W). a > O, W in .Z, W compact, W c U }

Proofi Since .o contains a base for the topology of Ra, it is easy to see that
for U open, the function/3 of Definition 3.2 satisfies

fl(U) sup "I(W)" W,..., Wk in .a, compact, disjoint subsets of U
i-1

Lemma 4.3 then follows from Lemmas 4.1 and 4.2.

LEMMA 4.4. Let K, W be compact, W c K. Then a,r(W) < ca(W).

Proof. We have Pota,w 1 q.e. on W. Also Pot% Pota,c < 1 on
K, where v denotes the restriction of ffa, tc to W. Thus Pot% < Pota, w q.e.
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on W. Hence

Pot% < Pot’,rv on Rd,

by the domination principle, and so v(Rd) < a, rv(Rd), proving the lemma.

DvlNIrIO 4.3. Let k, denote the a-equilibrium measure on D.

LEMMA 4.5. Fix a 0 and let h be any weak limit point of ,, as
n . Then for K compact, U open, K U, we have

(4.5) ),(K) > ,(U).

Proof. c(D K) > k,(K) > ,(U), by Lemma 4.4. Lemma 4.5 fol-
lows at once.
As a consequence of Lemma 4.5 we see that if V is open, U bounded open,

and U V, then ,(V) (U) > X(U). Hence we have the corollary

(4.6) h >

On the other hand, dearly

(4.7) Aa(D) > a(D),

where D is the compact set containing all the Dn. By (4.4), a(D) A(Ra) as
a -, oo. Thus we have proved:

THEOREM 4.1. Let Dn be a sequence of closed sets in Ra, contained in a
single compact set D, having a finite limiting capacity measure ,, and such that
equation (3.9) holds. Let ha be a weak limit point of
converges to A in total variation norm as

5. Convergence

LEMMA 5.1. Let D be a sequence of closed sets contained in a compact set D,
having a finite limiting capacity measure , and such that (3.9) holds. Suppose
Pot is bounded on Rd, with associated additivefunctionalA t, let F exp(-At),
and let T be the randomized stopping time constructed from F as in Section 2.
Suppose k are measures such that

(5.1) Pot i, Pot ,i m-a.e, as n oo, for 1,2,...,

where tk, is given in Definition 4.3. Let x be a point in Rd such that

(5.2) Pot ff,,n (x) Pot hi(x) as n oo, for 1,2,

Then % converges stably to T with respect to px.
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Proof. To prove convergence, it is enough to show that any stable limit
point S of the sequence must equal T, P-a.e.. Thus let S be such a limit
point, and let G be its stopping time measure. Choosing a subsequence again
and relabelling, we may assume that , converges stably to S with respect
to px.

Let N denote the set where (5.1) fails to hold. We have x in Nc and
m(N) 0. Since (5.1) holds on Nc for each i, a simple argument shows that
on Nc, for each and for each a > 0

Potk, converges to Pot"X

Since Pot,, is the a-equilibrium potential of D, we see that PotSk, (y)
is simply the probability starting from y of hitting D before being killed by
the "a-killing". Thus

(5.4) Pot,,(y) ae-tpy(% < t)dt.

For y in N, for each a > 0,

(5.5) lirno ae-"tPY(, < t)dt Pot"X"(y) < Pot",(y).

As a o0, PotX(y) converges to 0. Thus if y is in N

(5.6) lira lim sup PY( ,rn < t) O
t--0 n--* oo

Equation (5.6) and the fact that + % o Ot % on ( % > } show easily that
for every > 0, if y is in N then

(5.7) P (S t) o.

Let j be fixed. Let us redefine our Brownian motion temporarily on a new
sample space f, rich enough that we may define a sequence V(1), V(2),... of
times such that for any y in Rd, with respect to PY the V(k) are independent,
and are together independent of o(B,: > 0) and of any randomized stopping
time such as T and S previously considered, and for each k, PY(V(k) > t)
e -jt for every > 0.

Let r > 0 be fixed. Let Y be bounded and -measurable, Y > 0. Define
7,,j,k for n > 0, j, k > 0, by

--Ex

for all h bounded Borel on Rd, where R(k)= r + V(1)+ +V(k),
R(O) r.
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Let 7j, k be defined by

(5.9)

for all h bounded Borel on Rd.
Using Theorem 2.2 we find easily that for every j, k,

(5.10) tn, j, k converges in total variation norm to 7j, k as n -)

Sirlce Yj, k(N) 0 for all k > 0, and PotJ/j,n < 1 on Rd, we see by (5.3)
that

(5.11) f PotJ+j,, dy,, j, k - f PotJhj d

On { % > R(k)), % R(k) + . OR(k), SO if A(k, n) denotes (R(k) < %
< R(k + 1)}, B denotes ( % > R(k)}, and C denotes (0 < % < V(k + 1)),
an easy application of the strong Markov property gives

fPY(O < % V(1))7,,j,k(dy).

Also, PY(0 _< , < V(1)) PotJ+:,,(y).
Thus, using (5.11) and (5.7), EX[YXafk, n)] converges to f PotJhj dlj, k as

n oo. It follows easily from (5.7) that

EX YXa(k, ,) converges to Ex Yx R(k) < S < R(k+ X))

Thus

(5.12)

By definition, fPotJhj dyj, k-----EX[YX(s>R(k)}PotJJ(BR(k))]. Thus, by (2.6)
and the strong Markov property (noting that Y is S(k)-measurable), we have

(5.13) E[Yx(s(k)<S g S(k+ x))] Ex[Yx (s> S(k))(Pot M(B(k))
Pot XJ(Ba(+x,))]

Hence, summing on k,

(5.14) Ex[Yx{r<S<}] Ex[YX{s>r}(POt XJ(B) Pot XJ(BL(j,))],



486 J.R. BAXTER AND N.C. JAIN

where L(j) is the first R(k) such that R(k)>S,L(j)-- oo if S=
oo, Pot XJ(B) 0. (Note R(k) depends on j.)
As j oo, XJ --, h in norm. As functions of t, Pot h(Bt) and Pot ,(Bt) are

almost surely continuous on [0, oo], where we set

Pot bY(Boo) Pot h (Boo) 0.

A straightforward argument shows that almost surely,

Pot hj(Bt) Pot , ( Bt)

uniformly over in [0, oo]. Also, for any/J > 0, as j o0,

> S + --, 0.

Hence, letting j oo in (5.14),

(5.15) Ex[YX(<s<oo}] ex[Yx(s>,}(Pot ,(B) Pot k(Bs))].
The right side of (5.15) is

by Fubini. Thus

(5.16) Ex[r(Gr- G)] Ex[rf(r, )Gt da,].
The remainder of the proof is the same as that of Theorem 2.1 of [3]. Let Zr

denote G, + fto,lG, dA,. By (5.16), Z is a fight continuous martingale with
respect to the fields of Brownian motion, hence is continuous almost surely,
and, since Z is increasing, Z, is accordingly constant for all r, P X-a.e.. Thus
px-a.e.,

f( G dA for all r.

For any fixed path to such that (5.17) holds, we see easily that G exp(-A)
for all r. This proves Lemma 5.1.
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LElm 5.2. Let all the hypotheses of Theorem 1.3 hold, and in addition let
all the sets Dn be contained in a single compact set D. Then the conclusion of
Theorem 1.3 holds.

Proof. We use the notation of Section 4. By choosing a subsequence and
relabelling, we may assume that (3.9) holds, and that

(5.18) converges weakly to h as n ---, oo, for 1,2,

Then ,i , in total variation norm, by Theorem 4.1.
Clearly we may assume that Lebesgue measure rn is absolutely continuous

with respect to the given measure v. Replacing v if necessary by another
measure which is mutually absolutely continuous with respect to v, we may
assume that Pot v is bounded and continuous on Rd. It is easy to see then
that, for each i, Pot k, converges to Pot h in Lt(v)-norm, as n --, c. Thus,
passing to yet another subsequence and relabelling, we may assume that there
is a set N in Rd with v(N) 0, such that on Nc, for each i,

(5.19) Pot ifi, n converges to Pot

The proof of Lemma 5.2 is then completed by Lemma 5.1, applied to x
in N.

Proof of Theorem 1.3. By relabelling we may assume that the given
subsequence is the whole subsequence. Choose U(j) bounded open,
U(j) Rd, A(OU(j)) 0. Let ,(j, n) be the first hitting time of (j) c3 D,
=- D(n, j). Let h(j)= AXvj). Let At(j) be the additive functional defined
by h(j). Let F(j) be the stopping measure defined by Ft(j)
exp(-At(j)), T(j) the randomized stopping time associated with F(j).

It is easy to show that the sequence (D(n, J))=1,2 has limiting capacity
measure ,(j). By Lemma 5.2, and the Cantor diagonal process, we can choose
a subsequence n such that for v-a.e, x, for every j, ,(n i, j) ---, T(j) stably
with respect to P" as ---, oo, for each j. We will say that x is good if these
relations hold for all j. Clearly v-a.e, x is good. We will complete the proof of
the theorem by showing that if x is good then (n) ---, T stably with respect
to P" as oo. Relabelling once more, we may assume that the subsequence
n is the whole sequence, so that for x good we have z(n, j) T(j) stably
with respect to p x as n oo for each j. Fix x good, and fix Y bounded,
if-measurable on C, f continuous on [0, oo]. We must show that

(5.20) E[Yf . %] --, e[ Yf . T] as n --,

where as usual we denote expectation on the product space C [0,1] by the
same symbol as ordinary expectation on C.
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Clearly to prove (5.20) we may assume that f(oo)--0. Let o denote the
first hitting time of U(j). For any t, j, n,

I’[rf o .,,1 E’[rf o (n, J)ll

where both norms are sup norms and IIII,, mes the sup no of f as a
function on the set [t, ]. Choosing large, and then choosg J0, we see that
for any 8 > 0 there ests J0 such that for eve j J0,

(5.21) IE’[Yfo ..1 E’[Yfo .(., J)ll for eve n.

Clearly for every [0, o) and every to C, At(j)(to) At(to) for all
suciently large j. Thus for every to, the measure F(j)(to) on [0, ] converges
weakly to F(to) as j o. Thus E[Yfo T(j)] E[Yfo T] as j o.
Hence for any > 0, there exists j such that for all j >_ j,

IEx[yf o T(j)] Ex[yf T]l < .
Applying (5.21) and (5.22) for a j > max(j0, Jl) easily gives (5.20) and

completes the proof of Theorem 1.3.

6. Existence of limiting capacities

LEMMA 6.1. Let Di(n) be a closed set in Rd, for i= 1,..., k(n), n
1, 2, 3,..., and let r(n) be a finite measure on Di(n) for each and each n. Let

Dn Dl(n ) L3 UDk(n)(tl )

for each and each n. Suppose that there exists p= > 0, such that p= 0 and
diameter(Di(n)) < p= for each and each n. Let r be a finite measure such that
r(n) vaguely. Define U, L and E by

(6.1) V limsupE*(ri(n), rs(n)), L liminf F*(,,(n), vi(n))
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where .* denotes the sum over j, i, j 1, 2,..., k(n );

(6.2) E lim limsupZr(vi(n), vj(n)),
r ,l, O n oo

where r denotes the sum over 4: j, i, j 1, 2,..., k(n), and j such that
Ix Yl < r for every x Di(n ), y Dj(n).
Then

(6.3) L > (v, ),

and

(6.4) V (v, v) + E.

Proof
dearly

Let A(r) ((x,y): Ix yl < r}, B(r) A(r)c. If p,<r then

f.. , ( ,. ) ( ) ( ,. ) ( dy )(6.5) Zr(Pi(n), pj(n)) gd.* IX Yl-d+
(r)

(6.6) fn [x y[-a+2v(n)(dx)v(n)(dy)
(r)

E,L(r)lX yl-a+2,,( n)( . )( dy).

and

(6.7) kd,* fA(r}X yl-d+2vi(n)(dx)v(n)(dy) <_ 3r(p/(n), vj(n)).

For every c < (v, v), there exists r > 0 such that

(6.8) kdfs(r)lX- yl-d+2v(dx)v(dy) > c.

Hence there exists n o such that for every n > n o,

(6.9) kaL(r)lX- yl-d+2v(n)(dx)(n)(dy) > c.

Thus for every n > n o, if p, < r then by (6.5) and (6.6),

(6.10)
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Hence

(6.11) L > (v,v),U> (v,v) + E.

For every e > 0, for every r > 0, there exists n o such that for every n > n o,

(6.12) kd Ix Yl-d+2v(n)(dx)v(n)(dY) < (v, v) + e.
(r)

For every n > n 0, if p, < r then by (6.6),

(6.13) kaE*L(,)lx Yl-a+2v,(n)(dx)v(n)(dY) < (v, v) + e.

Thus for every n > n 0, if #n < r then by (6.7),

(6.14) E*(vi(n), vj(n)) < (v, v) + e + Y’.3’(vi(n), vj(n)).
Hence for every e > 0, for every r > 0,

(6.15) U < <r, v) +e + limsupE3"(r(n), vj(n)),
n oo

and so

(6.16) U < (v, v) + E.

This proves Lemma 6.1.
We note that Lemma 6.1 implies that lim_.ooE*(v(n ), vj(n)) (v, v) if

and only if E 0.

LEMMA 6.2. Let Di(n ), vi(n ), D, v(n),
Lemma 1.

(i) Suppose that

satisfy all the hypotheses of

(6.17) Pot v (n) > 1 q.e. on Di(n) for all iand all n.

Then (D,) has a finite total capacity measure h, and h < v.
(ii) Suppose that (6.17) holds, and that also

(6.18) Pot v (n) 1 v, (n)-a.e., for all and all n,

that v has finite energy, and that

(6.19) lim E*(v,(n), v(n)) (v, v),

where E* is defined as in Lemma 6.1. Then h v.
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Proof (i) Let W be compact. Let U be bounded open, such that W c U.
Let > 0 be such that if d(x, W)< then x U. Let n o be such that
p, < for every n > n o.

Let I(n) { i: Di(n) n W 4: }. Let k(n) denote the equilibrium mea-
sure for W n D(n). We have Pot k(n) < 1 < Pot Y’.1(,)vi(n ) q.e. on W D,.
Thus

c(W n z),) E II,’,(n)ll.

If n>no then vi(n)(Uc)=O for every iI(n). Hence c(WnD,)<
v(n)(U) for all n > n 0. Thus lira sup_c(W D) < v(U). Since this is true
for all U, lim sup_.c(W D) < v(W). Hence the total capacity measure X
is finite and h < v, so (i) is proved.

(ii) h v by (i). Let e be given. By Lemma 6.1, there exists r > 0 and n o
such that for every n > n o,

(6.20) E’(v,(n), v:(n)) < e,

where y’.r is defined as in Lemma 6.1.
Consider any bounded open sets U,..., U, with Ux,..., U disjoint and

diameter(k) < r, k 1,..., p.

Let V U u u U. Let Wi,..., W be compact, disjoint, such that

k C intedor(Wk), diameter(W,) < r, k 1,..., p.

Since p, - 0, there exists n > n o such that for eve_ry n > nx, if Di(n ) n Uk

then Di(n ) c Wk. Let I(k, n) (i: Di(n ) n Uk 4: }. Let

q(k, n) ., ,i(n).
I(k,n)

Clearly, support qg(k, n) c Wk for n nl. Let e(k, n) Y’.(vi(n ), vj(n)),
where the sum is over i, j I(k, n), q: j. Let e(n) e(1, n) + + e(p, n).
By (6.20), e(n) < e for n > nl. Clearly

(6.21) i,q(k, n), q(k, n)) < e(k, n) + II(k, n)ll.

Let q(k, n) be the equilibrium measure on Wk n D,. We have

((,(k, n), (k, n)))2
< (k(k, n), k(k, n))(p(k, n), q(k, n)),

so for n > nx, II,(k, n)ll: -< IIq,(k, n)ll(ll’(k, n)ll + e(k, n)). Hence for n >
/I 1

(6.22) IIw(k, n)ll < IIq,(k, n)ll + e(k, n).
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Summing on k, for n > n, ,(n)(V) < IIk(1, n)ll + 4-II(p, n)ll + e, so

(v) (w) +... +(%) + .
Thus v(V) < ,(W) + +h(W) + e < IIll / . Hence IIll < IIhll, and
(ii) follows. This proves Lemma 6.2.

7. Almost uniform convergence

In this section we shall note an extra fact about the convergence proved in
Theorem 1.3, for the situation discussed in Section 6. We begin with a simple
result concerning real analysis.

LEMMA 7.1. Let f L(m), for some p > 1, f > O, ffr dm c Let be a

finite measure on R. Suppose support f c B(O, R), and, for every x R,
p(B(x, 2R)) < e. Then

(7.1) f(l * f )P dm < IItll ff dm ep/q,

where 1/p + 1/q 1.

Proofi Let g g, f. We have

fgP dm f dm

flx(dx)[ffxgr-dml
fl(dx)[ff(lx" f)’- dm],

where fx(’) f("- x) and tt, IXXB(x,2R). Also

f((llx * f )p-1) q
dm= dm Illxll (p-l,q

<- f(x/llxll)* /(p-l>q dm II/xll <p-1)q

ff<-)q dm II/xll

ffP dm IItxllp

< ffP dm (eP).
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Hence

f dm < f#(dx)llf,,ll,ll(l,, * f )’-’llq fl(dx)ll/ll,(llfll,)’/q(e’/q),

so fge dm < Ilttllff dm(eP/q). This proves Lemma 7.1.

LE 7.2. Let D (n), vi(n), D., v(n), v satisfy all the hypotheses ofLemma
6.2(ii). Also, assume Ilu(n)ll < K < oo for all n. Then for every 8 > 0 there
exists a and no such that for every n > n o,

m((x" Ixl > a,Potv(n)(x) > 8}) < 8.

Proof Let fs(x) klxl-a+2 for Ixl < R, f(x) 0 for Ixl R, where
k is defined in (1.1). Let CR/ Pot/t-fR./, for any measure/t. Choose R
so that

(7.3) IOtx(x)l (8/2K)11#11,

for any measure #, where we use the total variation norm.
Fix p > 1 such that f(fs)edm < oo. Let be such that

(7.4) 2e(2R + 0.) -‘/+2 +

where

(7.5) (8/2)’Kf(f)edm (n)’/q < 8.

Since (v, v) < oo, it is easy to see that there exists b, n o such that for every
>__. ?10

(7.6)

where 5",
1 denotes the sum of (vi(n), vj(n)) over all and j such that i, j and

Di(n ) B(O, b) is nonempty. Clearly

(7.7)

By (7.6), if n > n o and Ixl > b + 2R then

(7.8) E2 < 2e(2R + O,) -a+2,

where E2 denotes the sum of Ilv(n)ll IIv:(n)ll over all and j such that j
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and

D,(.) :3 B(x.2R) and Dj(n) :) B(x.2R)

are both nonempty. Clearly

(7.9) [v(n)(B(x,2R))] 2 <

where Y’-3 denotes the sum of Ilvi(n)ll 2 over all such that Di(n) N B(x,2R)
is nonempty. By (7.8) and (7.9), for n > no and Ixl > b + 2R,

(7.10) [v(n)(B(x,2R))] 2 < 2e(2R + p,,)-a+2 + Kp:a+2.

Thus, by (7.4), for n > no and xl > b + 2R,

(7.11) < ,.
Let F(n) v(n)XB(O,b+4R). By (7.11), for every x in Rd, for n > n 0,

(7.12) F(n)(B(x,2R)) <

Let a=b+5R. Forn>no

{x" Ixl > a, Potv(n) > }
{x" txl > a, fa*u(n)(x) > 8/2} {x" [x[ > a, fa, F(n) > 8/2}.

Hence

m({x" Ix > a,Potu(n) > 8} < (2/a)" dm

< (2/8)’Kf(f)edm(n)"/q < 8,

by Lemma 7.1 and (7.5). This proves Lemma 7.2.
As a consequence of Lemma 7.2, we see that for a sufficiently large, for all x

except those points in a set of small Lebesgue measure, P(,(n)< oo) is
small. This shows that we can translate the almost everywhere convergence for
a subsequence given by Theorem 1.2 into almost uniform convergence on all
of Ra, not just on bounded subsets of Ra.
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