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1. Introduction

Since the original definition of decomposable operator on Banach space was
introduced by C. Foias in 1963 [4], many characterizations of such operators
have been given ([3], [8], [11]). In this paper we give four new characterizations
of decomposable operators. The first of these (Theorem 2.3 (ii)) is a much
simpler version of a previously known criterion [11]. Our second equivalent
(Theorem 2.3 (iii)) seems to be new.
A third criterion (Theorem 2.3 (iv)) for a decomposable operator generalizes

a theorem of the first author [7] and can be expressed as follows: Let T be a
bounded linear operator on the complex Banach space X. In 1959, E. Bishop
showed [2] that if X is reflexive and T and its adjoint T* both have property
(fl) (see below), then T has an "asymptotic spectral decomposition" [9]. R.
Lange [7] eventually proved the stronger result that T is decomposable. The
converse is also true: if T is decomposable, then T and T* both satisfy
property (fl) ([3], [5]). Thus Theorem 2.3(iv) generalizes the result of [7] to
arbitrary Banach spaces.
Our fourth equivalent condition (Theorem 2.3(v)) is formally weaker than

(iv) in that (iv) implies (v) in an obvious way (see Theorem 2.3), but our proof
of this theorem is constructed so as to infer decomposability from this
"weaker" property.
To accomplish this requires generalizing some results of E. Bishop [2] from

reflexive to arbitrary Banach spaces. Most of these conclusions follow in a
routine way in {}3. But the crucial Lemma 3.2 requires more care in its proof,
while our main result requires the use of a theorem in [3].
We give the statement of our theorem in the next section and its proof in {}4.

2. Main result

In order to state our principal theorem, we recall some definitions and
notations.

2.1 DEFINITION. Let T be a bounded linear operator on a complex Banach
space X. We say that T has the spectral decomposition property (abbreviated
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SDP) if for every open cover {Gi}’= of o(T), there corresponds a system of
T-invariant subspaces { X,. }7= such that:

(I) X=X+X+... +X.;
(2) o(TlX,) c G, (1 < < n).
T is said to be decomposable if each X (1 < < n) in Definition 2.1 is

spectral maximal [4]. It has been proved by the first author [6] and indepen-
dently by E. Albrecht [1] and B. Nagy [10] that T has the SDP if and only if T
is decomposable.

2.2 DEFINITION. We say that T has property (fl) if for any sequence
(f: G X} of analytic functions, (h- T)f(h)---} 0 (as n ) in the
strong topology of X and uniformly on every compact subset of G, it follows
that f,(,) ---} 0 in the strong topology of X and uniformly on every compact
subset of G.

It is easily seen that every operator T with property (/3) has the single
valued extension property (abbreviated SVEP); i.e., for every analytic function
f: af ---} X defined on an open /c C, the condition ( T)f(h) =- 0 implies

Furthermore, every decomposable operator or equivalently, every operator
with the SDP has property (fl) [5] and hence has the SVEP.

For a T-invariant subspace Y, T/Y will stand for the coinduced operator of
T on the quotient space X/Y.

2.3 THEOREM. For an operator T, the following assertions are equivalent:
(i) T is decomposable.
(ii) For every pair of open discs G and H with G c H, there exist

T-inoariant subspaces X, XH such that
(a) x= x + x,.,,
(b) (TIXn) H, (TIX) c C- G.

(iii) For every pair of open discs G and H with G c H, there exist T-
inoariant subspaces Y and Z such that

(a) o(TI Y) c C- G, o(T/Y) c H,
(b) o(rlZ) H, o(r/z) C- G.

(iv) T and its adjoint T* haoe property (8).
(v) T has property ($), and T* has the SVEP such that for every closed F,

Xr(F) is closed.

3. Preliminaries

In this section, we shall adopt some facts and notations from E. Bishop’s
seminal paper [2]. A couple Ux and U2 of an unbounded and a bounded
Cauchy domain, respectively, related by U2---C-U are referred to as
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complementary simple sets. Let W be the set of analytic functions from Ux to
X which vanish at 00, and W2 be the set of analytic functions from U2 to X*.
Using the seminorms

max(ll f(x)I1" f w, x g, g (c U)is compact},
max{11 g(x) I1" g w, x g=, g ( U=) is compact},

one can define a locally convex topology on W and W, respectively. For
1, 2, let V be the subset of W on which every function can be extended

continuously to U. For f V, g Vz, define

sup {11 f(x) I1 x u: },

and note that (Vt, I[" II ) and (Vz, II" II ,.) are Banach spaces. For x X,
h Uz and/t Ut, define

( x, ) ( x)-
For fixed x X and , U2, a(x, , .) is called an elementary element of Vx.
Let V be the subspace of V: spanned by the elementary elements of Vx. For
f Vx and g V2, with continuous extensions to the boundary F 8Ux
8U2, the bilinear form

(3.1) (f ) (/’ g> 7 </(X),g(X)>ax

is jointly continuous.
Now, let Ux, U be complementary simple sets. With V, V,. and W (i 1, 2)

as defined above, then there exists a linear manifold Y in W2 and norm on Y
such that [2]:

(i) Y is a Banach space isometrically isomorphoric to V*.
(ii) V2CY.
(iii) The imbeddings V2 Y and Y - W2 are continuous.
(iv) The bilinear form between V and V2 defined by (3.1) can be extended

to a bilinear form between V and Y in conjunction with the isometric
isomorphism between Y and V* asserted by (i).

Let be the operator from V to X defined by ,f lirax_.ooAf(A); then its
adjoint, as an operator from X* to Y (= V*), satisfies **x* x* (see [2]).

In [2], E. Bishop also defined the operator H on V by

(n/)(x) /- (x- r)/(x),
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and proved that its adjoint H* satisfies

(n*g)(,) -(,

for every g V*.
For fixed 1 > 0, define the following norms on X, X* respectively [2]"

{x) {x},=inf{(lllfll2+ II Hfll 2 )/2, f e V, ,f X }
(x*) (x*)n inf{(llgll 2 + n-XllH*g- *x*l12)/2, g g*}.

Then the norms (3.2), (3.3) are equivalent to the original ones on X, X*,
respectively, and the dull space of X with the norm (3.2) is exactly X* with the
norm (3.3).

3.1 LEm.A [2]. Let

N (x X: for every > O, there existsf V
such that IIHfll < and ,f x },

and

Then

and

M { x* X*" there exists g V* such that H*g **x*}.

N= {xX: {x},-0as0},

M { x* X*" there exists fixed R* > 0 such that for all 1 > O, { x*} < R* }.

Although in his paper [2], Bishop assumed that the underlying space X was
reflexive, by a careful reading of his proofs, one can see that all the facts
mentioned above actually remain valid for X non-reflexive. We shall use them
without any further reference. (In [2], M above was denoted by M0.)

In addition, we still need an extension of [2] which plays an essential role in
the proof of our main theorem.

In the notation of Lemma 3.1, we have N+/- Mw, the weak*

Proof
3.1 that

For every fixed x N and fixed x* M, it is evident by Lemma

I<x,x*>l {x}n{x*} o (as 1 0)
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and hence N-L D M. Since Nx is closed in the weak* topology, it follows that
N-L DMw.
To prove the opposite inclusion, let x N. Then there exists rl --* 0 and

a > 0 such that { x }. > a. By the Hahn-Banach theorem, for every n, there
exists Xn* X* such that Xn* +/- N, ( Xn* }. < 1 and

(3.4) I(x, Xn*)l > a.

From the definition of { x* }, for every 1, there exists g

1
IIgll 2 + lln*g.- *x*ll 2 < 1.

such that

Evidently, { g } is bounded in the norm topology and so is {x } by the
following inequalities"

IIx*ll=ll * *w x=ll
w x= -n*g=ll + IIn*g=ll

< nXn/2(1- IIg, l12)x/2/ IIn*g, ll.

Thus {(Xn*, g,)} is a bounded sequence in the product space X* x V* and
hence it has at least one cluster point (x*, g) in the Weak* topology. Since

we have H*g *x* and hence x* e M. On the other hand, (3.4) implies

(3.5) I<x, x*)l > a > 0.

As x ( N) is arbitrary,it follows from (3.5) that the preannihilator +/- M c N
or equivalently, Nx c M’. Lemma 3.2 is thus proved.

4. Proof M the main theorem

The conclusion will be reached through the sequence of implications"
(i) ---, {(ii) or (iii)} (iv) (v) (i).

(i) (ii). Evident by Definition 2.1.
(i) (iii). Since T is decomposable, for e._very pair of open discs G and H

with G c H, put Y Xr(C- G), Z Xr(Hx)where Hx is an open disc with
the property G c H c H c H, one can easily see that Y, Z satisfy (iii, a),
(iii, b) respectively. Actually, since

x= x (c + r + z,
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T/Y (= T/Xr(C G)) is similar to the operator

[rlx(,)l/[x(c- ) x()] [rlx()]/x[(c- ) ]

and hence

With the evident inclusion o(TIY) c C- G, (iii, a) thus follows; (iii, b)
follows in the routine way.

(iii) (iv). It follows from [3, Theorem 5.8] and (’fii, a) that T has
property (fl).
To prove that T* has property (fl), let Z be the subspaee satisfying (iii, b),

then

o(T*IZx) o(T/Z) c C- G,

o(T*/Z) o(TIZ) c H.

Again by [3, Theorem 5.8], T* has property (fl).
(ii) --, (iv). Put Y X, where X is the subspace in (ii), then

o(TIr) o(TIX) c C- G.

Next, we prove that o (T/Y) c H. Since X--- X + XH, T/Y (= T/X) is
similar to [TIXH]/[XH 3 Y] and hence

a(T/Y) a{[TIXn]/[Xnn rl} c H.

So Y satisfies condition (iii, a). By the previous proof, T has property (fl).
To prove__that T* has property (fl), let H’ be an open disc satisfying

G c H’ c H’ c H, then XH, exists such that

(4.0) (a) X X + XH, (b) o(TIXH,) C H’, o(TIX) c C- G.

Since T has property (fl), the spectral manifolds Xr(H’) and Xr(C G) are
closed, hence it follows from (4.0, b) that

xc x(c- ), x,,, c x(’)
and

x-- x,(c- ) + x,(’)

by (4.0, a). Let Z XT(H’); then a (TI Z) c H c H. Since T/Z is similar to
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[TIXT(C- G)]/[XT(C- G) ( XT(H’)], we have

o(r/z) o{[rlx(c- )]/[x(c- ) (’)] } c- .
By the proof that (iii) --, (iv), T* has property (fl).

(iv) -, (v). Evident.
(v) --, (i). Let G be open and k be a closed neighborhood of such that

G k) K C, where K is the interior of K. Choose complementary simple
sets Ux, U2 with Ux unbounded and U2 bounded such that U C- G,
U K. Evidently, G D U2 D U2 D C- K. Let N and M be as defined in
Lemma 3.1, then we claim that

(4.1) (a) N c Xr(G) (b) .w c X,(K).

To prove (4.1, a), let x N. For every n, there exists f V such that

1
IIHfll < , wf= x

or equivalently,

1(4.2) II(x T)f(X) x < for , ux.n

Since T has property (fl), it follows from the proof of [3, Proposition 5.6]
that { f,(h)} converges uniformly on every compact set contained in U. Let
f(h) lira f(h). Then (4.2) implies that

(X- T)/(X)=x forXe U

and hence Or(X) c C- Ux U2 c G. Clearly, (4.1, a) follows from this last
inclusion.
To prove (4.1, b), let x* M, so that there exists g V* such that

(4.3) ( l T*)g( ) "r’x* x* for/ U2.

In particular, (4.3) holds for/t C- K and hence x* X*r.(K) or equiv-
alently, M X..(K). Since X..(K) is dosed in the weak* topology by [3,
Theorem 9.3] and hence M" X,.(K), (4.1, b) follows.
From (4.1) and Lemma 3.2, we have

(4.4) Xr(G) c N" ’ c X,.(K).

If we put F- C- G, then K F. By the arbitrariness of K, (4.4) implies
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that

(4.5) Xr(G) c: X,,(F).

Since the opposite inclusion of (4.5) is clear, one obtains Xr(G)
Finally, from

X.,(F).

(o(T/XT(G ) )= o T*]XT(G) o(T*]X,,(F)) c F= C- G,

and [3, Theorem 5.17], T is decomposable. The proof of Theorem 2.3 is
complete.
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