MARKOV PROCESSES AND MARTIN BOUNDARIES PART |

BY
HirosHr KuNiTA AND TAKEST WATANABE

The results of this paper were announced in [9]: it is shown how the theory
of Martin boundaries can be carried out for certain general types of Markov
processes including Brownian motions and Markov chains for which the
theory was established by several authors [4], [7], [11], [13]. The method
employed here is, essentially, Martin’s method translated into probability
languages. See also [11], [13] for the ideas involved.

The class of continuous parameter Markov processes for which there is a
potential kernel (of function type) will be discussed in Part I and certain
classes of continuous parameter processes proceeding in simple jumps and
discrete parameter processes, in Part II.

1. Outline of Part |

Basic notions on Markov processes are defined in Section 2. Terminology
and notation are taken mainly from [1] and [5]. Several known facts on
excessive functions as well as several new results on superharmonice functions
and harmonic functions are collected in Section 3 and basic facts on resolvent
kernels, in Section 4. These sections constitute the preliminary part.

In Sections 5-8 we generalize results of Hunt [6, Part III, Sections 17, 18]
by a method different from Hunt’s.

Let X be a transient Hunt process (see Section 2 for the definition) taking
values in a locally compact separable space S such that

Go(z, 43 X) =fo Pz, e A} dt

is bounded in x € S if A is compact. Brownian motion Z on a Green space R
(for instance, any bounded domain of Euclidean n-space) is such a process.
The Newtonian potential kernel (or the Green function) of R, denoted by
G(x,y; Z), is associated with Z in the following way;

(1.1) Go(z, A5 Z) = LG(“” y; Z) dy,

where dy is the volume element of B. The problem of determining a po-
tential kernel (of function type) G(z, y; X) associated with a general process
X is discussed in Section 5. It will be natural that the first requirement is to
keep the relation (1.1) with X and a measure m over S in place of Z and dy;

(1.2) Go(z,A; X) = LG(x,‘y; X)m (dy).
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This condition determines G(z, y; X) uniquely up to a set of (m) measure 0
for each . The crucial point is to eliminate arbitrariness of measure 0. We
will denote by G.(z, A; X) the resolvent kernel of X and assume the existence
of the co-resolvent kernel G, (z, A; X) defined by the relation

fBGa(x,A;X)m (dz) = /;éa(y)B; X)m (dy),

where « is any positive number and A and B are any Borel sets of S with
compact closure. The definition of the potential kernel involves the co-
resolvent kernel as well as the resolvent kernel and the measure m.
G(z, y; X) is said to be a potential kernel (of function type) if it is excessive
in z for each y and co-excessive in y for each  and if (1.2) and

Boly, 4; X) = f G(z, y; X)m (dz)

are satisfied, where Go(y, 4; X) = lima,o Gu(y, 4; X). Such a kernel, if
it exists, is unique (with arbitrariness of (m) measure 0 eliminated). An
obvious necessary condition for the existence of such kernel G(z, y; X) is
that Go(z, A; X) and Gy(z, A; X) are absolutely continuous with respect to
m(A) for each x. The first key result (Theorem 1) is that this condition is
also sufficient.

Sections 6-8 are devoted to a potential theory based on the kernel
G(x, y; X) under hypothesis (B) involving some regularity properties
of the co-resolvent kernel. But since the potential theory itself is not our
purpose, we will only give results enough to cover the application to Martin
boundaries. A new phenomenon in the potential theory based on G(zx, y; X)
is that G(z, y; X ) may not be a potential as a function of z for somey. We will
denote by Sp the set of y’s for which G(-, y; X) is a potential. Conditions
for 8 = 8Sp are studied in Section 13. In the Brownian motion case, the
resolvent kernel of Z is also the unique co-resolvent kernel (relative to
the Lebesgue measure of R) satisfying hypothesis (B), and the corresponding
potential kernel turns out to be the Newtonian potential kernel.

The Martin boundary is introduced in Section 9. Let » be a measure de-
fined over S such that f r(de)G(z, y; X) is continuous in y, taking values
in (0, «]. The (generalized) Martin potential kernel associated with
G(z, y; X) and with r is defined by

G(z, y; X)
[ r @6, y; )

=0 if fr (dz)G(z,y; X) = oo.

k(z,y; X) =

if fr (dz)F(z, y; X) <

Obviously this generalizes the (usual) Martin potential kernel associated
with the Newtonian potential kernel G(x, y; Z) and with a reference point x,
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which is defined by
G(x,y; Z) .
«(x,y; Z) =G-((%%—Z—; if y = xo
=0 1f Yy = xo.l

k(z, y; X) induces a boundary S’ of S in a way similar to the way that «(x, y; Z)
induces the Martin boundary R’ of R. The second key result of this paper
(Theorem 3) is that «(z, y; X) can be extended uniquely in a certain sense
from S X Sto S X (8 4+ S’). The method of Martin [11] for x(z, y; Z) can
not be applied to the general case.

Let A be a Borel set of S + §’. The reduced function H, u of an excessive
funetion v is defined in Section 10. We will denote by S; the set of points »
of 8 for which H, x(x, 7; X) is not identically zero and by 8; the set of points
y of Sp for which [ r(dx)G(x, y; X) is finite. The (generalized) Martin
representation theorm of excessive functions is proved in Section 11 which
asserts that each (r) integrable excessive function w has the unique integral
representation

u = (-5 m; X)u (dn).
81481’
This is the analogue of the (usual) Martin representation theorem of positive
superharmonic functions on R;

(1.3) h = (- ym; Z)p" (dn),
R—{zg}+E;1’

where h is a positive superharmonic function finite at z, and Ry is the set of
minimal boundary points.

Doob [3] introduced Brownian h-path process Z" for each positive super-
harmonic function 4 of R and proved a theorem which gives the measure
u" of (1.3) a probabilistic interpretation in terms of Z*. In Section 12 we will
generalize the theorem to a general process X as follows: Doob’s theorem is
true if and only if every point y such that f r(de)G(x, y; X) is finite belongs
to Sr. This conclusion is closely connected with the following result of
Section 13: S = Sp if and only if any h-path process of X is a transient Hunt
process.

Throughout Sections 2-13 we assume that the basic process X is a transient
Hunt process, namely, a standard process satisfying hypotheses (As) and
(A7) of Section 2. But hypotheses (As) and (A7) can be removed if X is
a standard process satisfying hypothesis (B). We have chosen to prove this
fact in the final section rather than to do without these hypotheses from the
beginning, for the following two reasons. One is that we did not like to make
too complicated the organization of the paper. The second reason is that the

1 Actually, Martin defined «(z, y; Z) = 1if ¢ = y = x,. See footnote 18.
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argument employed to remove hypotheses (Ag) and (A7) is more naturally
connected with a quite different approach to the whole material of this
paper which we will discuss in another place (see footnote 29).

2. Markov processes

Let S be a locally compact, noncompact, separable Hausdorff space and A,
a point adjoined to S as the point at infinity. We will denote by ® the o-field
of all Borel subsets of S and by @ the o-field consisting of all the subsets of S
which, for each finite measure u defined on (S, ®), are in the completed o-field
of ® relative to u. Let w denote a function from [0, «) to S u {A}, z;, =
zo(w) = w(t) the value attand ¢(w) = inf {t = 0, x,(w) = A}.> Thesample
space for our process will be taken as the set W of all w’s which are right con-
tinuous, have the left-hand limits in S for {€[0, ¢) and satisfy w(f) = A
fort = ¢. The set W is closed under the shift operation 8, defined by (8; w)(s)
= w(t+8),s,¢t=0. Fisthe o-field in W generated by sets {x; ¢ A} for each
t = 0 and for each A of ® Obviously ¢ is F-measurable. &, is the o-field
in W, = {¢ > t} generated by sets {x; ¢ A, { > t} foreach s (0 < s < t) and
for each A of . For each z of S, let P,(-) denote a probability measure over
(W, ¥). For an F-measurable function ¢ and F-measurable set A, we write
E.(¢; A) for IA o(w)Pz(dw).

The system X = (W, x¢, ¢, §¢, F, P,, x¢8) is called a right continuous
(stationary) Markov process if it satisfies the following conditions: (A;) For
each A of §, P,(A) is @-measurable; (A,) for each z of S, zo(w) = z a.e.? (P,);
(A3) for each x of S, ¢t = 0, A in ¥, and bounded F-measurable function ¢

Ex{¢(0t w); A} = Ew{Ezz(‘P); A}'

A random time (= nonnegative function defined on W allowing the value
infinity)  is said to be an (F) stopping time if {r < t < ¢} eF.forallt = 0.
For an () stopping time 7, let F,; denote the o-field formed by all the sets
Ain W, = {f > 7} suchthat A e Fand An {r <t < {} eF, forallt = 0.

A right continuous Markov process X is said to be standard if the following
conditions are satisfied: (A4) For each x of S, (F) stopping time 7, A in
and bounded F-measurable function ¢

E.{e(6: w); A} = Eo{E,,(¢); A}

and (Ag) if {7} is any increasing sequence of (F) stopping times and if
7 = limg,e 7, then for each z, z,, — x, a.e. (Pz) on W,.

Let A be a subset of S. The nonnegative hitting time v(A) and positive
hitting time 77 (A) are defined as follows;

7(A) = inf {t 2 0,2,¢4)] and 77(4) = inf {t > 0, z, e A}.
If there is no ¢ satisfying the condition in the parentheses, we set

2 If there are no such ¢, then we set {(w) = «.
8 Almost everywhere relative to P, .
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7(A) (resp. 77(A)) = ¢. Hereafter such convention will be made without
special mention whenever a random time is defined by some specified con-
dition. If A is open, 7(4) and r7(A) are equal and they define an ()
stopping time. But in order to treat hitting times of more general sets, we
must introduce a new system of o-fields which is slightly larger than the
system (¥, §,). For each finite measure u on (S, &), define

Pu) = [ Puu (),

which gives again a measure over (W, §). Let g be the intersection, over
all u, of the (P,) completed o-fields of & and let G, be the o-field formed by all
subsets of G n W, which, for each u, differ by at most a set of (P,) measure
0 from a set of ;. For each bounded G-measurable function ¢, E.(¢) is
well defined for all z and @-measurable as a function of z. Also G (resp. G;)
includes all sets {x; e A} (resp. {x,eA, ¢ >t = s}) for each s = 0 and for
each A of @ A random time 7 is called a (§) stopping time if {r <t < ¢} e G, for
allt = 0. For a (G) stopping time =, G, denotes the o-field formed by the
sets AIn W, = {{ > 7} suchthat AeGand An {r <t < {}eG forallt = 0.
Suppose X is a standard process. Then it is known [14] that the properties
(A4) and (As) remain still valid if “F” s replaced by ““G” in each statement.
Moreover, if A is an analytic set of S, 7(A) and v (A) are (Q) stopping
times (see [5], [6]).

We will say a standard process X is a Hunt process if, (Ag) for each x of S,
the left hand limits z;_ at ¢ = ¢ exist in S u {A} a.e. (P.) on the set {{ < »}.
A process X is said to be transient if (A7), for each « of S and for each compact
set A of S, 2, is not in A for all sufficiently large ¢, a.e. (P;). If X isa transient
Hunt process, then (As) is true even if we remove the phrase on the set
{¢ < o} in the statement. Let A be an open set of S with compact closure
and B, a closed neighborhood of A. Define

71 = the hitting time for A4,
72 = the hitting time for S — B after 1,
73 = the hitting time for A after 7.

74, 75, -+ are defined successively. Hypotheses (Ag) and (A;) can be
restated as follows: For any A and B as above

P.{r., < ¢ for every n} = 0 for all
and for each compact set C
Pir(8— C) < o} =1 for all z.

This kind of fact will be used repeatedly in later sections.
From now on we will assume the basic process X is a transient Hunt process.
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3. Excessive functions and some other related functions

Let f be an @-measurable function defined on S, 7 a G-measurable random
time, 7(A4) and 77(A4) the hitting times of an analytic set A, and B a set of
@. Definef(z,) = 0if 7 =z ¢. With this conevntion, one may write E,{f(x,)}
for E,{f(x,); 7 < ¢}. We use the following system of notation:

H.(z,B) = Pz, ¢B},

fITf(x) = Ez{f(xf>};
HA(x7 B) = HT(A)(:I:; B)’
H:t(x) B) = HT"'(A)(x) B))

G.(z, B) = fo ¢ 'H,(z, B) di for & = 0.

H.,f, Hif and G,f are defined similarly to H.f. {H,(x, B),t = 0}, {Ha(z, B)
(or Hi(z, B)), A €@} and {G.(z, B), « > 0} are called, respectively, the
transttion function, system of harmonic measures and resolvent kernel of the
process X.

Let A" be the space of functions defined on S, @-measurable and nonnegative
(allowing the value infinity). A function u of AT is said to be excessive if
H,u <uforallt = 0and if H,u — u (t — 0). Basic results on excessive
functions are found in [6, Part I]. Here we will list some of them.

ProrositioN 3.1.  The following three statements are equivalent to each other.
(1) u 1s excessive. (ii) aGou = w for all o > 0 and aGau — u (a — ®).
(iii) H,u £ u for each () stopping time v and H, u — u (n — ») if {r,}
is a sequence of (G) stopping times and if T, decreases to 0 a.e. (Pg) for all .

ProposiTION 3.2. Let u be an excessive function, {7.} a decreasing sequence
of (Q) stopping times, = liM,ue 7, and A a set of Frp. Then (1) u(x,) s
right continuous n i, a.e. (P,) for each x. (i1) E{u(x.); A} = E.{u(x.,); A}
and the right side increases to the left side as m — . Therefore (iii) u(z.,)
1s uniformly integrable relative to (Py).

A function u of A" is said to be quasi-excessive if it satisfies
(3.1) aGau = u for all « > 0.

Then, as will be shown in the next section, the left side increases with « and
the function limg.. aG.u is excessive. This limit function is called the
regularization or smoothed version of w and denoted by reg. w. If a function
u of A" satisfies

(3.2) Hiu=2u forall¢ = 0,

the left side increases as ¢ | 0 and lim,., H; u defines an excessive function.
But since (3.2) implies (3.1), such a function u is also quasi-excessive. We
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have
limg,o Hiu = limgse Gy u = reg. u.

Let w be an excessive function, A an analytic set of S and (¢, 4, w) =
t + 7(A, 6aw). Tt follows that v(t, A) = r7(4) = 7(A) and that (¢, A)
decreases to 77(A) as t — 0. Therefore by Proposition 3.2,

Hyouw=HH,u= Hiuw <H,u

and H, H, u increases to H% u as ¢ — 0, which implies that H, u is quasi-
excessive and that HYu = reg. H,u. In particular, if A is open (more
generally, nearly open [6]), then H, u = HY% u, so that H 4 u is also excessive.
The following proposition comes from [6, Part I, Proposition 6.1).

ProrosirioN 3.3. Let u be an excessive function and {A,}, a monotone se-

quence of open subsets of S increasing to A. Then H 4, u increases to H 4 u as
n— .

Let u be a function of A™ and G, an open subset of S. The function u is

is said to be superharmonic if, for each open subset A of S with compact
closure

uw = Hjzu,

where we write 4 or A~ for S — A. (Hereafter this notation will be used with-
out mention.) The function u is said to be harmonic on G (just harmonic
if G = 8) if, for each open subset A of G whose closure is compact in G,

u = Hjzu.

ProrosrrioNn 3.4. If u is superharmonic, then it is quasi-excessive. In
particular, if u is harmonic, then it is excessive.

Let K be any compact set of S and A, an open set with compact closure. If
u is superharmonic,
U

v

Hgxuzu
2 EJu(a.m); 7(K) = 7(4)}.

Letting A 1 8,* we have u = Hg u, so that u is quasi-excessive according to a
theorem of Dynkin [1, Theorem 4.1].° Next suppose u is harmonic. Let
be any fixed point of S and A, an open neighborhood of & with compact closure.
By definition of a harmonic function, v = H z u, so that

Hyu(zx) = H Hzu(z) = E{u(2,¢,n)},

4 In general, by A T S we understand a sequence of sets {A,} to be chosen as follows:
A, increases to 8, each A, has compact closure in S and A, is a neighborhood of 4, .
This convention is repeatedly used in Sections 7, 8.

§ In [1], the proof is carried out under the condition that v = Hiw. But it is applic-
able for our case,with no change.
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where 7(t, A, w) = t + 7(4, 6aw). Take w such that 7(4, w) > 0. Then
(1, A, w) = 7(A, w) for every t £ r(A, w). Since P {w; (A, w) >0} =1,
we have

lim inf, o H; u(x) = Em{hm infy. u(xr(t,Z))}

= E{u(z:)}
Hzu(x)

= u(x)y

so that

limgow aGate(2) = limase f ¢ Hyeulz) dt
0

v

f ¢ Tim infusw Hyau(z) dt
0

= u(z).

ProposiTioN 3.5. If u is harmonic and if A is an analytic set with compact
closure,

uw=Hziu=H}u.

Let A be the closure of the set 4, A~ the complement of A, and 4y an open
neighborhood of A with compact closure. Noting that u is excessive, we have

w=Hzuz= Hiu
= Hi~u=Hzu
z Hiyu = u.

ProrositioN 3.6. Let Gy and G2 be open subsets of S, and u an excessive
Sfunction. If u is harmonic on each G; (¢ = 1, 2) and if u is bounded on each
compact set of @ = G1u G, then u is harmonic on G.

It is enough to show that Hz v = u for each compact set K of G. There
are subsets 4; and B; of G; (¢ = 1, 2) such that A, is open, B; is a compact
neighborhood of 4; and 4A; u 4, D K. Define

n(w) = T(Ely w) if xo(w) e 4y
= 7(By, w) if m(w)edsn 4,

=0 otherwise
and

(W) = 7pi(w) + 71(6r,_, w).

Then H,, v = u and hence H,,u = H, ,H.,uw = H, _,u= -+ = ufor
every n. Moreover hypotheses (As) and (A7) imply that

liMyae Pofra < 7(K)} = 0
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for each z of S. But we have
H.,u = Efu(z,); o < 7(B)} + Eofu(zs,); 70 2 7(K)}
= Befu(en,); o < 7(K)} + Edu(zi); 7 2 7(K)}
< [supyex u(y)1Pe{mn < 7(K)} + Hz u,

where we use the fact that {¢ > 7, = 7(K)} €G®+. Whenn — o the last
side of this inequality goes to Hg u, so that

u = limy,o H,, u < Hz u.

4. Resolvent kernels

We introduce several spaces of functions defined over S; B = the space of
bounded and G-measurable functions, By = the subspace of B formed by func-
tions of compact support,’ C = the space of bounded and continuous functions,
C, = the subspace of C formed by functions of compact support.

A function R.(x, A), defined for o > 0, z of S and A of ®, is said to be a
resolvent kernel if it satisfies the following conditions (a)—(d). (a) For each
a > 0and z of S, R.(x, -) is a measure finite for compact sets. Let f be a
bounded and Borel measurable (= ®-measurable) function of compact sup-
port. We will write R.f for f F@R(-, dy). (b) R.f is G-measurable and
bounded on every compact set; (c) the resolvent equation

(4.1) Ref — Rgf + (a« — B)R. Rs f = 0.

is satisfied and (d) lime.o Ra f(x) = 0 for each z.
We will now list several elementary properties of B.(x, A). Let fbe a func-
tionof By. Clearly R, f(x) is well defined for such f.

(i) (b)-(d) are satisfied for such f.

(il) R« Rsf = RsR.J.

(iii) Iff=zO0andifa < 8, Ref = Rs.

(iv) R.f is continuous in «, so that R.jf(z) is jointly measurable in
(o, 2).

(V) Raf = limﬂ-»eo Ra(BR,‘] f).
Given a number o = 0, a function u of A% is said to be (R, &) excessive if
BR.su = u for all 8 > 0 and if limg, BRars u = u. By (iii),

Ro(z, A) = limgo Ra(z, A)

exists for each A of @ and defines a measure on @ Moreover, for each A of @,
there are Borel sets (= setsin ®) B and C such that B € A C C and such that
Ro(w, B) = Ro(ﬁl?, A) = Ro(x, C)'

(vi) A function u of A" is (R, ay) excessive if and only if it is (R, a) ex-
cessive for all @ > «y .

6 A function is said to be of compact support if it vanishes outside of a compact set.
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(vii) Iffisin AT, R,fis (R, a) excessive.

ProposITION 4.1. Let u be a function of A" and let BRays u increase with B.
Then v = limg, o BRarg u s (R, &) excessive.

First we note that the condition in the proposition that

(4.2) BRarsu = YRaryu for B =~
is equivalent to the condition that
(4.3) BRavs Ratry U = Rayyu for B = +.

Also (4.2) or (4.3) implies that
(44) YRais Rayyu < Rarpu for g8 <.
These assertions follow from the fact that, if 8 < v, the equation

Royst = Raryu + (v — B)Rayp Rary u

is true for any function u of AT. When y — « in (4.4) the left side goes to
Rui5v, so that

Ra+3 v < Ra_(.ﬁ U.

On the other hand, using the property (v) of R.(x, A), we have
Rargu = lim infy.w Ratg(YRatry ) = Raypv.

Therefore we have shown R..su = Ruysv, which implies that v is (R, a) ex-
cessive.

The function v in the above proposition is said to be the (R, a) regularization
of u.

An obvious sufficient condition that (4.3) is satisfied is that

(4.5) BR.igU = u forall g8 > 0.

Hence Proposition 4.1 can be applied to functions of A" satisfying (4.5).

Let R = {R.(z, A)} be a resolvent kernel and m, a measure defined over
(S, ®).

R is said to be dominated by m if, for each « > 0 and for each z of S, R.(z, -)
is absolutely continuous with respect to m.

R is said to be integrable if Ro( -, A) is bounded on every compact set when
A is compact.

R is said to be substochastic if aR.(x, S) < 1 for every a > 0 and z ¢ S.

R is said to be regular if, for each function f of Co , aR. f converges boundedly
on every compact set to fasa — .

The resolvent kernel G = {G,(x, A)} of the process X, defined in Section 3,
is substochastic and regular. It is known [6] that this kernel Gu.(z, A) has
the following properties.
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(i) The constant function is (G, 0) excessive.
(ii) limg.e aR.f = f for each function f of C.
(ii1) Each (G, a) excessive function can be approximated by an increasing
sequence of bounded (G, «) excessive functions.
(iv) The minimum of two (G, «a) excessive functions is also (G, «)
excessive.

The properties (i)—(iii) can be proved for any substochastic and regular
resolvent kernel R. (For (iii) it is sufficient that R is substochastic.) But
it remains an open question whether or not (iv) is true for such a general R.

5. Determining the potential kernel

Hunt (6, Part I1I] gave a method of determining a potential kernel (of func-
tion type). There are, however, some interesting cases to which Hunt’s
method is not applicable. For instance, one-dimensional diffusions with an
entrance boundary do not satisfy the condition, one of those conditions as-
sumed by Hunt, that the transition function of the process under consideration
leaves invariant the space of functions continuous on S and vanishing at the
point at infinity of S. Also his approach does not explain why, in the case of
(continuous parameter) Markov chains, Go(z, {y}) acts as a potential kernel
(of function type). To cover such cases we present a different method.

Let m be a measure defined over (S, ) and finite for compact sets and let
(-, -) denote the inner product with respect to m. A resolvent kernel®
G = {G.(x, A)} is called the co-resolvent kernel of G = {Ga(x, A)} with respect
to m if, for each f, g of C, and for each a > 0,

(5~1) <f: Gag) = (Gaf: g>

It is easy to show that (5.1) is true for each f, g of By. We will use the word
a-excessive (or just excessive’ when o = 0) for (G, ) excessive. Also we will
use the word a-co-excessive (or co-excessive when a = 0) for (G, o) excessive.

Given a number a = 0, a jointly (= @ X @) measurable function G.(z, y)
is said to be the potential kernel of exponent a (associated with G, m and 6) if
the following conditions are satisfied: (a) Gu(z, dy) = Gu(z, y)m(dy);
(b) G’a(y, dz) = G.(x, y)m(dz); (¢) Gu(-, y) is a-excessive for each fixed y
and (d) Gu(z, -) is a-co-excessive for each fixed x.

Suppose there is the potential kernel of exponent «, for some a9 > 0. Then
it follows from the resolvent equation that G and G are dominated by m.
Therefore, as will be proved soon, there is the potential kernel of exponent «
forall« =2 0. The fact that G is dominated by m implies that m(A) must be
positive if A is a non-void open set. Moreover the uniqueness of Ga(z, ¥) is

7 An argument of Ray [12] may be useful for this question.
8 In general, such G is not necessarily determined uniquely by G and m.
9 This phraseology amounts to that in Section 2.
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shown as follows. Given a number & = 0, let G{”(x, y)(5 = 1, 2) be two
potential kernels of exponent «. When y is fixed, by (b),

(52) Gfxl)( ) y) = Gf}tz)( y y)

a. e. (m) (= almost everywhere relative to the measure m). But since G is
dominated by m,

B8 f GP (2, y)Gars(z, dz) = Bf(}'ff)(z, Y)Gats(2, dz)
for all x of 8. Letting 8 — « we have (5.2) everywhere on S, because both
QP (-, y) and G2 (-, y) are a-excessive for each ¥.

THEOREM 1. Assume that G and G are dominated by m. Then there is the
unique potential kernel of exponent o for all « = 0. Moreover we have for all
B>az=0

G2, y)

Go(a y) + (8 — o) [ Gulz, 2)Ga(z, y)m (d2)
(5.3)

= Golz,9) + (8 — o) [ Go(@, 2)Galz, y)m (da).
Generally if f(z, y) is a jointly measurable function, then G (resp. G) oper-

ates on f with respect to the variable = (resp. y), while the other variable is
fixed. In other words,

Gef(,9) = [1(6 0)Gal, ), Bud(@) = [ (@, 2)Buly, do).

Such convention will be used throughout the rest of this paper.

Let o« > 0 and let go(z, y) be any jointly measurable version of
Go(z, dy)/m(dy). For a fixed z and for a positive function f of By, it follows
from (5.1) that

[ Getsgata, S @IM (y) = GuGurs §(2)

(54)
< %Gaf(x) = %fga(w, y)f(y)m(dy),

so that
ﬂGa+ﬁ gﬁ(x} ') = ga(xr ) a.e. (m).

Since G is dominated by m,
Bty Gars ga(2, ¥) < Gary galz, y) for every y.

Therefore, according to Prop. 4.1 and its remark, 8Gass g«(, y) increases with
B8 — o and its limit Gu(x, y) is jointly measurable and a-co-excessive. Multi-
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plying 8 to the first half of (5.4) and letting 8 — o, we have
(55) Gef(@) = [ Gula, i) mldy).
(5.1) and (5.5) imply that, for each positive function f of By
Gu() = [ f(@)Gula, Imlde) ac. (m).

Again using the fact that G is dominated by m,

BGars Quf(y) = ff(w)ﬁéa+ﬂGa(x, y)m(dx) for all y.
When 8 — « we get

G.f(y)

ff(x)Ga(x, y)m(dz).

From Proposition 4.1, Gass ga(, y) = Gass Ga(x, ), so that
BGatsga(z,y) = B f Gol, 2)Gatp(z, y)m(de)

= ﬂGaGoH‘ﬂ(x, y) T Ga(‘”: ?/)'

Hence G.( -, ¥) is a-excessive for each y, for it is the increasing limit of a-ex-
cessive functions Gy Gass(, ¥).

For a fixed z, it follows from the resolvent equation of G that (5.3) is true
for a.a. ¥ (m) (= almost all y relative to the measure m). Operating 'y@gﬂ
and letting v — o, one gets (5.3) from the observation that the both sides of
(5.3) are B-co-excessive.

Finally, noting that G.(z, y) is a decreasing function of « by (5.3), one can
define

Gy(z, y) = limg,o Gu(z, y),

which is easily proved to be the potential kernel of exponent 0, Q. E. D.
Fix a point x of 8. Since Gu(z, +), a > 0, s finite a.e. (m), the equation

(56) [ Gulm, )Gale, Imde) = [ Gola, 2)Galz, y)mide)
is true for a.a. y(m). But the both sides are 8-co-excessive (8 = «), so that
(5.6) is true for all y. The equation (5.6) can be written as follows;

Ga Gs(z, y) = G Ga(x, y) = GaGs(z,y) = G5 Gz, y).

Suppose G is dominated by m. Then if there is a symmetric (jointly meas-
urable) version of G.(z, dy)/m(dy) for each o > 0, it is cbvious that G itself
is a co-resolvent kernel. Conversely, if G = G, the corresponding kernel
Ga(x, y) must be symmetric for each o = 0. Indeed, by the assumption,
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Go(-, y) and G,(y, -) are a-excessive and equal a.e. (m) for each fixed y, so
that they are identical everywhere.

ProrositioN 5.1.  The following four statements are equivalent to each other.
(i) G (or G) is dominated by m. (ii) If u and v are a-excessive (or a-co-exces-
sive) for some o > 0 and if u = v a.e. (m), then u = v everywhere. (iii) Let f be
a function of By. () There is some positive number ay such that, whenever Gq, f
(or G‘ao f) vanishes a.e. (m), it vanishes everywhere. (iv) The statement (*) 1s
true only if f is a nonnegative function of By .

It is enough to show that (iv) implies (i) in the case of G: the rest is veri-
fied easily. Let A be a set of @ with compact closure such that m(4) = 0.
By (5.1)

(5, Gas s A)) = [ Gy $CYmla) = 0,

so that Go (-, A) = Oa.e. (m). Therefore Goo(x, A) = 0 for all z. By the
resolvent equation, Gu(x, A) = 0 for all @ = 0 and for all 2.

6. Some properties of the potential kernel

From now on the potential kernel of exponent 0 will be called simply the
potential kernel. Also we will write G(zx, y) for Go(z, y).

The following hypothesis on the triple (G, m, G)is always assumed in the
rest of this paper.

Hyporuests (B). G s integrable and dominated by m. G s regular and
Go f, @« = 0, s continuous and finite everywhere for each f of Bo .

Obviously this hypothesis implies that G is also integrable. In the previous
section we noted that if G is dominated by m, then m(A) is positive for each
non-void open set. From this remark and Proposition 5.1 it follows that, given
G and m, the co-resolvent kernel G satisfying (B), if it exists, is unique and
that G is dominated by m. Therefore there is the potential kernel of exponent
a for each number o = 0. The kernel Gu(z, y) is lower semicontinuous rela-
tive to y for each fixed x, because any a-co-excessive function is so under
hypothesis (B).

Hypothesis (B) is weaker'® and, sometimes, easier to be verified than Hunt’s
hypotheses (F) and (G). For instance, in two examples cited in the beginning
of Section 5, it is easy to find the measure m and the co-resolvent kernel for
which (B) is satisfied. Under hypothesis (B) we will derive some plausible
properties of the potential kernel and establish potential theoretic results like
those obtained by Hunt.

Suppose f is in Cy , nonnegative and f(z,) > 0. Since G is regular,

Guf(z) 2 -13 - B0 f(w0) 2 iﬁf(m >0

10 For the proof of this fact, see [6, Part III, Sections 17 and 18].
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for each & = 0 and for all sufficiently large 8. Since G.f is continuous by
(B), we get

ProposiTion 6.1.  Let A be a compact set and B, a neighborhood of A. Then
infres Ga(z, B) > 0 for each a = 0.

ProrosiTion 6.2. (i) If A is open and if y is in A, then H, G(x, y) =
G(z, y) for all x, where H , G(x, y) = f G(z,y)H 4(z, dz). (ii) For each fixed
y, G(-, y) is harmonic on S — {y}.

In order to show (i) it is enough to prove
H,G(z,y) = Gz, y) for all x of S and y of A.
Let f be a function of B, vanishing outside of A and z, any point of S. Then
(HaG(, -), f) = Ha(Gof) (2)

- B, [Ew,{ fo " (o) dt}] - E{ f ; f(@) dt}

E,{f:f(x,) dt} = Gof(z)

= <G(m’ ')7 I

so that H, G(z, -) = G(x, -) a.e. (m) on A. Define G*(x, -) = G(x, ) on
Aand = Oon A. Then

oGa(H, Q) (z, y) = oG (2, y) for all y.
Noting that H 4 G(z, - ) is co-excessive, when a — « we get
H,GQ(z,y) = liminfa,q, oG @ (2, y) = G4(z, y),

where the second inequality follows from the facts that G is regular and that
G*(x, -) is lower semicontinuous.
The second statement is immediate from (i).

7. Potentials

Let Lo(m) be the space of functions defined over S, G-measurable and (m)
integrable over each compact set.

ProrosITION 7.1.  An excessive (or more generally, quasi-excessive) function
u 18 1 Lo(m) if and only if it is finite a.e. (m).

Suppose « is quasi-excessive and finite a.e. (m). Fix any point y, of S and
a > 0. Since G is regular, there is a point x, such that G.(, 1) > 0 and
u(xy) < o. Therefore, for some small ¢ > 0, the set A = {y; Gu(xo, y) > €}
is an open neighborhood of . Then

© > u(x) 2 aGeu(z) 2 ac fA u(y)m(dy),
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which proves the if part, while the other half is obvious.

ProposiTioN 7.2. If w s quasi-excessive and finite a.e. (m), then
u = reg. u a.e. (Mm).

It is enough to show that 4 < reg. wa.e. (m). Let fbe a positive function
of Co. Then

) £ liMaonw @Gaf, u) = liMasw (f, 0Ga 1)
= (f, reg. u).

Hence u < reg. u a.e. (m), for u is in Lo(m).
Let A be a compact set of S. An excessive funetion u of Lo(m ) is said to be
a potential if im s Hzu = 0 a.e. (m).M
With this definition of a potential, G( -, y) may not be a potential. We will
denote by S» the set of points y for which G(-, y) is a potential. It is im-
portant to know when S = Sp. This problem will be discussed in Section 13.

We will soon prove that each potential has an integral representation

Gu = [ 6, yu (ay),

where u is a measure defined over (S, ®). But its converse is false unless
S = 8Sp. Keeping this fact in mind we will call a function Gu of Ly(m) a
potential in the wide sense.

ProposiTioN 7.3. The measure of a potential in the wide sense is finite for
compact sets of S.

Fix any point yo of S. Similarly to the argument in Proposition 7.1 there is
a point 2o such that G(z, , ¥o) > 0 and such that Gu(z,) < «. Hence the set
A = {y;G(x0,y) > ¢} is an open neighborhood of y, for a small e > 0. There-
fore

© > Gulm) 2 [ Glao, u (@) 2 eu(4),
A similar argument gives us
ProrosiTion 7.4. If Gu = 0, then u = 0.
We need one more auxiliary result.

ProPOSITION 7.5. Let {Gu,} be a sequence of potentials in the wide sense which
are dominated by a function v of Lo(m). Then (i) there is at least one weak limit
of {ua}.” (i) If u is @ weak limit of {un} and if Gu. converges to a function
u a.e. (m), aGLu mcereases with a and

(7.1) reg. u = Gu.

1 For the meaning of A T 8, see footnote 4.
12 We say u is a weak limit of {u,} if an infinite subsequence {unx)} converges weakly
to u, that is, if [ f dungy — J f du (k — ) for each f of Cy .
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(iii) Equality holds in (7.1) if, for each positive function f of By and for any
number € > 0, there is a compact set A such that

(7.2) /;{G’of(?/)un (dy) < ¢ for all n.

(Note that the condition of (iii) is satisfied if every u, vanishes outside of a
compact set independent of n.)

For the assertion (i) it is enough to show that, for each compact set A,
un(A) is bounded. Let B be a compact neighborhood of A. By Proposition
6.1, ¢ = infyc, Go(y, B) > 0. Hence

© > va(x)m(d:v) = LGun(x)m(d@

> f Go(y, B)un(dy) = c-pa(A).

For (ii), let p,qy converge weakly to u and let f be a positive function of By .
Since v = Guaqy and since G, f is positive and continuous,

(fyu) = limgsw (f, Guaw)

- }Hﬁ f Gof () tncr (dy)

2 [ Gurwny) = (4, G
so that 4 = Gu a.e. (m). But since
U = My, Gu, = lim inf, . aGa(Gur) = aGoe(lim, e Gu,) = aGa u
a.e. (m),

aGu increases with a everywhere on S according to the remark below Propo-
sition 4.1. Hence reg. p = Gu.

Finally we will prove (iii). By a simple evaluation we have

limf@rof(?/)un(k)(dy) = féof(y)#(dy) + lim f~ Gof () ungy (dy)
k>0 k>0 J4

for each compact set A. Therefore if (7.2) is satisfied, then {f, u) < {f, Gu),
which implies that reg. u < Gu.
We will now give results on the integral representation of potentials.

ProrosITioN 7.6. A function is a potential if and only if it is a potential in
the wide sense of a measure u vanishing outside of Sp .

Since the proof of the #f part is quite easy, it is omitted. We will prove the
only if part. Let u be a potential and let u, = nG,(u A n), where u A n =
min {u(-), n}. The function u, is also a potential and increases to u when
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n— . If Ais compact, then E,{r(A)} £ Go(x, A) < . By a formula of

Dynkin®
Up = Eo { f
o

where f, = n[(u A n) — u,] = 0. Letting A 7 S we have

7(4)

fn(xt)dt} + Hﬁ'un y

(7.3) U, = K. {f{f,,(x,)dt} = Gofn a.e. (m)
(1]

Since both sides are excessive, (7.3) is true everywhere on S. Therefore u, is
the potential in the wide sense of the measure u,(dy) = f.(y)m(dy). Using
the fact, which follows from Proposition 6.2, that

Hiu, = [ HiGC, p)mldy)

> sz( S Y ea(dy),

we get

(7.4) [ Guiwmn (@) S (5, Haw) < ¢, Hau).

When A T S, {(f, Hru) — 0. Hence according to the preceding proposition
u is the potential in the wide sense of u, a weak limit of {u,}. It follows from
the Fubini theorem that u has no mass outside of Sp .

ProposiTioN 7.7. There is a potential, bounded and strictly positive every-
where on S.

First we note that if f is a function of A™ and if G, f is finite everywhere, then
G, f is a potential. Indeed

¢
o > Gf = H;Gf = E. {f(i)f(xt) dt}

-0 as A T 8.

Also we note that if f is strictly positive on a neighborhood of a point x, then
Go f(x) > 0. This follows from the right continuity of paths.

Let {A,} be an open cover of S and let each A, be of compact closure. Let
f» be a function of By, strictly positive on A, . Denote by k, an upper bound
of Gof,. Then it is clear that Go( > 27"k, -f,) is what we want.

As a result of the above proposition we have

13 For instance, see p. 632 of Lo&ve’s book, Probability theory, 3rd ed., Princeton,
Van Nostrand, 1963.
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ProrosiTion 7.8. Any excessive funclion can be approximated by an in-
creasing sequence of bounded potentials.

ProposiTioN 7.9. Let u be a potential and A, an open set. Then Hqu is a
potential in the wide sense of a measure vanishing outside of A (= closure of A).

First suppose u is bounded. H ,u is a potential in the wide sense of a meas-
ure p, for u is a potential and hence H,u is so. We have to show that
u(A~) = 0, where A~ is the complement of A. Take any compact set C
of A~. Tt is enough to show that u(C) = 0. Define

w = [ GGy,

Since H 4u is harmonic on A~ and since both u; and H ,u — wu, are excessive,
uy is also harmonic on A~. By Proposition 6.2, u, is harmonic on €. There-
fore, according to Proposition 3.6, u, is harmoniec on the whole space S. Also
uy is a potential, for u; £ H,u. Hence u; = 0, which implies that u(C) = 0
by Proposition 7.4.

If u is unbounded, take an increasing sequence of bounded potentials {u.,}
which approximates w. By what we proved above, H.u, = Gu, with
ua(A~) = 0. Since u is a potential, an evaluation like (7.4) yields that H ,u
is the potential in the wide sense of a weak limit of {u,}.

By the remark to Proposition 7.5, the argument of the preceding paragraph
remains still valid for any excessive function of Ly(m) if A is of compact closure.
That is,

ProposrTioN 7.10.  Let u be an excessive function of Ly(m) and A, an open
set with compact closure. Then the conclusion of Proposition 7.9 is valid.

ProposiTioN 7.11.  If uy and ps define the same potential in the wide sense,
then M1 = M2 .14

Set w = Gu; (¢ = 1, 2). First suppose that each u; has no mass outside
of a compact set. Then, for each f of Cy

ff(y)m(dy) = lim allaf(y)ui(dy)

= lim ocf (Gof - aéoéaf)(y)#i(dy)

= limasoa{(f, Gui) — (alaf, Gus)}
= lima"wa{ (f’ u> - <aéafa u>}7
so that u; = wa. Next we will consider the general case. Let A be an open

14 This proposition implies that the family of functions G(x, ) with the index z ¢ S
separates points of S.



504 HIROSHI KUNITA AND TAKESI WATANABE

set with compact closure and B, a compact set contained in A. Then
HalGm) = B [, 6C, pmtan} + 1{ [ 6C,pman)
B B

= [aC, mta) + 1, { [ aC, yymian}.

By the previous proposition there are measures u, and uy such that
Ha{Gu) = Gua, Haf [5 G(-, y)m(dy)} = Gui and pa(A~) = wa(4™) = 0.
The restriction of u; to the set B has no mass on on A~. Hence appealing to
the first displayed special case we can conclude that us = u;over A.”°  Let po
be a weak limit of usas A 7 S. Obviously u., = pand Gue = Gua = u. But
by Proposition 7.5, 4 = Gu, . Therefore it follows from Proposition 7.4 that
Mo = . Since p, and u, depend just on u, the above argument is applied
10 we with the same {u4 , ueo} t0 show that ue = ps .

ProposiTioN 7.12.  If uis a signed measure on S and tf u = Gu is an excessive

Sunction of Lo(m), then u must be a measure and hence u ts a potential in the wide
sense.

Let u = T — u~ be the Jordan decomposition of uw and A, an open set with
compact closure. Let H,{Gu"} = Guk and H A{G;f} GuI The preceding
proposition and its proof imply that pk = u7 and that p* (resp u ) is the

unique weak limit of u (resp. uz) as A 18. Hencep™ = p,ie,u = 0.

8. Riesz decomposition of excessive functions
ProrosiTion 8.1.  Each excessive function of Lo(m) can be written uniquely
as the sum of a potential and a harmonic function.

Let A be a Borel set with compact closure and let &’ = limg1sHzu . h'is
quasi-excessive and b’ = Hzh' on S)» = {x;h'(2) < «} . Define
P =u—h onsS,

= o otherwise.

Obviously u = p + K. Tt follows that llmATs Hzp = 0on Sy and that

p = Hzp everywhere on S. Hence p’ is quasi-excessive. Set

p = reg. p, h = reg. h'.

pis a potential, for ima1s Hzp < lima1s Hz p' =0on Sy . Alsou = p + h
everywhere on S. It remains to show that A is harmonic, i.e.

(8.1) h= limATsHj’h.
But on Sy
(8.2) h £k =limgysHzi(p + h) = limaysHzh < h

15 This means that u4(B) = w(B) for each Borel subset B of A.
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Hence, everywhere on S

h £ reg. (lima;sHzh) £ limarsHzh £ B,

which proves (8.1).
To prove the uniqueness, suppose that

u=p+ k= p+ he,

where each p; is a potential and each h; is harmonic. Let B be the set of
points in S such that u is finite and such that lim ;s Hzp: = 0 (¢ = 1, 2).
Then

(8.3) hy = hy, D= P2

on B. However since m(B) = 0, (8.3) holds everywhere on S.
ProrosiTioN 8.2. If u is a potential, then

(8.4) my;sHzu =0 or o,
In particular the above limit is O on the set {x; u(z) < «}.

By the display (8.2), h = k' on Si». But h = 0, for u is a potential.
In a way similar to the proof of Proposition 8.1 we can obtain

Prorosition 8.3. Let {A,} be a decreasing sequence of Borel sets such that
the complement of each compact set contains some A, . Thenreg. (limy H 4, u)
is harmonic. M oreover

reg. (limp,o H 4, w) = limy,w Ha, %

over the sel {x; limy,,o Ha, u(z) < o},

Summing up the results in this section and the preceding section we have the
Riesz theorem cited in the section title, as follows.

TuEOREM 2. Each excessive function u of Ly(m) is decomposed uniquely in the
form

u = f G(-,y)u(dy) + (a harmonic function).
8p

Note. In Section 7 we defined a potential as an excessive function of
Lo(m) such that lims;sHzu = 0 a.e. (m). An alternative definition of a
potential, not involving the measure m, is given as follows. Let 1 be the in-
dicator function of the whole space S. A subset A of S is said to be a polar
set if there is an @-measurable set B including A such that H31 = 0. An
excessive function u is called a potential if, except on a polar set, w is finite
and lims;sHzw = 0. With this alternative definition, Proposition 8.1
and 8.2 remain still valid. We will show that these two definitions are equiva-
lent.

Making use of the fact that G is regular we can see, without difficulty,
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that a polar set is of (m) measure 0. Moreover an excessive function v is
finite except on a polar set if and only if it is so a.e. (m). To prove this
fact it is enough to show the if part, for the only if part is immediate from the
first asserted statement. Let u be an excessive function finite a.e. (m) and
let A = {x;u(z) = «}. Then H1is an excessive function vanishing out-
side of A. Since m(A) = 0, H51 = 0.

Hence it is clear that the first definition is weaker than the second one.
Conversely, suppose « is a potential in the first sense. Then, by Proposition
8.2, lims;s Hzu = 0on the set {z; u(x) < «}. Therefore it is a potential
in the second sense.

9. The Martin boundary

Following the terminology of Hunt [7], we will say a measure r, defined over
(8, ®), is a reference measure if the function

r@ = fr (dz) G(=z, +)

is strictly positive and continuous on S, allowing the value infinity. Let
L(7) be the space of (r) integrable functions and let S, = {y; rG(y) < =}.
Set
G(z,y)
z,y) =
(9.1) e )

=0 if yedS.

We will use the notation fk for [ m(dx)f(x)x(z, *).

Similarly to the proof of Proposition 7.7 it is shown that, given any excessive
funection u of Lo(m), there is a reference measure having the form r(dz) =
f(z)m(dz) such that u is in L(r) and such that rG is finite everywhere.

Suppose there is a measure r such that

if yeS,

m(A) = fr (d2)Go(z, A).

Then 7G = 1 everywhere on S and hence r is a reference measure. Also
k(z, y) = G(z, y) for every = and y.'* First we will show that G is sub-
stochastic. Denote by 1 the indicator function of 8. By (5.1), for each
positive funection g of B,

(aal, g) = (1, aGag)
- [ m(dz) - aGug(e)

16 This means that the definition of the function « under hypothesis (D) in the pre-
vious paper [9] is only a special case of the definition under hypothesis (C) there.
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= fr(dy)'aGoGag(y)

= [ r(d)-Gogw) = (1,9)

Hence a1 < 1 ae. (m). But since aG,1 is lower semi-continuous by
hypothesis (B), aGa 1 < 1 everywhere on S. Since G is substochastic and
regular, 1 is co-excessive (see the final paragraph of Section 4). On the
other hand

m(4) = [ r(dz)Go(z, A) = fA rG(y)m(dy),

so that rG = 1 a.e. (m). Moreover @ is co-excessive. Hence we have
G = liMasw aGa(r@) = limguw aGa1 = 1.

ProrosiTion 9.1. If u is an excessive function of L(r), then it is in Lo(m).
In particular, if fr(dx)u(x) = 0, then w s identically zero.

The proof is similar to that of Proposition 7.1. For each y,, since
f r(dx)G(x, yo) > 0and f r(de)u(x) < o, there is an xo such that u(xz,) <
and G(zo, yo) > 0. Hence there is some o > 0 such that Ga(xo, yo) > O.
Therefore v is (m) integrable on a neighborbood of y,. The latter half is
proved similarly.

ProrositioNn 9.2. (i) If f is in By, then fx is bounded and continuous.
(ii) If f and g are in B, and vanish outside of a compact set A, then

(92) | fu(y) — gr(y) | = ¢ X supaes | f(z) — g(x) |  for all y of S,
where ¢ is a constant depending only on A.

The continuity of fk is evident from fk(y) = Gof(y)/rG(y). The bounded-
ness is proved as follows. Let B be an open set with compact closure B and

let f vanish outside of B. Since (-, y) is () integrable and therefore since
it is in Lo(m), we have

«(,9) 2 Hau(-y9) = [

B0

s G( %y z)l-"u(dz)
(9.3) ’

- fl_ms k(+,2) {rG(2) }p, (d2)

for each y. Moreover the equality holds on the set B in the above display.
Hence

Fe(y)

]

[ 3@ 16 (o)
sup 1 7:@) [} X [ 1G()u(a.

z€BNSy

IIA
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Again using (9.3)

1> /r (dz)x(z, y) i—f_

B

{ f r (do)x(z, z)} rG(2) uy(d2)

= fm rG (2) py(dz),

so that fk is bounded.
The second statement follows from the inequality

| fr(y) — gr(y) | = {L m(de)«x(z, y)} X sup | f@) —g(2) |,

for the first term of the right side is bounded relative to y by the first statement.
Before introducing the Martin boundary relevant to the kernel x(z, y),
we will refer to the classical cases well-studied already.

I. Brownian motion case [2], [11]. X is Brownian motion on a Green
space. The measure m is chosen as the Lebesgue measure on the space.
Hypothesis (B) is satisfied by the unique co-resolvent kernel G = G. The
corresponding potential kernel is the Newtonian potential kernel. The refer-
ence measure is taken as the unit distribution at any fixed (reference) point
®o. Then, according to the symmetry of the Newtonian potential kernel,
our k-function is nothing but the K-function of Martin except with the
position of variables reversed (that is, x(z, y) = K(y, z))" and except the
definition of the value at x = y = x,."

II. Markov chain case [4], [7], [13]. By a Markov chain we here mean a
Hunt process taking values in a denumerable space with discrete topology.
X is a transient Markov chain and m(A) is the number of points in A.
Gu(z, {y})) = Gu(y, {z}). (B) is satisfied and the potential kernel of ex-

ponent « is given by G.(x, {y}). r is any measure such that rG(y) > 0
for all y.

In the above two cases the Martin boundary S’ could be characterized®
by the following properties (a)-(d). (a) S 4+ S is a compact metric space.
(b) 8 is dense and open in S + S’ and its relative topology coincides with its
original topology. (c) To each n of S’ corresponds an excessive function
«(x, n) and if n # 4, then k(x, n) # «(z, ') for some x. (d) For each 7 of

17 As to the K-function, potentialists usually have followed the original notation of
Martin. Probabilists have also used the same letter K to denote the function « defined
here. The difference looks very simple in the present stage and one will have no trouble.
But if he wants to consider more complicated kernels associated with the function K
like the ®-kernel of Naim, he will have to be more careful about the position of variables.
This is the reason why we employed the new symbol «.

18 By definition, x (o , ¢) = 0 and K(zo, o) = 1. Such difference is irrelevant to
the boundary theory of this case.

19 This means that S + S’ is uniquely determined up to homeomorphism.



MARKOV PROCESSES AND MARTIN BOUNDARIES I 509

S’ and for each sequence y of S converging to n with the topology of S + &',
k(x, y) converges to k(x, n) for all .

So far the Ascoli-Arzeld theorem has been applied to the proof of the
existence of the boundary, based on the fact that x(z, y) is uniformly bounded
and equicontinuous as a family of functions of x if & varies on a compast set
and if y varies on a set the distance of which with the compact set is positive.
But in our general case such condition may not be satisfied and hence we need
some new device to define a boundary of Martin type. Indeed we will show
there is a unique boundary having the above-stated properties (a), (b), (¢)
and having a property which is a little weaker than the property (d) (see
Theorem 3). This boundary coincides with the previous one in the classical
cases.

Let {f.} be a countable subspace of Cy such that each function f of Cy can
be uniformly approximated by a linear combination of functions in {f,}
each of which vanishes outside of a compact set (depending only on f). More-
over let p; be the metric of one-point compactification of S and let

N = S L | fa(y) — fax(y) |
2 ¥) = 2 m T i) = Fur@) ]

The set of points which are adjoined by the completion of S relative to
pr + p2, denoted by S, is said to be the Martin boundary (relative to the
kernel x(z, y)). It is easy to show that S’ has the properties (a), (b) in the
classical cases.

By definition, each f, x can be extended continuously to S 4+ S’. Hence,
for each f of Cy, fx can be so also by the preceding proposition. In other words
the pseudometric p, generates the uniformity relative to which fx is uniformly
continuous whenever f is in C,. Therefore S + S’ does not depend on the
choice of {f,}. The extension of fx (f e Cy) will be denoted by the same symbol
fx. Then, for each 1 of §', fx(n) is a positive linear functional on Cy, so that
it defines uniquely a measure on S, say «(dx, 1).

THEOREM 3. (&, y) can be extended uniquely to S X (S8 4+ S') in such a
way that, for each n fo S, k(x, n) is excessive and k(dx, n) = m(dx)x(z, 7).
Hence S’ can be characterized by the properties (a), (b), (¢) in the classical
case and, in place of (d), by the property: (d), if neS and if y (in 8) — 7
with the topology of S + S, then for each f of Co

[ m @)@, v) — [ m (@)@, ).

The proof of the latter half is a routine work, so it is omitted. Also the
uniqueness part of the former half is trivial.

We will prove the existence of «(z, 1), 1 € S, satisfying the asserted condition.
For n ¢ ', define

(94) «(z) = sup {a [ Guta, e, n)}-
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Since the integral of the right side is right continuous with respect to a, «( -, -)
is jointly measurable over 8 X (S 4+ 8’). We want to show «(z, -) is lower
semicontinuous on 8 + 8’. Indeed, if f is positive and lower semicontinuous,
then f is lower semicontinuous on S8 + §'. Hence if we set

(s, *) = a fm ()G, 2)x(z, -) (-eS)

. f G, 2)x(dz, +) (- eS8

ka(x, -) is lower semicontinuous on S + §'. However «(z, -) is the upper
envelope of k.(z, - ) at each point of S 4+ S’ because of (9.4) on 8" and because
of the fact that «(x, -) is excessive relative to © on S. Hence it was proved
that «(z, -) is lower semicontinuous on 8 + 8’. Next we prove k(dx, n) =
m(dx)x(x, 1), neS. Tt is enough to show that, for each positive function
f Of Co

(9.5) f m (dz)f(z)e(z, ) = fx on S + &,

This is true on S by definition. Since the left side is lower semicontinuous
and since the right side is continuous, the inequality “=<” is true. On the
other hand, if # ¢ S’, then

[ 1@, mym(a)
= lim sup f(x) {a fGa(x, 2)k (dz, n)} m(dx)

= lim sup | aQuf(z)x(dz, 1)

o>

> f&g}oaéaf(zn(dz,n) = fi(n),

so that (9.5) was proved. Hence we have

k(z,m) = afGa(x, 2)k(z, n)m(dz) = a fx(z,n)Ga(x, dz),

which shows that «(-, n) is quasi-excessive. Therefore the right side in the
last display increases with « and its limit (o — ) is equal to its upper en-
velope (a > 0), that is, to k(z, ), Q. E. D.

ProrosiTion 9.3. Let A be the collection of functions Nz, 1) defined on
8 X (8 4+ 8') such that (i) if y €8, then \(z, y) = «(=, y), (ii) for each 1 of
8’ N(+, 1) is excessive and (iii) for each x of S, N(x, -) is lower semicontinuous
on 8 + 8'.  Then the.extended kernel «(x, n) of the previous theorem is the upper
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envelope of A. In particular, if k(x, y) has the continuous extension K (x, q) to
8’ for each x, then k(x, n), n e S, is the regularization of «' (x, 7).

The proof is easy, so it is omitted.

10. Reduced functions

ProposiTioN 10.1. Let A be a Borel (or more generally, analytic) set of
S + S and let u be an excessive function of Lo(m). Then there is a unique
excessive function H 4 u such that, if A is open, H 4 u is defined by H aqs u and
if A is a general Borel set, H ; w coincides with inf H 5, u (A”; open and including
A) except on a set of (m) measure 0.

H 4 u is said to be the reduced function of u to the set A.

The uniqueness of H , u is obvious. The proof of the existence is analogous
to the proof of Hunt {6, Part I] for the measurability of hitting times. Define
H% v = min (n, H4nsu) for each open set A. Next define H3 v = inf H}/
(A'; open and including A) for a compact set A. Then it follows that H} u
is a Choquet capacity (i.e., right continuous and alternating of order 2 on all
compact sets) and therefore it can be extended to all analytic sets. Accord-
ing to Proposition 3.3, such extension gives the original H u for an open set A.
Hence we have for each analytic set A

(10.1) suparca Haru = Hiu = inf o4 Hyr u,

where A’ is compact and A”, open. If A is open, H’ u is G-measurable clearly.
Suppose A is compact and Ay is a sequence of open sets decreasing to A.
Then Hju = limj.o H%, u, which proves the G-measurability of H% w.
From this, the @-measurability of H u for a general analytic set A is proved
by a standard tenchnique (for example, see [5, p. 34]). Therefore according
to the second equality of (10.1), H% u is quasi-excessive. Set Hiu =
limg.. H%2 w. We will show that the regularization of the quasi-excessive
function H u is the desired function H, u. Let B be any open set including
A. Ttisevident that reg. (H3 u) < infp {reg. (H3 u)}. Now choose a func-
tion f, strictly positive everywhere on S, such that f fx)u(z)m(de) < .
Then an argument on capacitability similar to that for H} u yields that

[ 1zu@) sm ) = [ [ 155w |
Hence there is a decreasing sequence {Bj} of open sets such that
liye [ (H, 0(@)}f(@)m(d)

is equal to the right side of the above equation. From this it follows that
reg. (H3u) = limy.. Hp, u a.e. (m),

which completes the proof of Proposition 10.1.
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ProposiTioN 10.2. H,u = sup Ha u (A'; compact and included in A)

and there is an increasing sequence of compact sels {Ay} such that Ay < A and
such that H 4y w — H 4 u.

In a way similar to the proof of the preceding proposition one can find a
sequence {A;} for which the latter half of the proposition is true a.e. (m).
However since limy.. H 4, u is excessive, it must be equal to H, u every-
where on S. The former half is immediate from the latter half.

We will study some properties of the reduced functions to subsets of the
boundary.

ProposiTioN 10.3. (i) If A is a subset of S, then H 4 u is harmondc. (ii)
If A and B are subsets of S and if B includes A, then

HAHBH = HBHA’U/ = HA’U/.

If A is compact, the first assertion follows from Proposition 8.3. For a
general (analytic) set A, it is enough to apply the latter half of the preceding
proposition. As for the assertion (ii), the general case is again reduced to the
case of compact sets. Moreover it is enough to prove that Hp H,u = H 4 u,
because then H 4 H, v = H, u and hence

HAHB’U/ g HAHA'I,I/ = HAug HAHB’M,.

Let A and B be compact subsets of 8’ and 4 and B, their open neighborhoods
in 8§ + 8. Assuming 4 B, we have Hpns Hins w = Hzns u. Set
S* = {z;ulx) < »}. Since 8*isa polar set and since Hinsu | Hau (4 | A)
on S* we have

HpsHiu = Hiu

on S*. By Proposition 8.3, Hiu = reg. (Hsu) = H,u on 8% so that
HpsHiw = H pos Hyu = Hyu. Letting B | B, we have Hs Hiu=H,u
onS* Hence HyH,u = H,u.

ProrosiTion 10.4. Let A be a Borel set of 8'. Then H, x(x, 1) is jointly
measurable on 8 X (8 + 8') in the following sense: For each pair of finite
measures v on S and u on S + S, there is a jointly Borel measurable function
on S X (8 + 8') which coincides with H 4 x(x, 1) except on a set of the product
(v X u) measure 0. Moreover

102 m{[ Comuanf = [ EoC 0l .

The first statement is reduced to showing the joint measurability of
H% k(x, n). H%«k(zx, 1) is jointly measurable for an open set A and hence so
for a compact set A. From this, the usual argument on capacitability yields
the joint measurability of H% k(x, ) for each analytic set. The proof of the
latter half is also a routine.
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11. The Martin representation of excessive functions

Let Sy be the set of points 5 of S’ for which there is an (r) integrable exces-
sive function u such that H, u is not identically zero and let S; = Spn S, .

This section is devoted to the proof of the following Martin representation
theorem.

THEOREM 4. The class of excessive functions u of L(r) is in one-one cor-
respondence with the class of finite (Radon) measures u on Sy + S through the
integral formula

(11.1) u = LH,K(-,n)u (dn).

The total mass of u lies on S1 if and only if u is harmonic.

The formula (11.1) is said to be the canonical representation of w and the
measure u, the canonical measure.

To prove the theorem we will prepare a series of propositions like those
in the classical cases.

Proposrrion 11.1.  Let {u,} be a sequence of measures on S + S’ such that
un(S + 8') is bounded and let u be a weak limit of {u.}. If

Un = fs+s' K( ) 7])“1& (dﬂ)

1s dominated by a function of Lo(m) and if u, converges a.e. (m) to a function u,
then oGy u increases with a and

reg. u = limgsw aGau = fﬁs, k(- m)u (dn).

The proof is easy, recalling that {f, «(:, 7)) = fk(») is continuous on
S + §' for each f of Cy .

Proposrrion 11.2. If A is a Borel set of S, then there is a measure u on A
such that

Hau= LK(',n)u (dn)

u(4) = fr (dz)H s u(z).

A measure u on a Borel subset 4 of S + 8’ is identified with the measure on
the whole space which coincides with 4 on A and vanishes outside of A.
Hence, for example, the expression that u, on 4, converges weakly to a measure
on A means that the sequence of the corresponding measures on the whole

space converges weakly to a measure on the whole space vanishing outside
of A.
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If A is an open set with compact closure 4 in S, then
HAu =Hjyu = LG( ’7))”', (dﬂ),

by Proposition 7.10. Since u is supposed to be (r) integrable, u” has no mass
outside of S,. Therefore we have

Bow= [ kConn (@), w(dn) = (G (dn)

W) = [ 6w ) = [ 1 (@) Hauo).

If A is any open set of S + S, choose a sequence {A,} of open sets with com-
pact closure in S increasingto A nS. Let u, be the measure on A4, correspond-
ing to H,, u in the above-stated way. It is clear that {u,} has a weak
limit x and that u is a measure on A, the closure of 4 in 8§ + S'. Since
H4,w — H, u, by Proposition 11.1 we have

mu=Lunwu%x

Moreover since [ r(dz)H 4, u(z) is the total mass of u, , its limit is equal to
the total mass of u. Hence

w(d) = fr (dw) 1 u().

If A is a compact subset of §’, choose a sequence {A,} of open setsin S + S’
decreasing to A. Let u, be the measure on A, corresponding to H 4, u and
let u be a weak limit of {u,}. Similarly to the preceding case, u is a measure
on A and

Baw= [ w(-,mu (dn),

w(4) = [+ (d2) (limpee By ul@)).

But we have already shown (see the proof of Proposition 10.3) that
lim,,..wHA”u = Hju = HA'II/

on the set §“ = {x; u(x) < »}. Sincer(8*) = 0, we get
w(d) = fr (dz)H 4 u(z).

Finally if A is any Borel set of §’, choose an increasing sequence {A,}
of compact sets of 8" such that A, < A and such that H,, v — Hyu. For
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convenience, let A, denote the empty set. Define, for n = 1,
Up = Hyyu — Hy ,u onS*
= o on S*.

In the same way as in Proposition 8.1 it follows that the regularization u, of

r . .
U, is harmonic and that H,, u = Hy,_, w + u. everwhere on S. Also we
have

Hyun = Hyy Hayu — Hyy Hyy yu = Hoyu — Hay ,u = u, onS*

and hence H,, u, = u, everywhere on S. Therefore there is a measure
pn on A, such that

tn = [ ko @), w4 = [ (@),

Define a measure u on A by Z un , Where each u, is regarded as a measure
on A with the convention u,(A — A,) = 0. Then

Hiu = 3 un =LK(',17){ZM,. (dn)} = LK(',n)u(dn),

w(d) = T mlda) = [ @) {Z w@)} = [ r (@) Hav,

which completes the proof of the proposition.

An excessive function « is said to be extreme (or minimal) if, whenever
u = U1 + up with u; and u. both excessive, each u; is a constant multiple of u.
By the uniqueness of the measure determining a potential it follows that
if yisin S, G(-, y) is extreme.”® Therefore if y is a point of Sy, k(-, ¥) is an
extreme excessive function, not identically zero.

Let 1 be a point of §” and u, an excessive function of L(r). By Proposition
11.2; we have

(11.2) Hapu = {f 7 (da:)Hmu(x)} X k(- ,m),

(113) Hmnu = HyHipu = {fT (dx)H‘,,,u(x)} X Higy k().

Therefore if 7 is a point of 87, (-, ) is not identically zero and
(11'4) K( *y "7) = H(ﬂ)"( ‘y 77)'
If Hy,y «(-,n) is not identically zero, then

(11.5) [+ @) B, =1,

20 Actually, G(-, y) is extreme even for y ¢ S — Sp . See Proposition 12.7.
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which follows from (11.3). Conversely, if (11.5) is satisfied, it is obvious
that the point n belongs to S;. Moreover, as a result of (11.2) and (11.4),
it follows that (-, n) is extreme if 5 ¢ S1 (see [11, p. 155], [13, p. 89]). Thus
we have proved

ProrosiTion 11.3.

M [r @ B =1 i nesi
=0 if neS — 8.
(ii) IfneSi, then (11.4) holds. Moreover, (-, 1) is extreme and harmonic.

The proofs of the following propositions are quite similar to those for the
classical cases and will be omitted.

ProrosiTion 11.4 ([11, §4, Lemma 1], [13, Lemma 4.4]). Let u be extreme
and u, a finite measure on a Borel subset A of 8 + 8 satisfying

w(d) = [ (o) > 02
If u is expressed by

u = LK(° 7”)/‘ (d"?)y

then the total mass of u concentrates on a point of A.

Proposition 11.5 ([11, §4, Lemma 5], [13, Lemma 4.7)]. Letn be a p~-
of 81 + 81 and A, a Borel subset of S'. Then

Hak(-,n) =0 if neA.

Prorosrrion 11.6 ({11, §4, Theorem II], {13, Theorem 4.5]). The set
S — 8; is an F,-set.

Proposition 11.7 ([11, §4, Lemma 2], [13, Lemma 3.9]). If u is an exces-
sive function of L(r), then Hg_g,» u = 0.

Using the above-obtained propositions, Theorem 4 is proved in the same way
as for the classical cases ([11, §4, Theorem IIT], [13, pp. 92-93)]. In par-
ticular, if A is a Borel subset of S, then

(18)  Haw= [ (HasCom)lutan) = [ s, u (an),

81481’
(11.7) p(AnS) = fr (dz)H s u(x),

2 Since [ r(dz)x(x, ) < 1 for each n of 8 -+ &', this condition means that
[ rdax(, 2) =1

on a set of (u) measure 0. This fact is used in the proof.
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which shows how the canonical measure is determined explicitly by u for the
sets on the boundary.

Note. One can give a characterization of S; (not involving the reduced
operator H,) as follows. S is the set of points 5 of 8" such that «(-, 4) is
extreme and harmonic and such that f r(de)k(-, ) = 1. This fact follows
from Theorem 4 and Proposition 11.4.

12. Terminal distributions of h-path processes
Let h be an excessive function and let 8" = {x; 0 < h(z) < «}. Set

h _ L
(12.1) Hil 4) = 505

= §(z, A)e" if zeX,

where 8(, - ) denotes the unit distribution at the point z. In [10] we proved
there is a standard process X" (called the h-path process) such that

Pz, e A} = Hi(z, A).

Efh(z);zee A} if zeS

Moreover for each z of 8", (F) stopping time r and A e %, we have

(12.2) Pi(A) = E.{h(z.); A}.

1
h(z)
If h = 1, then X* = X. For this reason the original process is sometimes
called the 1-path process. If h = «k(-, n), neS + S, then we will use the
superfix # for the superfix » such as X" and the word 5-path process for the
k( -, n)-path process.” It should be noted that the h-path transform may not
preserve hypotheses (As) and (A7) in general.

Suppose h is an excessive function of L(r). Then by Theorem 4, & has the
canonical representation

(123) h = L+S’ K( * ﬂ)ﬂh (dﬂ),

where the canonical measure " is regarded as a measure over S + S with
the usual convention that 4" has no mass outside of Sy + 9.

For each w, let I(w) be the set of limit points (in S + 8') of z,(w) from the
left at the life time ¢{. Hypothesis (Ag) is equivalent to the statement that
I(w) is either a point of S or a subset of ', a.e. (P,) for each z ¢ S. For each
w such that I(w) is a point of S 4+ §’, we will write

T (w) = limgqp 2o(w).
We will say the excessive function h of L(r) has the property (D) if x;_

22 We also make the same convention for h = G(-, y), y ¢ S.
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exists a.e. (PZ) and if

(12.4) Pila-e4) = ;1 )/ «(z, )i (dn),

for each z of S"* and for each Borel subset A of S + 8'. Ph{z,_e A} is said
to be the terminal distribution of the h-paths. Since, for each 5 of S, + Si,
J r(dx)k(x,n) = 1, the canonical measure u" of the excessive function & having
the property (D) is given by

J(A) = fr (de)h(z) P (s € A},

Doob [3] discovered that, in the case of Brownian motion, every excessive
function of L(r) has the property (D). The same result for Markov chains
was proved in [7], [8]. In the following we will generalize the theorem of
Doob (see Theorem 5) and also obtain several related results.

ProposiTION 12.1.  For each x of S* and for each A of &, we have
(125) PAA) = s [ e mPHAA (an).
h(z) Js+s'

The value of P1(A) at « € 8" is trrelevant to the value of PL(A) on the left side.

For each A of &, and z of S”, we have formally

Pi(A) = h() E.{h(x:); A}

1

= ) Jer Bote@er); A} (dn)

1 CEofx(me,m); A}
= W@ Jsre BT ——K—@—n)——n" (dn)

1 )
= fsw k(x, n) PR(A) " (dn).

The above evaluation is justified by the following observations. Ifx(z,1) = 0,
then E {x(x:, n); A} = 0 and «(z, n)P2(A) = 0. Since z ¢ S,

p'n; k (z, ) = w} = 0.

Therefore E.{x(x:, n); A} = k(x, 7)PI(A) for almost all  relative to u".
Hence (12.5) is true for each A of F;,. But since the both sides of (12.5) are
probability measures over &, (12.5) is true over &.

ProrosiTioN 12.2. Let A and B be open sets of S whose closures are disjoint.
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Then if h is a potential, we have
(12.6) limn_,wHBHA-“HBHAh(w) =0

-
n

at each point x of finiteness of h.

Denote by h., the left side of (12.6). By Proposition 7.5 and 7.9, reg. h, is
a potential of a measure vanishing outside of A (= closure of 4 in S). In
the same way, reg. h» is also a potential of a measure vanishing outside of
B. Hence reg. h, = 0 by the uniqueness of the potential measure, so that
heo = Oa.e.(m). Now let A denote the set of w’s such that the path x;(w)
intersects with both 4 and B infinitely often. Obviously A ¢F and

fw; 0,weA} = Anf{t <} TA (t10).
Therefore
Eu{Ph, (M)} = PHw;0,weA} T Pi(A),

that is, PY(A) is excessive relative to X", On the other hand an evaluation
based on (12.2) leads to the fact that PX(A) = he(x)/h(z) for each z of S".
Hence, for each z of S,

PHA) = limesw aGh PE(A)
. o heo
= llma-»oo E(_x:')' Ga {h * —}7} (x)
= 0.

If h(xz) = 0, obviously h.(z) = 0.
As a result of the preceding proposition and its proof we have

PropostTioN 12.3. If h is a potential, then X" is a Hunt process.

ProrosiTioN 12.4. If h is a potential in the wide sense, then ¢ s finile a.e.
(PY. In particular, X" is transient.

Let h = Gu. If xS the assertion is trivial by definition (see (12.1)).
For each x of S"* we have

Eie™) =1 — aGa(x, S)

= E(lx_) [h(x) —a f Go(z, 2)h(2)m (dz)]

[ Gete, ) ()
[ 6@, wu @y

which proves that Ph{ < «} = 1.

—1 (e —0),
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ProposiTION 12.5. If yeSp, then 21— = y a.e® (PY) for each x of S'.
Let A be a compact set of S. By (12.2) we have
HziG(x,y)
Y — )

whence I(w) is included in S a.e. (P%). Since X" is a transient Hunt process,
x;— exists a.e. (P%). Let A be an open neighborhood of ¥ and B, an open set
of positive distance with A. Define the sequence of (F) stopping times by

71 = the hitting time for 4
o1 = the first time hitting B after =,

T2

the first time hitting A after o .

o2, T3, o3, +-- are defined successively. Suppose the statement of the
proposition is false. Then it follows that there is a pair of sets A, B such that,
for some n > 0 and for some z of 8%, Pi{o, < { £ 7ot} > 0. But using the
fact that

v _ HiG(z,y) _
Pin < ¢} = 0@y 1,
we have
Plon < § man < §} = Ee{Pg, (11 < ¢); 00 < ¢}
= Pg{an < f},

which contradicts
0 < Pion < ¢ = mapt} = Pilon < ¢} — Pilon < &, mann < ¢}
Prorosition 12.6. If h is a potential of L(r), h has the property (D).

In this case, the total mass of u* concentrates on S;. Choose the set
{w; x;_ exists and 2y e A} as A in (12.5). According to the preceding propo-
sition, if 1 €S;, then

P{x,_ exists and x;— e A} = 8(n, A),
so that

h . 1 B
P{x;- exists and ;- ¢ A} = 1) Lx(a:,n)u (dn).

In particular, setting 4 = S + 8, Pz, exists} = 1.
ProrosiTion 12.7. If yeS — Sp, then G(-, y) is extreme and harmonic.

By Proposition 6.2, H,, G(-, y) = G(-,y). Moreover, as in the proof of
Proposition 11.2 one can show that H,u = const. X G(-, y) for each
excessive funection u of Ly(m). From these two formulas it follows that G(-, y)

23 See footnote 22.
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is extreme. Since G/(-, y) is not a potential by assumption, it must be
harmonic by Proposition 8.1.

Let y be a point of S, — S;. According to the preceding proposition and
the note of Section 11, there is a point n of S: such that «(-, y) = «(-, 7).
Such correspondence is one-one, because the function « separates S, and S’
respectively. We will write n = 7 (y).

ProposiTion 12.8. (8, — 8i) is an analytic set of S’

A subset of S is said to be a K,-set if it is a countable union of compact sets.
A K -set is defined as a countable intersection of K,-sets. Similarly a Kys,-
set is defined as a countable union of K,s-sets. Let 4, be a sequence of open
sets with compact closure increasing to 8. That y is a point of S — Spis
equivalent to that there are some f of Cy and some positive integer p such that

fm (dz)f(z)Hz,G(z,y) > 1/p for every m.

Noting that the left side is lower semicontinuous relative to y, we can conclude
that 8 — Spis a K,s-set. Since S, is open, S, — 81 = S, n (S — Sp) is also
a Kuo-set. On the other hand, 7 is a continuous mapping, because y, —
y(in 8, — 8;) implies that

Jelw(ya)} = fx(yn) — fi(y) = filn(y)}

and hence that =(y,) — =(y) (in 8’). Therefore the image (S, — Si)
is an analytic set of S’

ProrositioNn 12.9. Let 7 be a point of Si. (1) If 9 is not a point of
7 (S, — 81), then k( -, n) has the property (D) and hence X" is a transient Hunt
process. (ii) If n is a point of ©(S, — 81), then X" is still transient but not a
Hunt process (and hence k( -, 1) does not have the property (D)). More precisely,
I(w) consists of the two points {n, = ()} a.e. (PL) for each x of S".

We will only give the proof of (ii): a similar argument is applicable to
the proof of (i).

Lety = = ‘() and let z be any point of 8. Since X" = X”, X"is transient
by Proposition 12.4. Since (-, n) is harmonie, P3{r(A) < ¢} = 1 for each
compact set A. Hence I(w) intersects with 8" a.e. (P}). Let B be a closed
set of 8’ not including n and C, an open neighborhood of Bin 8 4+ §’. Then

Pi{l(w) n B 5 0} < Pi{r(Cn 8) < ¢}

— Hens K(xy 77)
k(x, 1)

When C | B, Hens k(, 7) — Hp k(x,n). Since Hz k(z, ) = 0 by Proposition
115, (w) n 8" = {n} a.e. (PD).
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Next let A be an open set with compact closure and B, a compact neighbor-
hoodof A. IfyeA, Hak(-,y) = (-, y). Also since (-, y) is harmonic,
HzsH (-, y) = Hzx(-, y) = k(+, y). Hence we have

limpsew Hs H,4 -+ Hsg H 4 K(x; y) = K(Q), y):

n

which means that y e [(w) a.e. (P2).
Finally we will prove that, for almost all w (P3), [(w) includes no points of
S — {y}. It is enough to show that

(12.7) Pl{l(w) intersects with both 8 — {y} and S’} = 0.

Take a pair of sets A, B of the preceding paragraph and suppose the point y
does not belong to A, the closure of A. By Proposition 7.10 we have

Har(oyy) = [ GC-, 2)u (d)

= [ GG om@ + [ GG,

An(S—S
Assume the integral over A n (S — Sp) in the above display, say u, is not
identically zero. Then w is harmonic and dominated by an extreme harmonic
function (-, y). Hence u is a constant (# 0) multiple of (-, y¥), which
contradicts the uniqueness of the measure of the potential in the wide sense
because of y ¢ A. Therefore u must vanish, that is, we have proved that
H,«(-,y) is a potential. Applying Proposition 12.2 to h = H 4 «(-, y) (also
A — B,B — A), we have

limn_,eoHAHE o HAH§HA K(CI?, y) = 0’

n
which implies (12.7).

ProposiTioN 12.10. For each excessive function h of L(r), X" is transient.

We already proved that X" is transient for every » of S; + S:. Hence our
assertion is easily derived from the formula (12.5).

TueoreMm 5. Each excessive function of L(r) has the property (D) if and
only if Sp D S,. In particular, if S = Sp, the above statement is true for any
reference measure.

Suppose Sp D 8,. Then S, = 8;, so that for each 5 of S; + 81, «(+, n)
has the property (D). Hence, similarly to the proof of Proposition 12.6, it
follows that each excessive function of L(r) has the property (D). Next
suppose Sp does not include S,. Then S, — Sy # 0. Whenye S, — 81,
k(+,y) = (-, 7(y)) does not have the property (D) by Proposition 12.9.



MARKOV PROCESSES AND MARTIN BOUNDARIES I 523

ProposiTION 12.11. Let h be an excessive function of L(r) such that X" is a
Hunt process. Then h has the property (D).

Since 7 (8, — S:) is an analytic set of S, it is measurable relative to the ca-
nonical measure u" of h. Hence it is enough to show that u*{= (S, — 8;)} = 0.
Take

A = {w; [(w) intersects with both S and S'}.
Then by the assumption and Proposition 12.9, we have

1

— h —
0= Pe(d) = 15 | o,

) «(z, n)u" (dn),

whence

WHn(s, = 80} = [ 1 (@h@)Pia) = o.

13. Conditions for 8§ = S,

Let h be an excessive function of Ly(m). Then there is a reference measure r
such that h is (r) integrable. Hence, according to Proposition 12.10, L" is
transient. Now suppose 8 = Sp. Then & has the property (D) relative to
the above introduced r and hence X" is a Hunt process. Next suppose S 5 Sp .
Take any point yo of S — Sp. We may assume yoeS,. According to
Proposition 12.9, X*° is not a Hunt process. Hence we have proved

THEOREM 6. S = Sp if and only if, for each excessive function h of Yo(m),
X" is a Hunt process.

PropostrioN 13.1.* A sufficient condition for S = Sy is that the co-resolvent
kernel G s the resolvent kernel of a standard process X.

Let A be an open set of S and H ,(x, B), the harmonic measure to the set 4
relative to X. Like [6, Part ITI], we have

(13.1) [ Ha@ a6 w = [ 6@ R, @)
for all z, y of S. Suppose S £ Sz. Then for a point y of S — S and for

each compact set A, Hz G(-, y) = G(-, y) by Proposition 12.7. Therefore
we have for each f of By

(132) [ m (@) @G y) = [[ m (@)f@)6(, ) Axy, de).
But the left side is equal to Ey{f o f(x,) dt} and the right side, to
B |7 f(x:) dt}. Hence (13.2) is impossible if we choose an A containing y

as an interior point and an f strictly positive on A.

24 This is a revised form of an incorrect statement of the previous paper [9, footnote 4].
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ProrositioNn 13.2. (i) If h is excessive and bounded on each compact set,
then X" is a Hunt process. (ii) If every harmonic function of Lo(m) is bounded
on each compact set, then S = Sp .

Let A be an open set with compact closure and B, a compact neighborhood
of A. Since h is bounded on A by the assumption, we have

HzH,h £ const. X P{r(B) + 7(4, 6.5 w) < {}.

When B 1T 8§, the right side goes to 0 by hypotheses (Ag¢), (A7). Hence H, his
a potential. Applying Proposition 12.2 to H, h in place of h (also, A — B,
B — A), we have

limn_,wHAHf; v HAHf;HAh = O,

n

which implies that X" is a Hunt process.

For the proof of (ii), suppose S % Sp. Then by Theorem 6, X*,y ¢ S — S,
is not a Hunt process. Hence the harmonic function G(-, y) cannot be
bounded on compact sets.

14. Notes on hypotheses (A;) and (A;)

So far we have assumed that the basic process is a transient Hunt process
satisfying hypothesis (B). In this section we will show that the phrase
transtent Hunt can be replaced by the word standard, namely, that hypotheses
(Ag) and (A7) can be removed. To see this we first note that hypotheses
(As), (A7) were used only in the proof of Proposition 3.6.° But as is shown
easily Proposition 3.6 remains still valid under the following, a little weaker
than (As) and (Ar), hypotheses:

(As)’ TUnder the condition { < o, each path z,(w) except on a set of
(P.) measure 0 has at most one limit point in S from the left at ¢ = ¢. (In
other words, the other possible limit point is A, that is, the point at infinity.)*

(A7)’ For each compact set 4, r(4) < « a.e. (P,).

For each w, let I(w) be the set of limit points” (in S + {A}) of z,(w) from
the left at ¢t = {. Using this notation, (As)’ is equivalent to

P.{l(w)n S = at mostonepoint,or = o} =1 for all x of S.

The purpose of this section is to prove

TuaroreMm 7. If X s a standard process satisfying hypothesis (B), then hy-

26 We also used these hypotheses in Proposition 13.2. But since the proposition is
independent of the other results, we ignore it.

26 For instance, (Ag)’ is satisfied if X is a standard process such that the resolvent

kernel G.(z, A) maps C, into C. But this is not our case.
27 This I(w) is different from that of Section 12.
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potheses (Ag)’ and (A7) are satisfied. Hence all the results™ of the preceding
sections remain tll valid without hypotheses (Ag) and (Ay).

(A7) is obvious, for E,{r(A)} = Go(z, A) < « by (B).

To prove (As)’ we will use a result on reversed processes (Proposition 14.1),
omitting the proof.

Choose a reference probability measure r such that r(dz) = g(x)m(dx)
with g strictly positive everywhere on S and such that G is finite every-
where (see Section 9 for the existence of such 7). Define

(141) POC) = [ 1 ()P,

142) GO = s [ (@) (6@ 1(@)Gula, ).

Using hypothesis (B) and the properties of the above-chosen r, we can easily
show that GY’(y, A) is a regular substochastic resolvent kernel which maps
B, into C. Therefore there is a countable subcollection {f,} of positive func-
tions of Cy such that GY’f, separates points of S.

Next we define the reversed path z;_,(w). If0 <t = ¢ < , xr_; has the
obvious meaning. Ift > {or{ = «, x;_; = A by definition. Then we can
prove

ProrosiTIoN 14.1.%° 2., 0 < t < =, is a Markov process with stationary
transition probabilities as a stochastic process defined over the probability space
(W, 5, P™). Moreover the resolvent kernel of z_. is the kernel Q3P (y, A) de-
fined by (14.2). That is

éy)f(x{—t) = f e—m E(r){d?;--s—t | Le—u s U = t} ds
0
a.e. (P") for each t > 0.

As a result of the proposition it follows that the process y; = ¢ *'G"f(xc—,)
is a supermartingale is f is positive. Therefore, for the previously defined f, ,
yr = GV f.(x.) gives a bounded and separable supermartingale and
hence lim;,o yt (w) exists a.e. (P"). Take any w such that {(w) < « and
such that lim,, y7 (w) exists for all n. Suppose y, ¥ are points of I(w) n S.
Since G, is continuous, we have

lim,o yi (w) = lim,,o e"“‘é(a’)f,,(x;_t)
= G0f.(y)
= G0f.).
But since Gf,')fn ,m=1 2 --. separates points of S, we have y = y'.

28 Strictly speaking, except Proposition 13.2. See footnote 25.

20 The proof will be given, in a more general form, in the following paper by the
authors: On certain reversed processes and their applications to potential theory, to ap-
in J. Math. Mech., 1966 Also see M. Nagasawa, Time reversions of Markov processes,
Nagoya Math. J., vol. 24 (1964), pp. 177-204.
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Let A = {w; l(w) n 8 = at most one point, or { = «}. We have proved
P"(A) = 1. Hence P,(A) = 1 for almost all z relative to r. From the
definition of r, P,(A) = 1 a.a. x relative to m. But in the same way as in the
proof of Proposition 12.2 it is shown that P,(A) is an excessive function.
Therefore P,(A) = 1 for all z of S.
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