REGULARITY THEOREMS FOR $\left[F, d_{n}\right]$-TRANSFORMATIONS

BY
A. Jakimovski and A. Meir

1. Introduction

The $\left[F, d_{n}\right]$-method of summation was introduced by the first author in [2] as follows: Let $\left\{d_{n}\right\} \quad(n \geq 1)\left(d_{n} \neq-1\right)$ be a real or complex sequence. The transformation-matrix $\left\{c_{n m}\right\}$ corresponding to this sequence is defined by $c_{00}=1$, by the identity

$$
\begin{equation*}
\sum_{m=0}^{n} c_{n m} x^{m}=\prod_{j=1}^{n}\left(d_{j}+x\right)\left(d_{j}+1\right)^{-1}, \quad n \geq 1 \tag{1.1}
\end{equation*}
$$

for $0 \leq m \leq n$, and by $c_{n m}=0$ for $m>n$.
In [2] it was proved that if $d_{n}>0$ for $n \geq n_{0}$ and $\sum d_{n}^{-1}$ is divergent, then the corresponding $\left[F, d_{n}\right]$-transformation is regular.

In a recent paper C. L. Miracle [4] obtained a family of regular [F, d_{n}]-transformation-matrices with complex elements defining the sequences $\left\{d_{n}\right\}$ on the following way. Suppose $\left\{\lambda_{n}\right\}$ is a positive sequence with

$$
\sum \lambda_{n}^{-1}=+\infty
$$

The sequences $\left\{d_{n}\right\}$ are defined by taking successively the square roots of $-\lambda_{n}$, the cube roots of λ_{n} or the fourth roots of $-\lambda_{n}$, (see Theorems 2.1, 2.2, and 2.3 of [4]). In the conclusion of his paper C. L. Miracle asks whether the method used would be continuable to higher roots of positive sequences $\left\{\lambda_{n}\right\}$ yielding regular transformation-matrices. Our Theorem 1 answers this question and improves his results, namely, instead of the positiveness of $\left\{\lambda_{n}\right\}$ we assume only (2.1) and (2.2) which are weaker conditions. In Theorems 2 and 3 of the paper we prove the corrected and extended forms of some results stated in [1]. Theorems 4 and 5 show how further regular trans-formation-matrices with complex terms can be obtained from known ones. In $\S 4$ we deal with analytic continuation by these methods.

2. Regularity theorems

Theorem 1. Let $\left\{\lambda_{n}\right\}(n \geq 1)\left(\lambda_{n} \neq-1\right)$ be a sequence of real or complex numbers satisfying the following:

$$
\begin{equation*}
\text { the }\left[F, \lambda_{n}\right] \text {-transformation is regular, } \tag{2.1}
\end{equation*}
$$

$$
\begin{equation*}
\left(1+\left|\lambda_{n}\right|\right)\left|1+\lambda_{n}\right|^{-1} \leqq K<+\infty, \quad n=1,2, \cdots \tag{2.2}
\end{equation*}
$$

Let r be a fixed positive integer. Denote by $-\lambda_{p}^{(1)},-\lambda_{p}^{(2)}, \cdots,-\lambda_{p}^{(r)}(p \geq 1)$ the r roots of

$$
x^{r}+\lambda_{p}=0
$$

Received March 20, 1964.
i.e., let

$$
\begin{equation*}
\left(x+\lambda_{p}^{(1)}\right)\left(x+\lambda_{p}^{(2)}\right) \cdots\left(x+\lambda_{p}^{(r)}\right)=x^{r}+\lambda_{p}, p=1,2, \cdots \tag{2.3}
\end{equation*}
$$

and define for $\nu=(p-1) r+q(0<q \leq r)$

$$
\begin{equation*}
d_{\nu}=\lambda_{p}^{(q)}, \quad \nu=1,2, \cdots \tag{2.4}
\end{equation*}
$$

Then the $\left[F, d_{n}\right]$-transformation is regular.
Theorem 2. Let the $\left[F, d_{n}\right]$-transformation be regular. Then

$$
\begin{equation*}
\lim \sup _{n \rightarrow \infty} \operatorname{Re}\left(d_{n}\right) \geq 0 \tag{2.5}
\end{equation*}
$$

(2.5) is the best possible statement in the sense that there exists a sequence $\left\{d_{n}^{*}\right\}$ with $\operatorname{Re}\left(d_{n}^{*}\right)<0$ for all n and the $\left[F, d_{n}^{*}\right]$-transformation is regular.

Theorem 2 improves Corollary 2.1 of [1].
Theorem 3. Let $\left\{d_{n}\right\}(n \geq 1)\left(d_{n} \neq-1\right)$ be a fixed sequence. Denote

$$
\begin{equation*}
1+d_{n}=r_{n} e^{i \phi_{n}} \quad\left(0 \leq \phi_{n}<2 \pi\right) \tag{2.6}
\end{equation*}
$$

and suppose there exist α, β such that

$$
\begin{equation*}
0<\alpha \leq \lim \inf _{n \rightarrow \infty} \phi_{n} \leq \lim \sup _{n \rightarrow \infty} \phi_{n} \leq \beta<2 \pi \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\beta-\alpha<\pi \tag{2.8}
\end{equation*}
$$

Then the $\left[F, d_{n}\right]$-transformation is not regular. The statement is best possible in the sense that there exists a sequence $\left\{d_{n}^{*}\right\}$ for which there exist α, β satisfying (2.7) with $\beta-\alpha=\pi$ and the $\left[F, d_{n}^{*}\right]$-transformation is regular.

Theorem 3 corrects and improves Theorem 2.2 and 2.3 of [1].
Theorem 4. Let the $\left[F, \lambda_{n}\right]$-transformation be regular, and $q \geq 1$ fixed. Let $1+d_{n}=q\left(1+\lambda_{n}\right)$ for $n \geq 1$. Then the $\left[F, d_{n}\right]$-transformation is regular. If $q<1$ the statement in general is false.

Theorem 5. Let $\left\{a_{n}\right\}(n \geq 1)\left(a_{n} \neq-1\right)$ and $\left\{b_{n}\right\}(n \geq 1)\left(b_{n} \neq-1\right)$ be two sequences for which the corresponding $\left[F, a_{n}\right]$ and $\left[F, b_{n}\right]$-transformations are regular. Let the sequence $\left\{d_{n}\right\}(n \geq 1)$ be merged from the sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ preserving the original order of the a_{n} and b_{n} respectively in the new sequence $\left\{d_{n}\right\}$. Then the $\left[F, d_{n}\right]$-transformation is regular.

3. Proofs

Proof of Theorem 1. First we observe that by (2.3) and (2.4), $d_{\nu} \neq-1$ ($\nu \geq 1)$ since $\lambda_{p} \neq-1(p \geq 1)$. The case $r=1$ is trivial. We may assume $r>1$. Let k be any positive integer; then by (2.3) and (2.4)

$$
\begin{equation*}
\prod_{v=1}^{k r}\left(x+d_{\nu}\right)=\prod_{p=1}^{k} \prod_{q=1}^{r}\left(x+\lambda_{p}^{(q)}\right)=\prod_{p=1}^{k}\left(x^{r}+\lambda_{p}\right) \tag{3.1}
\end{equation*}
$$

Denote the matrix of the $\left[F, d_{n}\right]$-transformation by $\left\{c_{n, m}\right\}$ and that of the [F, λ_{n}]-transformation by $\left\{a_{n, m}\right\}$.

Let n be any positive integer. Then if $n=k r+s$ with $0 \leq s<r$, we have by (2.3), (2.4) and (3.1)

$$
\begin{equation*}
\prod_{\nu=1}^{n} \frac{x+d_{\nu}}{1+d_{\nu}}=\prod_{p=1}^{k} \frac{x^{r}+\lambda_{p}}{1+\lambda_{p}} \cdot \prod_{q=1}^{s} \frac{x+\lambda_{k+1}^{(q)}}{1+\lambda_{k+1}^{(q)}} \tag{3.2}
\end{equation*}
$$

and thus by (11) it is clear that

$$
\begin{equation*}
\sum_{m=0}^{n}\left|c_{n m}\right| \leqq \sum_{m=0}^{k}\left|a_{k m}\right| \cdot \prod_{q=1}^{s} \frac{1+\left|\lambda_{k+1}^{(q)}\right|}{\left|1+\lambda_{k+1}^{(q)}\right|} \tag{3.3}
\end{equation*}
$$

Now, since the $\left[F, \lambda_{n}\right]$-transformation is regular, by the well known theorem of Toeplitz-Schur the first factor of the right-hand side $\leq H<+\infty$. By (2.3) clearly $\left|\lambda_{k+1}^{(q)}\right|=\left|\lambda_{k+1}\right|^{1 / r}$ and since $s<r$ we have from (3.3)

$$
\sum_{m=0}^{n}\left|c_{n m}\right| \leqq H \cdot \prod_{q=1}^{r} \frac{1+\left|\lambda_{k+1}\right|^{1 / r}}{\left|1+\lambda_{k+1}^{(q)}\right|}
$$

which by (2.3)

$$
=H \frac{\left(1+\left|\lambda_{k+1}\right|^{1 / r}\right)^{r}}{\left|1+\lambda_{k+1}\right|}
$$

and further by (2.2)

$$
\leqq H \cdot K \cdot \frac{\left(1+\left|\lambda_{k+1}\right|^{1 / r}\right)^{r}}{1+\left|\lambda_{k+1}\right|}
$$

and by an easy estimate

$$
\leqq H \cdot K \cdot 2^{r}
$$

So

$$
\begin{equation*}
\sum_{m=0}^{n}\left|c_{n m}\right|<C<+\infty, \quad n=0,1, \cdots \tag{3.4}
\end{equation*}
$$

Also, if $n=k r+s(0 \leq s<r)$ and $m=j r+t(0 \leq t<r)$ we have for $c_{n m}$, the coefficient of x^{m} in the left-hand side of (3.2)

$$
\left|c_{n m}\right| \leqq\left|a_{k j}\right| \cdot \prod_{q=1}^{s} \frac{1+\left|\lambda_{k+1}^{(q)}\right|}{\left|1+\lambda_{k+1}^{(q)}\right|}
$$

and using the same arguments as above for the second factor on the right-hand side

$$
\begin{equation*}
\left|c_{n m}\right| \leq\left|a_{k j}\right| \cdot K \cdot 2^{r} \tag{3.5}
\end{equation*}
$$

Now, if $n \rightarrow \infty$ also $k \rightarrow \infty$, and thus by the Toeplitz-Schur theorem, since [F, λ_{n}] is regular

$$
\lim _{k \rightarrow \infty} a_{k j}=0
$$

$$
j=0,1, \cdots
$$

Therefore by (3.5)

$$
\lim c_{n m}=0, \quad m=0,1, \cdots
$$

By (1.1) obviously

$$
\sum_{m=0}^{n} c_{n m}=1, \quad n=0,1, \cdots
$$

(3.4), (3.6) and (3.7) show that the conditions of the Toeplitz-Schur-theorem for regularity are satisfied, Q.E.D.

Remarks. (i) From the proof it is clear that instead of the fixed integer r we could allow r to take a bounded sequence of integer values $\left\{r_{k}\right\}$ and define $\left\{d_{\nu}\right\}$ successively by the r_{k}-th roots of the λ_{k} 's.
(ii) The assumptions of the theorem are clearly satisfied if
$\prod_{n=1}^{\infty}\left(1+\left|\lambda_{n}\right|\right)\left|1+\lambda_{n}\right|^{-1}<+\infty \quad$ and $\quad \sum_{n=1}^{\infty}\left|\lambda_{n}+1\right|^{-1}=+\infty$ (see [3, Theorem 3.c]) ; and especially if $\lambda_{n}>0\left(n \geq n_{0}\right)$ and $\sum \lambda_{n}^{-1}=+\infty$.

Proof of Theorem 2. Suppose, contrariwise, that

$$
\lim \sup _{n \rightarrow \infty} \operatorname{Re}\left(d_{n}\right)<0
$$

Then for a suitable $\delta, 0<\delta<1$,

$$
\begin{equation*}
\operatorname{Re}\left(d_{k}\right) \leq-\delta, \quad k \geq k_{0} \tag{3.8}
\end{equation*}
$$

Clearly we may assume that for $1 \leq k<k_{0}$

$$
\begin{equation*}
\delta \neq 1-d_{k} . \tag{3.9}
\end{equation*}
$$

From (3.8) by elementary geometric considerations

$$
\begin{equation*}
\left|d_{k}-1+\delta\right|>\left|d_{k}+1\right|, \quad k \geq k_{0} \tag{3.10}
\end{equation*}
$$

Denote by $\left\{t_{n}\right\}$ the $\left[F, d_{n}\right]$-transform of the sequence $\left\{(-1+\delta)^{n}\right.$. By (1.1)

$$
t_{n}=\prod_{k=1}^{n}\left(d_{k}-1+\delta\right)\left(d_{k}+1\right)^{-1}=\prod_{k=1}^{k_{0}-1} \cdot \prod_{k=k_{0}}^{n}
$$

The first factor on the right-hand side is $\neq 0$ by (3.9) and the absolute value of the second is >1 by (3.10). Thus t_{n} does not tend to zero as $n \rightarrow \infty$ although $(-1+\delta)^{n}$ does. This contradicts the regularity of $\left[F, d_{n}\right]$, and the theorem follows.

For showing that (2.5) is the best possible result of this type we choose

$$
d_{k}^{*}=-(k+1)^{-2}, \quad k=1,2, \cdots
$$

The regularity of the [F, d_{n}^{*}]-transformation follows by [3, Theorem 3.c].
Proof of Theorem 3. First, it is obvious that we may assume

$$
\begin{equation*}
\alpha \leq \pi \leq \beta \tag{3.11}
\end{equation*}
$$

By (2.7) and (2.8) we can choose $\varepsilon>0$ such that

$$
\begin{equation*}
0<\alpha-\varepsilon<\phi_{k}<\beta+\varepsilon<2 \pi, \quad k \geq k_{0} \tag{3.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\beta-\alpha<\pi-4 \varepsilon \tag{3.13}
\end{equation*}
$$

Denote

$$
\begin{equation*}
\gamma=2^{-1}(\alpha+\beta-\pi) \tag{3.14}
\end{equation*}
$$

and let $z=e^{2 i \gamma}$. It is not hard to see that we may assume

$$
\begin{equation*}
d_{k} \neq-z \tag{3.15}
\end{equation*}
$$

$$
1 \leq k<k_{0}
$$

since if it would not be true, we might increase β such that (3.11), (3.12), (3.13) remain still satisfied with the same value of ε, and such that (3.15) holds too.

Denote by $\left\{t_{n}\right\}$ the $\left[F, d_{n}\right]$-transform of $\left\{z^{n}\right\}$. By (1.1)

$$
\begin{equation*}
\left|t_{n}\right|^{2}=\prod_{k=1}^{k_{0}-1}\left|\frac{d_{k}+z}{d_{k}+1}\right|^{2} \cdot \prod_{k=k_{0}}^{n} \frac{\left|d_{k}+e^{2 i \gamma}\right|^{2}}{\left|d_{k}+1\right|^{2}} \tag{3.16}
\end{equation*}
$$

which by (3.15) and simple computation

$$
=A \cdot \prod_{k=k_{0}}^{n}\left\{1+4 r_{k}^{-2} \sin \gamma\left(r_{k} \sin \left(\phi_{k}-\gamma\right)+\sin \gamma\right)\right\}
$$

where $A>0$.
Now, by (3.12), (3.13) and (3.14)

$$
\varepsilon<\phi_{k}-\gamma<\pi-\varepsilon, \quad k \geq k_{0}
$$

thus

$$
\begin{equation*}
\sin \left(\phi_{k}-\gamma\right)=\delta>0 \tag{3.17}
\end{equation*}
$$

Also by (2.7) and (3.11)

$$
0<\gamma<\pi
$$

and so

$$
\begin{equation*}
\sin \gamma>0 \tag{3.18}
\end{equation*}
$$

By (3.16), (3.17) and (3.18)

$$
\begin{equation*}
\left|t_{n}\right|^{2}>A \cdot \sum_{k=k_{0}}^{n} 4 \delta \sin \gamma \cdot r_{k}^{-1} \tag{3.19}
\end{equation*}
$$

Now suppose the $\left[F, d_{n}\right]$-transformation is regular. By the first part of the proof of Theorem 3.c of [3]

$$
\sum_{k=1}^{\infty} r_{k}^{-1}=\sum_{k=1}^{\infty}\left|1+d_{k}\right|^{-1}=+\infty
$$

is a necessary condition for regularity. Thus by (3.19)

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left|t_{n}\right|=+\infty \tag{3.20}
\end{equation*}
$$

From the other side by (1.1)

$$
\left|t_{n}\right|=\left|\sum_{m=0}^{n} c_{n m} z^{m}\right| \leq \sum_{m=0}^{n}\left|c_{n m} \| z^{m}\right|
$$

and since $|z|=1$

$$
\leq \sum_{m=0}^{n}\left|c_{n m}\right|
$$

which by the Toeplitz-Schur theorem if the transformation is regular

$$
\leq H<+\infty
$$

This contradicts (3.20) and so proves the theorem.
For proving that the statement is best possible of this type, we choose

$$
d_{2 k-1}^{*}=i \sqrt{ } k, \quad d_{2 k}^{*}=-i \sqrt{ } k, \quad k=1,2, \cdots
$$

Clearly $\alpha=\pi / 2, \beta=3 \pi / 2$ satisfy (2.7) for this sequence $\left\{d_{n}^{*}\right\}$. Here $\beta-\alpha=\pi$. The regularity of the $\left[F, d_{n}^{*}\right]$-transformation follows from Theorem 1 by taking $r=2, \lambda_{k}=k$.

Proof of Theorem 4. It is easy to see (compare [2, Lemma 5.1]) that the $\left[F, q\left(\lambda_{n}+1\right)-1\right]$ transformation is the $\left[F, \lambda_{n}\right]$-transform of the $[F, q-1]$ transform. Since the $\left[F, \lambda_{n}\right]$-transformation is supposed to be regular and the [$F, q-1$]-transformation is regular for $q \geq 1$ by Theorem 3.1 of [2], the regularity of $\left[F, q\left(\lambda_{n}+1\right)-1\right]$ follows. For proving that for $q<1$ the theorem is not true in general, we choose $\lambda_{n}=0$ for all n. Then $d_{n}=$ $q-1<0$ and so by Theorem 2 the $\left[F, d_{n}\right]$-transformation is not regular.

Proof of Theorem 5. Denote by $\left\{A_{n m}\right\}$ and $\left\{B_{n m}\right\}$ the matrices of the $\left[F, a_{n}\right]$ and $\left[F, b_{n}\right]$-transformations respectively, and as usual, by $\left\{c_{n m}\right\}$ the matrix of the $\left[F, d_{n}\right]$-transformation. Let n be any integer and suppose the set $\left\{d_{1}, d_{2}, \cdots, d_{n}\right\}$ contains the $r=r(n)$ terms $a_{1}, a_{2}, \cdots, a_{r}$ and the $(n-r)$ terms $b_{1}, b_{2}, \cdots, b_{n-r}$. Then

$$
\prod_{\nu=1}^{n} \frac{x+d_{\nu}}{1+d_{\nu}}=\left(\prod_{\nu=1}^{r} \frac{x+a_{\nu}}{1+a_{\nu}}\right) \cdot\left(\prod_{\nu=1}^{n-r} \frac{x+b_{\nu}}{1+b_{\nu}}\right)
$$

Comparing the coefficients of x^{m} on both sides, we get by (1.1)

$$
\begin{equation*}
c_{n m}=\sum_{\nu=0}^{m} A_{r \nu} B_{n-r, m-\nu}, \quad m=0,1, \cdots \tag{3.21}
\end{equation*}
$$

(Note that $A_{i j}=B_{i j}=0$ if $i<j$.)
From (3.21)

$$
\begin{equation*}
\sum_{m=0}^{n}\left|c_{n m}\right| \leq \sum_{m=0}^{n} \sum_{\nu=0}^{m}\left|A_{r \nu} \| B_{n-r, m-\nu}\right| \tag{3.22}
\end{equation*}
$$

which clearly

$$
\leq\left(\sum_{v=0}^{r}\left|A_{r v}\right|\right) \cdot\left(\sum_{v=0}^{n-r}\left|B_{n-r, \nu}\right|\right)
$$

and since the $\left[F, a_{n}\right]$ - and $\left[F, b_{n}\right]$-transformations are regular, by the ToeplitzSchur theorem

$$
\leq H_{1} \cdot H_{2}<+\infty
$$

If $n \rightarrow \infty$ either r or $(n-r)$ or both tend to ∞. Without loss of generality we may assume $r \rightarrow \infty$, because the assumptions for the sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are symmetric.

From (3.21)

$$
\begin{equation*}
\left|c_{n m}\right| \leq\left(\max _{0 \leqq \nu \leqq m}\left|A_{r \nu}\right|\right) \cdot\left(\sum_{v=0}^{n-r}\left|B_{n-r, \nu}\right|\right) \tag{3.23}
\end{equation*}
$$

which by the regularity of $\left[F, b_{n}\right]$

$$
\leq H_{2} \cdot\left(\max _{0 \leqq \nu \leqq m}\left|A_{r \nu}\right|\right)
$$

Now, since the $\left[F, a_{n}\right]$-transformation is regular, by the Toeplitz-Schur theorem

$$
\lim _{r \rightarrow \infty} A_{r \nu}=0, \quad \nu=0,1, \cdots
$$

Thus

$$
\begin{equation*}
\lim _{n \rightarrow \infty} c_{n m}=0, \quad m=0,1, \cdots \tag{3.24}
\end{equation*}
$$

Since by (1.1)

$$
\begin{equation*}
\sum_{m=0}^{n} c_{n m}=1 \tag{3.25}
\end{equation*}
$$

for all n, by (3.22), (3.24) and (3.25) the regularity of the $\left[F, d_{n}\right]$-transformation follows.

4. Analytic continuation of the geometric series

It is known that the $\left[F, \lambda_{n}\right]$-transform, say $\left\{\sigma_{n}(z)\right\}$ of the sequence $\left\{s_{n}(z)\right\}$ $\left(s_{n}(z)=1+z+\cdots+z^{n}\right)$ tends to the value $(1-z)^{-1}$ for $z \neq 0$, if and only if

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \prod_{\nu=1}^{n} \frac{\lambda_{\nu}+z}{\lambda_{\nu}+1}=0 \tag{4.1}
\end{equation*}
$$

Combining this fact with our Theorem 1 we improve Theorems (3.1)-(3.5) and (3.7)-(3.11) of [4] by

Theorem 6. Suppose $\left\{\lambda_{n}\right\}$ satisfy the conditions of Theorem 1 and denote by D the set of z for which (4.1) holds and by E the set of z for which (4.1) does not hold. Let $\left\{d_{n}\right\}$ be defined as in Theorem 1 by (2.3) and (2.4). Then the $\left[F, d_{n}\right]$-transformation sums the geometric series to the value $(1-z)^{-1}$ for every z for which $z^{r} \in D$, and does not sum it to $(1-z)^{-1}$ for $z(z \neq 0)$ for which $z^{r} \in E$.

Proof. As in (3.2) if $n=k r+s(0 \leq s<r)$

$$
\prod_{\nu=1}^{n} \frac{d_{\nu}+z}{d_{\nu}+1}=\prod_{p=1}^{k} \frac{\lambda_{p}+z^{r}}{\lambda_{p}+1} \cdot \prod_{q=1}^{s} \frac{z+\lambda_{k+1}^{(q)}}{1+\lambda_{k+1}^{(q)}}
$$

Now, since $1+|z|+\left|\lambda_{k+1}^{(q)}\right|$ is greater than $\left|1+\lambda_{k+1}^{(q)}\right|$ and also than $\left|z+\lambda_{k+1}^{(q)}\right|$ we obtain easily

$$
\left|\prod_{\nu=1}^{n} \frac{d_{\nu}+z}{d_{\nu}+1}\right|<\left|\prod_{p=1}^{k} \frac{\lambda_{p}+z^{r}}{\lambda_{p}+1}\right| \cdot \prod_{q=1}^{r} \frac{1+|z|+\left|\lambda_{k+1}^{(q)}\right|}{\left|1+\lambda_{k+1}^{(q)}\right|}
$$

which by (2.3) and (2.2)

$$
<K \cdot \frac{\left(1+|z|+\left|\lambda_{k+1}\right|^{1 / r}\right)^{r}}{1+\left|\lambda_{k+1}\right|} \cdot\left|\prod_{p=1}^{k} \frac{\lambda_{p}+z^{r}}{\lambda_{p}+1}\right|
$$

and by an easy estimate

$$
\leqq 2^{r}(1+|z|)^{r} \cdot K \cdot\left|\prod_{p=1}^{k} \frac{\lambda_{p}+z^{r}}{\lambda_{p}+1}\right|
$$

If $z^{r} \in D$, by (4.1) the last expression tends to zero if $k \rightarrow \infty$; thus also

$$
\lim _{n \rightarrow \infty} \prod_{\nu=1}^{n} \frac{d_{\nu}+z}{d_{\nu}+1}=0
$$

Therefore the $\left[F, d_{n}\right]$-transformation sums the geometric series to $(1-z)^{-1}$ if $z^{r} \in D$. On the other hand, if $z^{r} \epsilon E$ the expressions

$$
\prod_{\nu=1}^{k r} \frac{d_{\nu}+z}{d_{\nu}+1}=\prod_{p=1}^{k} \frac{\lambda_{k}+z^{r}}{\lambda_{k}+1}
$$

do not tend to a finite limit as $k \rightarrow \infty$; thus the $\left[F, d_{n}\right]$-transform does not sum the geometric series to $(1-z)^{-1}$ if $z \neq 0$ and $z^{r} \epsilon E$. By Theorems (4.1)(4.4) of [1] and by our Theorem 6 the results stated in Theorems (3.1)-(3.5) and (3.7)-(3.11) follow as special cases.

References

1. V. F. Cowling and C. L. Miracle, Some results on the generalized Lototsky transform, Canad. J. Math., vol. 14 (1962), pp. 418-435.
2. A. Jakimovski, A generaliation of the Lototsky method of summability, Michigan Math. J., vol. 6 (1959), pp. 277-290.
3. A. Meir, On the $\left[F, d_{n}\right]$-transformations of A. Jakimovski, Bull. Res. Council Israel, vol. 10F4 (1962), pp. 165-187.
4. C. L. Miracle, Some regular $\left[F, d_{n}\right]$-matrices with complex elements, Canad. J. Math., vol. 15 (1963), pp. 503-525.

The University ot Tel-Aviv, Tel-Aviv, Israel
The University of Alberta
Calgary, Canada

