REGULARITY THEOREMS FOR $[F, d_n]$ -TRANSFORMATIONS

BY

A. JAKIMOVSKI AND A. MEIR

1. Introduction

The $[F, d_n]$ -method of summation was introduced by the first author in [2] as follows: Let $\{d_n\}$ $(n \ge 1)$ $(d_n \ne -1)$ be a real or complex sequence. The transformation-matrix $\{c_{nm}\}$ corresponding to this sequence is defined by $c_{00} = 1$, by the identity

(1.1)
$$\sum_{m=0}^{n} c_{nm} x^{m} = \prod_{j=1}^{n} (d_{j} + x) (d_{j} + 1)^{-1}, \qquad n \ge 1$$

for $0 \le m \le n$, and by $c_{nm} = 0$ for m > n.

In [2] it was proved that if $d_n > 0$ for $n \ge n_0$ and $\sum d_n^{-1}$ is divergent, then the corresponding $[F, d_n]$ -transformation is regular.

In a recent paper C. L. Miracle [4] obtained a family of regular $[F, d_n]$ -transformation-matrices with complex elements defining the sequences $\{d_n\}$ on the following way. Suppose $\{\lambda_n\}$ is a positive sequence with

$$\sum \lambda_n^{-1} = +\infty$$

The sequences $\{d_n\}$ are defined by taking successively the square roots of $-\lambda_n$, the cube roots of λ_n or the fourth roots of $-\lambda_n$, (see Theorems 2.1, 2.2, and 2.3 of [4]). In the conclusion of his paper C. L. Miracle asks whether the method used would be continuable to higher roots of positive sequences $\{\lambda_n\}$ yielding regular transformation-matrices. Our Theorem 1 answers this question and improves his results, namely, instead of the positiveness of $\{\lambda_n\}$ we assume only (2.1) and (2.2) which are weaker conditions. In Theorems 2 and 3 of the paper we prove the corrected and extended forms of some results stated in [1]. Theorems 4 and 5 show how further regular transformation-matrices with complex terms can be obtained from known ones. In §4 we deal with analytic continuation by these methods.

2. Regularity theorems

THEOREM 1. Let $\{\lambda_n\}$ $(n \ge 1)$ $(\lambda_n \ne -1)$ be a sequence of real or complex numbers satisfying the following:

(2.1) the $[F, \lambda_n]$ -transformation is regular,

(2.2) $(1 + |\lambda_n|)| 1 + \lambda_n|^{-1} \leq K < +\infty, \quad n = 1, 2, \cdots.$

Let r be a fixed positive integer. Denote by $-\lambda_p^{(1)}, -\lambda_p^{(2)}, \dots, -\lambda_p^{(r)}$ $(p \ge 1)$ the r roots of

 $x^r + \lambda_p = 0,$

Received March 20, 1964.

i.e., *let*

(2.3)
$$(x + \lambda_p^{(1)})(x + \lambda_p^{(2)}) \cdots (x + \lambda_p^{(r)}) = x^r + \lambda_p, p = 1, 2, \cdots$$

and define for $\nu = (p - 1)r + q$ ($0 < q \le r$)
(2.4) $d_{\nu} = \lambda_p^{(q)}, \qquad \nu = 1, 2, \cdots$

Then the $[F, d_n]$ -transformation is regular.

THEOREM 2. Let the $[F, d_n]$ -transformation be regular. Then

(2.5)
$$\limsup_{n \to \infty} \operatorname{Re} (d_n) \ge 0.$$

(2.5) is the best possible statement in the sense that there exists a sequence $\{d_n^*\}$ with Re $(d_n^*) < 0$ for all n and the $[F, d_n^*]$ -transformation is regular.

Theorem 2 improves Corollary 2.1 of [1].

THEOREM 3. Let
$$\{d_n\}$$
 $(n \ge 1)$ $(d_n \ne -1)$ be a fixed sequence. Denote
(2.6) $1 + d_n = r_n e^{i\phi_n}$ $(0 \le \phi_n < 2\pi)$

and suppose there exist α , β such that

(2.7)
$$0 < \alpha \leq \liminf_{n \to \infty} \phi_n \leq \limsup_{n \to \infty} \phi_n \leq \beta < 2\pi$$

and

$$(2.8) \qquad \qquad \beta - \alpha < \pi.$$

Then the $[F, d_n]$ -transformation is not regular. The statement is best possible in the sense that there exists a sequence $\{d_n^*\}$ for which there exist α , β satisfying (2.7) with $\beta - \alpha = \pi$ and the $[F, d_n^*]$ -transformation is regular.

THEOREM 3 corrects and improves Theorem 2.2 and 2.3 of [1].

THEOREM 4. Let the $[F, \lambda_n]$ -transformation be regular, and $q \ge 1$ fixed. Let $1 + d_n = q(1 + \lambda_n)$ for $n \ge 1$. Then the $[F, d_n]$ -transformation is regular. If q < 1 the statement in general is false.

THEOREM 5. Let $\{a_n\}$ $(n \ge 1)$ $(a_n \ne -1)$ and $\{b_n\}$ $(n \ge 1)$ $(b_n \ne -1)$ be two sequences for which the corresponding $[F, a_n]$ and $[F, b_n]$ -transformations are regular. Let the sequence $\{d_n\}$ $(n \ge 1)$ be merged from the sequences $\{a_n\}$ and $\{b_n\}$ preserving the original order of the a_n and b_n respectively in the new sequence $\{d_n\}$. Then the $[F, d_n]$ -transformation is regular.

3. Proofs

Proof of Theorem 1. First we observe that by (2.3) and (2.4), $d_r \neq -1$ $(\nu \geq 1)$ since $\lambda_p \neq -1$ $(p \geq 1)$. The case r = 1 is trivial. We may assume r > 1. Let k be any positive integer; then by (2.3) and (2.4)

(3.1)
$$\prod_{\nu=1}^{kr} (x+d_{\nu}) = \prod_{p=1}^{k} \prod_{q=1}^{r} (x+\lambda_p^{(q)}) = \prod_{p=1}^{k} (x^r+\lambda_p).$$

528

Denote the matrix of the $[F, d_n]$ -transformation by $\{c_{n,m}\}$ and that of the $[F, \lambda_n]$ -transformation by $\{a_{n,m}\}$.

Let n be any positive integer. Then if n = kr + s with $0 \le s < r$, we have by (2.3), (2.4) and (3.1)

(3.2)
$$\prod_{\nu=1}^{n} \frac{x+d_{\nu}}{1+d_{\nu}} = \prod_{p=1}^{k} \frac{x^{r}+\lambda_{p}}{1+\lambda_{p}} \cdot \prod_{q=1}^{s} \frac{x+\lambda_{k+1}^{(q)}}{1+\lambda_{k+1}^{(q)}}$$

and thus by (11) it is clear that

(3.3)
$$\sum_{m=0}^{n} |c_{nm}| \leq \sum_{m=0}^{k} |a_{km}| \cdot \prod_{q=1}^{s} \frac{1+|\lambda_{k+1}^{(q)}|}{|1+\lambda_{k+1}^{(q)}|}.$$

Now, since the $[F, \lambda_n]$ -transformation is regular, by the well known theorem of Toeplitz-Schur the first factor of the right-hand side $\leq H < +\infty$. By (2.3) clearly $|\lambda_{k+1}^{(q)}| = |\lambda_{k+1}|^{1/r}$ and since s < r we have from (3.3)

$$\sum_{m=0}^{n} |c_{nm}| \leq H \cdot \prod_{q=1}^{r} \frac{1+|\lambda_{k+1}|^{1/r}}{|1+\lambda_{k+1}^{(q)}|}$$

which by (2.3)

$$= H \frac{(1+|\lambda_{k+1}|^{1/r})^r}{|1+\lambda_{k+1}|}$$

and further by (2.2)

$$\leq H \cdot K \cdot \frac{(1 + |\lambda_{k+1}|^{1/r})^r}{1 + |\lambda_{k+1}|}$$

and by an easy estimate

$$\leq H \cdot K \cdot 2^r$$
.

So

(3.4)
$$\sum_{m=0}^{n} |c_{nm}| < C < +\infty, \qquad n = 0, 1, \cdots.$$

Also, if n = kr + s $(0 \le s < r)$ and m = jr + t $(0 \le t < r)$ we have for c_{nm} , the coefficient of x^m in the left-hand side of (3.2)

$$|c_{nm}| \leq |a_{kj}| \cdot \prod_{q=1}^{s} \frac{1+|\lambda_{k+1}^{(q)}|}{|1+\lambda_{k+1}^{(q)}|}$$

and using the same arguments as above for the second factor on the right-hand side

$$(3.5) | c_{nm} | \leq | a_{kj} | \cdot K \cdot 2^r.$$

Now, if $n \to \infty$ also $k \to \infty$, and thus by the Toeplitz-Schur theorem, since $[F, \lambda_n]$ is regular

$$\lim_{k\to\infty}a_{kj}=0, \qquad j=0,1,\cdots.$$

Therefore by (3.5)

(3.6)

 $\lim c_{nm} = 0, \qquad m = 0, 1, \cdots.$

By (1.1) obviously

(3.7)
$$\sum_{m=0}^{n} c_{nm} = 1, \qquad n = 0, 1, \cdots,$$

(3.4), (3.6) and (3.7) show that the conditions of the Toeplitz-Schur-theorem for regularity are satisfied, Q.E.D.

Remarks. (i) From the proof it is clear that instead of the *fixed* integer r we could allow r to take a bounded sequence of integer values $\{r_k\}$ and define $\{d_r\}$ successively by the r_k -th roots of the λ_k 's.

(ii) The assumptions of the theorem are clearly satisfied if

 $\prod_{n=1}^{\infty} (1+|\lambda_n|)| 1+\lambda_n|^{-1} < +\infty \quad \text{and} \quad \sum_{n=1}^{\infty} |\lambda_n+1|^{-1} = +\infty$ (see [3, Theorem 3.c]); and especially if $\lambda_n > 0$ $(n \ge n_0)$ and $\sum \lambda_n^{-1} = +\infty$.

Proof of Theorem 2. Suppose, contrariwise, that

$$\limsup_{n\to\infty} \operatorname{Re} (d_n) < 0.$$

Then for a suitable δ , $0 < \delta < 1$,

(3.8) Re $(d_k) \leq -\delta$, $k \geq k_0$. Clearly we may assume that for $1 \leq k < k_0$ (3.9) $\delta \neq 1 - d_k$.

From (3.8) by elementary geometric considerations

$$(3.10) | d_k - 1 + \delta | > | d_k + 1 |, k \ge k_0.$$

Denote by $\{t_n\}$ the $[F, d_n]$ -transform of the sequence $\{(-1 + \delta)^n$. By (1.1)

$$t_n = \prod_{k=1}^n (d_k - 1 + \delta) (d_k + 1)^{-1} = \prod_{k=1}^{k_0 - 1} \cdot \prod_{k=k_0}^n d_k$$

The first factor on the right-hand side is $\neq 0$ by (3.9) and the absolute value of the second is > 1 by (3.10). Thus t_n does not tend to zero as $n \to \infty$ although $(-1 + \delta)^n$ does. This contradicts the regularity of $[F, d_n]$, and the theorem follows.

For showing that (2.5) is the best possible result of this type we choose

$$d_k^* = -(k+1)^{-2}, \qquad k = 1, 2, \cdots.$$

The regularity of the $[F, d_n^*]$ -transformation follows by [3, Theorem 3.c].

Proof of Theorem 3. First, it is obvious that we may assume

 $(3.11) \qquad \qquad \alpha \le \pi \le \beta.$

By (2.7) and (2.8) we can choose $\varepsilon > 0$ such that

$$(3.12) 0 < \alpha - \varepsilon < \phi_k < \beta + \varepsilon < 2\pi, k \ge k_0$$

and

$$(3.13) \qquad \qquad \beta - \alpha < \pi - 4\varepsilon.$$

Denote

(3.14)
$$\gamma = 2^{-1}(\alpha + \beta - \pi)$$

and let $z = e^{2i\gamma}$. It is not hard to see that we may assume

$$(3.15) d_k \neq -z, 1 \leq k < k_0$$

since if it would not be true, we might increase β such that (3.11), (3.12), (3.13) remain still satisfied with the same value of ε , and such that (3.15) holds too.

Denote by $\{t_n\}$ the $[F, d_n]$ -transform of $\{z^n\}$. By (1.1)

(3.16)
$$|t_n|^2 = \prod_{k=1}^{k_0-1} \left| \frac{d_k+z}{d_k+1} \right|^2 \cdot \prod_{k=k_0}^n \frac{|d_k+e^{2i\gamma}|^2}{|d_k+1|^2}$$

which by (3.15) and simple computation

$$= A \cdot \prod_{k=k_0}^{n} \{1 + 4r_k^{-2} \sin \gamma (r_k \sin (\phi_k - \gamma) + \sin \gamma)\}$$

where A > 0.

Now, by (3.12), (3.13) and (3.14)

$$\varepsilon < \phi_k - \gamma < \pi - \varepsilon, \qquad \qquad k \ge k_0;$$

thus

(3.17)
$$\sin (\phi_k - \gamma) = \delta > 0$$

Also by (2.7) and (3.11)

and so

$$(3.18) \qquad \qquad \sin \gamma > 0.$$

By (3.16), (3.17) and (3.18)

(3.19)
$$|t_n|^2 > A \cdot \sum_{k=k_0}^n 4\delta \sin \gamma \cdot r_k^{-1}.$$

Now suppose the $[F, d_n]$ -transformation is regular. By the first part of the proof of Theorem 3.c of [3]

 $0 < \gamma < \pi$

$$\sum_{k=1}^{\infty} r_k^{-1} = \sum_{k=1}^{\infty} |1 + d_k|^{-1} = +\infty$$

is a necessary condition for regularity. Thus by (3.19)

(3.20)
$$\lim_{n\to\infty} |t_n| = +\infty.$$

From the other side by (1.1)

$$|t_n| = |\sum_{m=0}^n c_{nm} z^m| \le \sum_{m=0}^n |c_{nm}|| z^m|$$

and since |z| = 1

$$\leq \sum_{m=0}^{n} |c_{nm}|$$

which by the Toeplitz-Schur theorem if the transformation is regular

$$\leq H < +\infty.$$

This contradicts (3.20) and so proves the theorem.

For proving that the statement is best possible of this type, we choose

$$d_{2k-1}^* = i\sqrt{k}, \qquad d_{2k}^* = -i\sqrt{k}, \qquad k = 1, 2, \cdots.$$

Clearly $\alpha = \pi/2$, $\beta = 3\pi/2$ satisfy (2.7) for this sequence $\{d_n^*\}$. Here $\beta - \alpha = \pi$. The regularity of the $[F, d_n^*]$ -transformation follows from Theorem 1 by taking r = 2, $\lambda_k = k$.

Proof of Theorem 4. It is easy to see (compare [2, Lemma 5.1]) that the $[F, q(\lambda_n + 1) - 1]$ transformation is the $[F, \lambda_n]$ -transform of the [F, q - 1]-transform. Since the $[F, \lambda_n]$ -transformation is supposed to be regular and the [F, q - 1]-transformation is regular for $q \ge 1$ by Theorem 3.1 of [2], the regularity of $[F, q(\lambda_n + 1) - 1]$ follows. For proving that for q < 1 the theorem is not true in general, we choose $\lambda_n = 0$ for all n. Then $d_n = q - 1 < 0$ and so by Theorem 2 the $[F, d_n]$ -transformation is not regular.

Proof of Theorem 5. Denote by $\{A_{nm}\}$ and $\{B_{nm}\}$ the matrices of the $[F, a_n]$ and $[F, b_n]$ -transformations respectively, and as usual, by $\{c_{nm}\}$ the matrix of the $[F, d_n]$ -transformation. Let n be any integer and suppose the set $\{d_1, d_2, \dots, d_n\}$ contains the r = r(n) terms a_1, a_2, \dots, a_r and the (n - r)terms b_1, b_2, \dots, b_{n-r} . Then

$$\prod_{\nu=1}^{n} \frac{x+d_{\nu}}{1+d_{\nu}} = \left(\prod_{\nu=1}^{r} \frac{x+a_{\nu}}{1+a_{\nu}}\right) \cdot \left(\prod_{\nu=1}^{n-r} \frac{x+b_{\nu}}{1+b_{\nu}}\right).$$

Comparing the coefficients of x^m on both sides, we get by (1.1)

(3.21)
$$c_{nm} = \sum_{\nu=0}^{m} A_{\nu} B_{n-\nu}, \qquad m = 0, 1, \cdots.$$

(Note that $A_{ij} = B_{ij} = 0$ if i < j.) From (3.21)

(3.22)
$$\sum_{m=0}^{n} |c_{nm}| \leq \sum_{m=0}^{n} \sum_{\nu=0}^{m} |A_{\nu\nu}|| B_{n-\nu,m-\nu}|$$

which clearly

$$\leq \left(\sum_{\nu=0}^{r} |A_{r\nu}|\right) \cdot \left(\sum_{\nu=0}^{n-r} |B_{n-r,\nu}|\right)$$

and since the $[F, a_n]$ - and $[F, b_n]$ -transformations are regular, by the Toeplitz-Schur theorem

$$\leq H_1 \cdot H_2 < +\infty.$$

If $n \to \infty$ either r or (n - r) or both tend to ∞ . Without loss of generality we may assume $r \to \infty$, because the assumptions for the sequences $\{a_n\}$ and $\{b_n\}$ are symmetric.

532

From (3.21)

(3.23)
$$|c_{nm}| \leq (\max_{0 \leq \nu \leq m} |A_{r\nu}|) \cdot (\sum_{\nu=0}^{n-r} |B_{n-r,\nu}|)$$

which by the regularity of $[F, b_n]$

 $\leq H_2 \cdot (\max_{0 \leq \nu \leq m} |A_{r\nu}|).$

Now, since the $[F, a_n]$ -transformation is regular, by the Toeplitz-Schur theorem

$$\lim_{r\to\infty}A_{r\nu}=0, \qquad \nu=0,1,\cdots.$$

Thus

(3.24) $\lim_{n\to\infty} c_{nm} = 0, \qquad m = 0, 1, \cdots.$

Since by (1.1)

(3.25) $\sum_{m=0}^{n} c_{nm} = 1$

for all n, by (3.22), (3.24) and (3.25) the regularity of the $[F, d_n]$ -transformation follows.

4. Analytic continuation of the geometric series

It is known that the $[F, \lambda_n]$ -transform, say $\{\sigma_n(z)\}$ of the sequence $\{s_n(z)\}$ $(s_n(z) = 1 + z + \cdots + z^n)$ tends to the value $(1 - z)^{-1}$ for $z \neq 0$, if and only if

(4.1)
$$\lim_{n \to \infty} \prod_{\nu=1}^{n} \frac{\lambda_{\nu} + z}{\lambda_{\nu} + 1} = 0$$

Combining this fact with our Theorem 1 we improve Theorems (3.1)-(3.5) and (3.7)-(3.11) of [4] by

THEOREM 6. Suppose $\{\lambda_n\}$ satisfy the conditions of Theorem 1 and denote by D the set of z for which (4.1) holds and by E the set of z for which (4.1) does not hold. Let $\{d_n\}$ be defined as in Theorem 1 by (2.3) and (2.4). Then the $[F, d_n]$ -transformation sums the geometric series to the value $(1 - z)^{-1}$ for every z for which $z^r \in D$, and does not sum it to $(1 - z)^{-1}$ for $z \ (z \neq 0)$ for which $z^r \in E$.

Proof. As in (3.2) if n = kr + s ($0 \le s < r$)

$$\prod_{\nu=1}^{n} \frac{d_{\nu} + z}{d_{\nu} + 1} = \prod_{p=1}^{k} \frac{\lambda_{p} + z^{r}}{\lambda_{p} + 1} \cdot \prod_{q=1}^{s} \frac{z + \lambda_{k+1}^{(q)}}{1 + \lambda_{k+1}^{(q)}}.$$

Now, since $1 + |z| + |\lambda_{k+1}^{(q)}|$ is greater than $|1 + \lambda_{k+1}^{(q)}|$ and also than $|z + \lambda_{k+1}^{(q)}|$ we obtain easily

$$\left|\prod_{\nu=1}^{n} \frac{d_{\nu}+z}{d_{\nu}+1}\right| < \left|\prod_{p=1}^{k} \frac{\lambda_{p}+z^{r}}{\lambda_{p}+1}\right| \cdot \prod_{q=1}^{r} \frac{1+|z|+|\lambda_{k+1}^{(q)}|}{|1+\lambda_{k+1}^{(q)}|}$$

which by (2.3) and (2.2)

$$< K \cdot rac{(1+|z|+|\lambda_{k+1}|^{1/r})^r}{1+|\lambda_{k+1}|} \cdot \left| \prod_{p=1}^k rac{\lambda_p+z^r}{\lambda_p+1} \right|$$

and by an easy estimate

$$\leq 2^{r}(1+|z|)^{r} \cdot K \cdot \left| \prod_{p=1}^{k} \frac{\lambda_{p}+z^{r}}{\lambda_{p}+1} \right|$$

If $z^r \in D$, by (4.1) the last expression tends to zero if $k \to \infty$; thus also

$$\lim_{n\to\infty}\prod_{\nu=1}^n\frac{d_\nu+z}{d_\nu+1}=0.$$

Therefore the $[F, d_n]$ -transformation sums the geometric series to $(1 - z)^{-1}$ if $z^r \in D$. On the other hand, if $z^r \in E$ the expressions

$$\prod_{\nu=1}^{kr} \frac{d_{\nu}+z}{d_{\nu}+1} = \prod_{p=1}^{k} \frac{\lambda_k+z^r}{\lambda_k+1}$$

do not tend to a finite limit as $k \to \infty$; thus the $[F, d_n]$ -transform does not sum the geometric series to $(1 - z)^{-1}$ if $z \neq 0$ and $z' \in E$. By Theorems (4.1)– (4.4) of [1] and by our Theorem 6 the results stated in Theorems (3.1)–(3.5) and (3.7)–(3.11) follow as special cases.

References

- 1. V. F. COWLING AND C. L. MIRACLE, Some results on the generalized Lototsky transform, Canad. J. Math., vol. 14 (1962), pp. 418-435.
- A. JAKIMOVSKI, A generaliation of the Lototsky method of summability, Michigan Math. J., vol. 6 (1959), pp. 277-290.
- A. MEIR, On the [F, d_n]-transformations of A. Jakimovski, Bull. Res. Council Israel, vol. 10F4 (1962), pp. 165-187.
- C. L. MIRACLE, Some regular [F, d_n]-matrices with complex elements, Canad. J. Math., vol. 15 (1963), pp. 503-525.

THE UNIVERSITY OT TEL-AVIV, TEL-AVIV, ISRAEL THE UNIVERSITY OF ALBERTA CALGARY, CANADA

534