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The results of this paper were announced in [9]: it is shown how the theory
of Martin boundaries can be carried out for certain general types of Markov
processes including Brownian motions and Markov chains for which the
theory was established by several authors [4], [7], [11], [13]. The method
employed here is, essentially, Martin’s method translated into probability
languages. See also [11], [13] for the ideas involved.
The class of continuous parameter Markov processes for which there is a

potential kernel (of function type) will be discussed in Part I and certain
classes of continuous parameter processes proceeding in simple lumps and
discrete parameter processes, in Part II.

1. Outline of Part
Basic notions on Markov processes are defined in Section 2. Terminology

and notation are taken mainly from [1] and [5]. Several known facts on
excessive functions as well as several new results on superharmonic functions
and harmonic functions are collected in Section 3 and basic facts on resolvent
kernels, in Section 4. These sections constitute the preliminary part.

In Sections 5-8 we generalize results of Hunt [6, Part III, Sections 17, 18]
by a method different from Hunt’s.

Let X be a transient Hunt process (see Section 2 for the definition) taking
values in a locally compact separable space S such that

Go(x, A; X) Jo P{xt e A dt

is bounded in x e S if A is compact. Brownian motion Z on a Green space R
(for instance, any bounded domain of Euclidean n-space) is such a process.
The Newtonian potential kernel (or the Green function) of R, denoted by
G(x, y; Z), is associated with Z in the following way;

(1.1) Go(x,A;Z) fG(x,y;Z) dy,

where dy is the volume element of R. The problem of determining a po-
tential kernel (of function type) G(x, y; X) associated with a general process
X is discussed in Section 5. It will be natural that the first requirement is to
keep the relation (1.1) with X and a measure m over S in place of Z and dy;

(1.2) Go(x,A; X) / G(x,,y; X)m (dy).
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This condition determines G(x, y; X) uniquely up to a set of (m) measure 0
for each x. The crucial point is to eliminate arbitrariness of measure 0. We
will denote by G,(x, A; X) the resolvent kernel of X and assume the existence
of the co-resolvent kernel ,(x, A;X) defined by the relation

fB G,(x, A; X)n (dx) f ,(y, B; X)m (dy),

where a is any positive number and A and B are any Borel sets of S with
compact closure. The definition of the potential kernel involves the co-
resolvent kernel as well as the resolvent kernel and the measure m.
G(x, y; X) is said to be a potential kernel (of function type) if it is excessive
in x for. each y and co-excessive in y for each x and if (1.2) and

(0(y, A; X) f G(x, y; X)m (dx)

are satisfied, where 0(y, A; X) lim,0 ,(y, A; X). Such a kernel, if
it exists, is unique (with arbitrariness of (m) measure 0 eliminated). An
obvious necessary condition for the existence of such kernel G(x, y; X) is
that Go(x, A; X) and (0(x, A; X) are absolutely continuous with respect to
re(A) for each x. The first key result (Theorem 1) is that this condition is
also sufficient.

Sections 6-8 are devoted to a potential theory based on the kernel
G(x, y; X) under hypothesis (B) involving some regularity properties
of the co-resolvent kernel. But since the potential theory itself is not our
purpose, we will only give results enough to cover the application to Martin
boundaries. A new phenomenon in the potential theory based on G(x, y; X)
is that G(x, y; X) may not be a potential as a function of x for some y. We will
denote by Sp the set of y’s for which G(., y; X) is a potential. Conditions
for S Sp are studied in Section 13. In the Brownian motion case, the
resolvent kernel of Z is also the unique co-resolvent kernel (relative to
the Lebesgue measure of R) satisfying hypothesis (B), and the corresponding
potential kernel turns out to be the Newtonian potential kernel.
The Martin boundary is introduced in Section 9. Let r be a measure de-

fined over S such that f r(dx)G(x, y; X) is continuous in y, taking values
in (0, oo ]. The (generalized) Martin potential kernel associated with
G(x, y; X) and with r is defined by

(x, y; X) G(x, y; X)
if f r (dx)G(x, y; X) <

r (dx)G(x, y; X)

0 if f r (dx)G(x, y; X)

Obviously this generalizes the (usual) Martin potential kernel associated
with the Newtonian potential kernel G(x, y; Z) and with a reference point x0
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which is defined by
G(x,y;Z)

if y x0K(x, y; Z)
G(xo, y; Z)

0 if y x0.

K(x, y; X) induces a boundary S’ of S in a way similar to the way that K(x, y; Z)
induces the Martin boundary R’ of R. The second key result of this paper
(Theorem 3) is that (x, y; X) can be extended uniquely in a certain sense
from S X S to S X (S S’). The method of Martin [11] for (x, y; Z) can
not be applied to the general case.

Let A be a Borel set of S + S’. The reduced function H u of an excessive
function u is defined in Section 10. We will denote by
of S’ for which l,I (x, 7; X) is not identically zero and by $1 the set of points
y of Se for which f r(dx)G(x, y; X) is finite. The (generalized) Martin
representation theorm of excessive functions is proved in Section 11 which
asserts that each (r) integrable excessive function u has the unique integral
representation

u X) (d,).
1--S1

This is the analogue of the (usual) Martin representation theorem of positive
superharmonic functions on R;

f (., z) (d),(1.3) h ?;

where h is a positive superharmonic function finite at x0 and R’I is the set of
minimal boundary points.
Doob [3] introduced Brownian h-path process Zh for each positive super-

harmonic function h of R and proved a theorem which gives the measure

t of (1.3) a probabilistic interpretation in terms of Z. In Section 12 we will
generalize the theorem to a general process X as follows" Doob’s theorem is
true if and only if every point y such that f r(dx)G(x, y; X) is finite belongs
to Se. This conclusion is closely connected with the following ’result oi
Section 13" S Se if and only if any h-path process of X is a transient Hunt
process.
Throughout Sections 2-13 we assume that the basic process X is a transient

Hunt process, namely, a standard process satisfying hypotheses (A) and
(A) of Section 2. But hypotheses (A) and (A) can be removed if X is
a standard process satisfying hypothesis (B). We have chosen to prove this
fact in the final section rather than to do without these hypotheses from the
beginning, for the following two reasons. One is that we did not like to make
too complicated the organization of the paper. The second reason is that the

Actually, Martin defined (x, y; Z) 1 if x y x0 See footnote 18.
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argument employed to remove hypotheses (A6) and (AT) is more naturally
connected with a quite different approach to the whole material of this
paper which we will discuss in another place (see footnote 29).

2. Markov processes
Let S be a locally compact, noncompact, separable Hausdorff space and A,

a point adjoined to S as the point at infinity. We will denote by 6 the a-field
of all Borel subsets of S and by (X the z-field consisting of all the subsets of S
which, for each finite measure t defined on (S, (B), are in the completed a-field
of 6t relative to t. Let w denote a function from [0, o to S u {A}, xt
xt(w) w(t) the valueattand i’(w) inf {t >_- O, xt(w) A}. Thesample
space for our process will be taken as the set W of all w’s which are right con-
tinuous, have the left-hand limits in S for
fort >- i’. Theset W is closed under the shift operation Ot defined by (Otw)(s)

w(t + s), s, >- O. f is the a-field in W generated by sets {xt A} for each
>- 0 and for each A of 6t. Obviously i* is if-measurable, it is the a-field

in Wt {" > t} generated by sets {x8 e A, > t} for each s (0 -<_ s _<_ t) and
for each A of . For each x of S, let P,(. denote a probability measure over
(W, i). For an if-measurable function 9 and if-measurable set A, we write
E,(; A) for f, (w)P,(dw).
The system X (W, xt, , it, f, P, x S) is called a right continuous

(stationary) Markov process if it satisfies the following conditions" (A) For
each A of f, P,(A) is a-measurable; (A) for each x of S, Xo(W) x a. e. (P,);
(Aa) for each x of S, -> 0, A in it and bounded f-measurable function

E,{0(0t w); h} E{E(q); h}.

A random time (= nonnegative function defined on W allowing the value
infinity) r is said to be an (fi;) stopping time if {r < < ’} e it for all _>_ 0.
For an (f) stopping time r, let f+ denote the a-field formed by all the sets
hinW. {i’> r}suchthatAeiandAn{r < <i’}e’Stforallt >= 0.
A right continuous Markov process X is said to be standard if the following

conditions are satisfied" (A) For each x of S, (f) stopping time r, h in i+
and bounded fi-measurable function

E,{o(O, w);A}

and (A) if {r,} is any increasing sequence of (f) stopping times and if
r lim,+ r,, then for each x, x,, -+ x a.e. (P,) on W,.

Let A be a subset of S. The nonnegative hitting time r(A) and positive
hitting time r+(A) are defined as follows;

r(A) inf {t >= 0, xteA} and r+(A) inf {t > 0, xteA}.

If there is no satisfying the condition in the parentheses, we set

If there are no such t, then we set
Almost everywhere relative to P.
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r(A) (resp. r+(A) . Hereafter such convention will be made without
special mention whenever a random time is defined by some specified con-
dition. If A is open, r(A) and r+(A) are equal and they define an ()
stopping time. But in order to treat hitting times of more general sets, we
must introduce a new system of z-fields which is slightly larger than the
system (, t). For each finite measure t on (S, 61), define

P’( fs P( ) (dx),

which gives again a measure over (W, ). Let be the intersection, over
all t, of the (P,) completed z-fields of and let t be the z-field formed by all
subsets of n Wt, which, for each t, differ by at most a set of (P) measure
0 from a set of :t. For each bounded -measurable function , E() is
well defined for all x and (-measurable as a function of x. Also (resp. t)
includes all sets Ix8 e A} (resp. Ix8 e A, " > .>= s} for each s ->- 0 and for
each A of (. A random time r is called a () stopping time if r < < } t for
all _-> 0. For a () stopping time r, + denotes the z-field formed by the
setsAinW {’> r}suchthatAeandAn{r < <’}etforallt >= 0.
Suppose X is a standard process. Then it is known [14] that the properties
(A) and (A) remain still valid if "$" is replaced by "" in each statement.
Moreover, if A is an analytic set of S, r(A) and r+(A) are () stopping
times (see [5], [6]).
We will say a standard process X is a Hunt process if, (A) for each x of S,

the left hand limits x_ at exist in S {A} a.e. (P) on the set {" < }.
A process X is said to be transient if (A), for each x of S and for each compact
set A of S, xt is not in A for all sufficiently large t, a.e. (P). If X is a transient
Hunt process, then (A) is true even if we remove the phrase on the set
{" < in the statement. Let A be an open set of S with compact closure
and B, a closed neighborhood of A. Define

the hitting time for A,

the hitting time for S B after

the hitting time for A after

T4 TI
restated as follows: For any A and B as above

P{r. < for every n} 0

and for each compact set C

P,{r(S-C) < } 1

This kind of fact will be used repeatedly in later sections.

are defined successively. Hypotheses (A) and (A) can be

for all x

for all x.

From now on we will assume the basic process X is a transient Hunt process.
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3. Excessive functions and some other related functions

Let f be n a-mesurble function defined on S, r -mesurble rndom
time, r(A) nd r+(A) the hitting times of n nlytic set A, nd B set of
a. Definef(x) 0 if r i’. With this conevntion, one my write
for E[f(x); r < ’}. We use he following system of notation"

H,(x, B) P{x, B},

Hf(x) E,{f(x) },

H.4(x, B) H(.)(x, B),

H+(x, B) H+()(x, B),

G,(x, B) Jo e-"tHt(x’ B) dt for a ->_ O.

Hf, H+f and G,f are defined similarly to Hf. IHt(x, B), >-- 01, {H.(x, B)
(or H+(x, B)), A (I and {G,(x, B), a > 0} are called, respectively, the
transition function, system of harmonic measures and resolvent kernel of the
process X.

Let A+ be the space of functions defined on S, (-measurable and nonnegative
(allowing the value infinity). A function u of A+ is said to be excessive if
Ht u <-_ u for all >__ 0 and if Ht u -- u (t -- 0). Basic results on excessive
functions are found in [6, Part I]. Here we will list some of them.

PROPOSITION 3.1. The following three statements are equivalent to each other.
u is excessive. (ii) aG, u <- u for all a > O and aG, u u a --->

(iii) H u <- u for each () stopping time and H, u -+ u (n --,

is a sequence of () stopping times and if r, decreases to 0 a.e. (P) for all x.

PROPOSITION 3.2. Let u be an excessive function, {r,} a decreasing sequence
of () stopping times, r lim_. r and A a set of ff+. Then (i) u(xt) is
right continuous in t, a.e. (P) for each x. (ii) E{u(x); A} _>_ Elu(x,.,);
and the right side increases to the left side as n -- . Therefore (iii) u(x)
is uniformly integrable relative to (P).

A function u of A+ is said to be quasi-excessive if it saisfies

(3.1) aG, u <- u for all a > 0.

Then, as will be shown in he next section, the left side increases with a and
the function lim,_ aG, u is excessive. This limit function is called the
regularization or smoothed version of u and denoted by reg. u. If a function
u of A+ satisfies

(3.2) H u <= u for all >_- 0,

the left side increases as 0 and limt_.0 H u defines an excessive function.
But since (3.2) implies (3.1), such a function u is also quasi-excessive. We
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have

limt_0 H u lim_ aG, u reg. u.

Let u be an excessive function, A an nlytic set of S nd r(t, A, w)
+ r(A, Otw). It follows tht r(t,A) r+(A) r(A) ndtht r(t,A)

decreases to r+(A) as 0. Therefore by Proposition 3.2,

Hr(t,A) U Ht HA U H u HA U

and HtH u increases to H u as 0, which implies that Ha u is quasi-
excessive and tha H u reg. H u. In particular, if A is open (more
generally, nearly open [6]), then Ha u H u, so that Ha u is also excessive.
The following proposition comes from [6, Part I, Proposition 6.1].

PROPOSITION 3.3. Let u be an excessive function and {A}, a monotone se-
quence of open subsets of S increasing to A. Then HAn U increases to HA U as

Let u be a function of A+ and G, an open subset of S. The function u is
is said to be superharmonic if, for each open subset A of S with compact
closure

u Hzu,

where we write or A- for S A. (Hereafter this notation will be used with-
out mention.) The function u is said to be harmonic on G (just harmonic
if G S) if, for each open subset A of G whose closure is compact in G,

u=Hu.
PROPOSITION 3.4. If U is superharmonic, then it is quasi-excessive. In

particular, if u is harmonic, then it is excessive.

Let K be any compact set of S and A, an open set with compact closure. If
u is superharmonic,

u H uz u

E.{u(x,()); ,(K) .()}.

Letting A $ S, we have u H u, so that u is quasi-excessive according to a
theorem of Dynkin [1, Theorem 4.1]. Next suppose u is harmonic. Let x
be any fixed point of S and A, an open neighborhood of x with compact closure.
By definition of a harmonic function, u Hz u, so that

Htu(x) HtHzu(x) E,{u(x(t.z))},

In general, by A " S we understand a sequence of sets {An} to be chosen as follows:
As increases to S, each An has compact closure in g and An+l is a neighborhood of An.
This convention is repeatedly used ir Sections 7, 8.

In [1], the proof is carried out under the condition that u >-_ Hu. But it is applic-
able for our case,with no change.
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where r(t, , w) + (, Otw). Take w such that r(., w) > 0. Then
r(t, fi,w) r(,w) foreveryt <__ r(,w). SinceP{w;r(,w) >0} 1,
we have

lira inft_.0 Ht u(x) >= E{lim inft_0 u(x.(t,z))}

Hz u(x)

u(x),
so that

PROPOSITION 3.5.
closure,

lim.-. aG. u(x) lim.-. J, -e H/.u(x) dt

JO e-t lira inf.. H/. u(x dt

>- u(x).

If u is harmonic and if A is an analytic set with compact

u Hzu Hu.
Let A: be the closure of the set A, ~ the complement of 2:, and A0 an open

neighborhood of 2: with compact closure. Noting that u is excessive, we have

u >- Hzu >- Hu
>- H--u- H-u
_>_ Hzou u.

PROPOSITION 3.6. Let G and G be open subsets of S, and u an excessive
function. If u is harmonic on each G i 1, 2) and if u is bounded on each
compact set of G G t G then u is harmonic on G.

It is enough to show that H u >- u for each compact set K of G. There
are subsets A and B of G (i 1, 2) such that A is open, B is a compact
neighborhood of A and A1 A K. Define

r(w) r(/, w) if Xo(W) A
r(/, w) if xo(w) e A2 fl

and
0 otherwise

.(w) n-(W) + ’(_ W).

Then H u u and hence H. u H_H u H._ u u for
every n. Moreover hypotheses (A) and (A) imply that

]imn- P{r < r(/)} 0
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for each x of S. But we have

H u Eo{u(x); rn < r(/)} -t- Elu(x); rn >- r(/)}--- EolU(Xvn) Tn < T()} //U(Xr(/)); Tn -<- [supy,:u(y)]P{rn < r(R)} + H u,

where we use the fact that { > r => r(/)} e +. When n -- the last
side of this inequality goes to H u, so that

u limn+H,u <_- Hu.

4. Resolvent kernels
We introduce several spaces of functions defined over S; B the space of

bounded and a-measurable functions, B0 the subspace of B formed by func-
tions of compact support, C the space of bounded and continuous functions,
Co the subspace of C formed by functions of compact support.
A function Ra(x, A), defined for a > 0, x of S and A of (g, is said to be a

resolvent kernel if it satisfies the following conditions (a)-(d). (a) For each
a > 0 and x of S, R(x, is a measure finite for compact sets. Let f be a
bounded and Borel measurable (= (g-measurable) function of compact sup-
port. We will write Rf for f f(y)Ra(., dy). (b) R f is a-measurable and
bounded on every compact set; (c) the resolvent equation

(4.1) Rf Rf + (a- )RRf O.

is satisfied and (d) lim. Rf(x) 0 for each x.
We will now list several elementary properties of R(x, A ).

tion of B0. Clearly Ra f(x) is well defined for such f.
Let f be a func-

(i)
(ii)
(iii)
(iv)

(, x).
(v)

(b)-(d) are satisfied for such f.
R Rf Ro Rf.
If f>- 0andifa-< ,Rf>= Rof.
R,f is continuous in a, so that Rf(x) is jointly measurable in

Raf lim_.. R,(R f).

Given a number a >= 0, a function u of/k+ is said to be (R, a) excessive if
R,.+ u -< u for all/ > 0 and if limo** R+o u u. By (iii),

R0(x, A lim.0 R,(x, A

exists for each A of
there are Borel sets sets in (g) B and C such that B A C and such that
Ro(x, B) Ro(x, A) Ro(x, C).

(vi) A function u of/k+ is (R, a0) excessive if and only if it is (R, a) ex-
cessive for all

function is said to be of compact support if it vanishes outside of a compact set.
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(vii) If f is in A+, Rf is (R, a) excessive.

PROPOSITION 4.1. Let u be a function of A+ and let R+ u increase with .
Then v limR+ u is (R, a) excessive.

First we note that the condition in the proposition that

(4.2) R+ u <- R+ u for -<

is equivalent to the condition that

(4.3) R+R+ u -< R+ u for <= ,.
Also (4.2) or (4.3) implies that

(4.4) ,R+ R+ u =< R+ u for -< .
These assertions follow from the fact that, if _<_ % the equation

R+ u R+ u + ( t)R+ R+ u

is true for any function u of A+. When , --, in (4.4) the left side goes to
R+ v, so that

R+ v -< R+ u.

On the other hand, using the property (v) of R(x, A ), we have

R+ u -< lim inf R+(R+ u) R+ v.

Therefore we have shown R+ u R+0 v, which implies that v is (R, a) ex-
cessive.
The function v in the above proposition is said to be the (R, a) regularization

ofu.
An obvious sufficient condition that (4.3) is satisfied is that

(4.5) Ru -< u for all t > O.

Hence Proposition 4.1 can be applied to functions of A+ satisfying (4.5).
Let R {R(x, A)} be a resolvent kernel and m, a measure defined over

(s, ).
R is said to be dominated by m if, for each a > 0 and for each x of S, R(x,

is absolutely continuous wih respee to m.
R is said o be integrable if R0(., A) is bounded on every compact set when

A is compact.
R is said to be substochastic if aR,,(x, S) -< 1 for every a > 0 and x e S.
R is said go be regular if, for each functionf of C0, aR, f converges boundedly

on every compact set to f as a -- .The resolveng kernel G G,(x, A of the process X, defined in Section 3,
is subsoehasie and regular. Ig is known [6] that this kernel G,(x, A) has
the following properties.
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(i) The constant function is (G, 0) excessive.
(ii) lim_. aRf f for each function f of C.
(iii) Each (G, a) excessive function can be approximated by an increasing

sequence of bounded (G, a) excessive functions.
(iv) The minimum of two (G, a) excessive functions is also (G, a)

excessive.

The properties (i)-(iii) can be proved for any substochastic and regular
resolvent kernel R. (For (iii) it is sufficient that R is substochastic.) But
it remains an open question whether or not (iv) is true for such a general R.

5. Determining the potential kernel
Hunt [6, Part III] gave method of determining potential kernel (of func-

tion type). There are, however, some interesting cases to which Hunt’s
method is not applicable. For instance, one-dimensional diffusions with an
entrance boundary do not satisfy the condition, one of those conditions as-
sumed by Hunt, that the transition function of the process under consideration
leaves invariant the space of functions continuous on S and vanishing at the
point at infinity of S. Also his approach does not explain why, in the case of
(continuous parameter) Markov chains, Go(X, {y} acts as a potential kernel
(of function type). To cover such cases we present a different method.
Let m be a measure defined over (S, ) and finite for compact sets and let

(., } denote the inner product with respect to m. A resolvent kernel
((x, A is called the co-resolvent tcernel of G G(x, A with respect

to m if, for each f, g of Co and for each a > 0,

(5.1) (f, Gg) (f, g)

It is easy to show that (5.1) is true for each f, g of B0. We will use the word
a-excessive (or just excessive when a 0) for (G, a) excessive. Also we will
use the word a-co-excessive (or co-excessive when a 0) for (, a) excessive.

Given a number a >= 0, a jointly (= a (a) measurable function G(x, y)
is said to be the potential kernel of exponent a (associated with G, m and if
the following conditions are satisfied" (a) G(x, dy) G(x, y)m(dy)
(b) (y, dx) G(x, y)m(dx); (c) G(., y) is a-excessive for each fixed y
and (d) G(x, is a-co-excessive for each fixed x.

Suppose there is the potential kernel of exponent a0 for some a0 > 0. Then
it follows from the resolvent equation thai G and G are dominated by m.
Therefore, as will be proved soon, there is the potential kernel of exponent a

for all a >- 0. The fact that G is dominated by m implies that m(A must be
positive if A is a non-void open set. Moreover the uniqueness of G(x, y) is

An argument of Ray [12] may be useful for this question.
In general, such is not necessarily determined uniquely by G and m.
This phraseology amounts to that in Section 2.



496 HIROSHI KUNIT+/- AND TAKESI WATANABE

shown as follows. Given a number a >= 0, let Gi)(x, y)(i 1, 2) be two
potential kernels of exponent a. When y is fixed, by (b),

(5.2) G(:)(.,
a. e. (m) (= almost everywhere relative to the measure m). But since G is
dominated by m,

for all x of S. Letting/ -+ we have (5.2) everywhere on S, because both
G(.) (., y) and G(.) (., y) are a-excessive for each y.

THEOREM 1. Assume that G and are dominated by m. Then there is the
unique potential kernel of exponent a for all a >= O. Moreover we have for all
>a>_-O

G.(x, y) Ge(x, y) + ( a) f G.(x,z)Ge(z, y)m (dz)
(5.3)

G(x, y) + ( a) j Ga(x,z)G.(z, y)m (dz).

Generally if f(x, y) is a jointly measurable function, then G (resp. ) oper-
ates on f with respect to the variable x (resp. y), while the other variable is
fixed. In other words,

y) --ff(z’ y)G.(x, dz), f (x,

Such convention will be used throughout the rest of this paper.
Let a > 0 and let g,(x, y) be any jointly measurable version of

G,(x, dy)/m(dy). For a fixed x and for a positive functionf orB0, it follows
from (5.1) that

f ,+ag,(x, y)f(y)m (dy) G,G,+a f(x)
(5.4) 1 1<_ G,,f(x) J g,(x, y)f(y)m(dy),

so that
,+ g,(x, <- g,(x, a.e. (m).

Since is dominated by m,

/.+ .+a g.(x, y) _<_ (.+ g.(x, y) for every y.

Therefore, according to Prop. 4.1 and its remark, .+ g(x, y) increases with- and its limit G.(x, y) is jointly measurable and a-co-excessive. Multi-
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plying to the first half of (5.4) and letting --> , we have

(5.5) G,f(x) f G,(x, y)f(y)m(dy).

(5.1) and (5.5) imply that, for each positive function f of B0

f f(x)G.(x, )m(dx) a.e.O.f(

Again usg the fact that is dominated by m,

O.+oO.f(y) f f(x)O.+aG.(x, y)m(dx) for all y.

When we get

.f(y) f f(x)G,(x, y)m(dx).

From Proposition 4.1, ,+ g,(x, y) + G,(x, y), so that

y) f G,(x, z)G,+(z, y)m(dz).+g.(x,

G,G,+(x, y) G,(x, y).

Hence G,(., y) is a-excessive for each y, for it is the increasing limit of a-ex-
cessive functions G, G,+(x, y).

For a fixed x, it follows from the resolven equation of G that (5.3) is true
for a.a. y (m) (= almost all y relative to the measure m). Operating+
and letting , one gets (5.3) from the observation that the both sides of
(5.3) are fl-co-excessive.

Finally, noting that G.(x, y) is a decreasing function of a by (5.3), one can
define

Go(x, y) lim,0 G,(x, y),

which is easily proved to be the potential kernel of exponent 0, Q.E.D.
Fix a point x of S. Since G,(x, ), a > O, is finite a.e. (m), the equation

(.) f a.(x, z)a(z, )(az) f G(x, z)a.(z, )m(az)

is true for a.a. y(m). But the both sides are -co-excessive ( a), so that
(5.6) is true for all y. The equation (5.6) can be written as follows;

G,(x, y) G, G.(x, y) a,(x, y) a.(x, y).

Suppose G is dominated by m. Then if there is a symmetric (jointly meas-
urable) version of G,(x, dy)/m(dy) for each a > 0, it is obvious that G iself
is a co-resolvent kernel. Conversely, if G, the corresponding kernel
G,(x, y) must be symmetric for each a 0. Indeed, by the assumption,
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G,(-, y) and G,(y, are a-excessive and equal a.e. (m) for each fixed y, so
that they are identical everywhere.

PROPOSITION 5.1. The following four statements are equivalent to each other.
G (or is dominated by m. ii If u and v are a-excessive (or a-co-exces-

sive) for some a > 0 and if u v a.e. m ), then u v everywhere. (iii) Let f be
a function of B0. (,) There is some positive number ao such that, whenever G, f
(or ,o f) vanishes a.e. m it vanishes everywhere. (iv) The statement (,) is
true only iff is a nonnegative function of B0.

It is enough to show that (iv) implies (i) in the case of G" the rest is veri-
fied easily. Let A be a set of ( with compact closure such that m(A) O.
By (5.1)

(f, G,o(’, A) j ,o f(y)m(dy) O,

so that G,0(. A) 0 a.e. (m). Therefore G,0(x, A) 0 for all x. By the
resolvent equation, G,(x, A) 0 for all a >- 0 and for all x.

6. Some properties of the potential kernel
From now on the potential kernel of exponent 0 will be called simply the

potential kernel. Also we will write G(x, y) for Go(x, y).
The following hypothesis on the triple (G, m, ) is always assumed in the

rest of this paper.

HYPOTHESIS (B). G is integrable and dominated by m. is regular and, f, a >= O, is continuous and finite everywhere for each f of B0.
Obviously this hypothesis implies that is also integrable. In the previous

section we noted that if G is dominated by m, then re(A) is positive for each
non-void open set. From this remark and Proposition 5.1 it follows that, given
G and m, the co-resolvent kernel satisfying (B), if it exists, is unique and
that is dominated by m. Therefore there is the potential kernel of exponent
a for each number a >_- 0. The kernel G,(x, y) is lower semicontinuous rela-
tive to y for each fixed x, because any a-co-excessive function is so under
hypothesis (B).

Hypothesis (B) is weaker1 and, sometimes, easier to be verified than Hunt’s
hypotheses (F) and (G). For instance, in two examples cited in the beginning
of Section 5, it is easy to find the measure m and the co-resolvent kernel for
which (B) is satisfied. Under hypothesis (B) we will derive some plausible
properties of the potential kernel and establish potential theoretic results like
those obtained by Hunt.

Suppose f is in Co, nonnegative and f(x0) > 0. Since is regular,

1 1,f(xo) >--. f(xo) >---f(xo) > 0

10 For the proof of this fact, see [6, Part III, Sections 17 and 18].
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for each a __> 0 and for all sufficiently large . Since (,f is continuous by
(B), we get

PROPOSITION 6.1. Let A be a compact set and B, a neighborhood of A. Then

inf ,(x, B) > 0 for each a >- O.

PIOPOSITON 6.2. (i) If A is open and if y is in A, then H.,. G(x, y)
G(x, y) for all x, where H.4 G(x, y) f G(z, y)H.4(x, dz). (iN) For each fixed
y, G(., y) is harmonic on S {y}.

In order to show (i) it is enough to prove

H. G(x, y) >= G(x, y) for all x of S and y of A.

Let f be a function of B0 vanishing outside of A and x, any point of S. Then

<H. G(x, ), f) H.(Gof) (x)

[ {fo t}l (f t}E. E,(.) f(xt) d E f(xt) d
(A)

E, f(xt) d Gof(x)

<G(x, ), f>,

so thatHG(x, .) G(x, .)a.e. (m) onA. DefineGa(x, .) G(x, .)on
Aand 0on. Then

a,(H. G)(x, y) >= a, G’(x, y) for all y.

Noting thatH G(x, is co-excessive, when a -- we get

Ha G(x, y) >= lim inf,_. a, G(x, y) >= G’(x, y),

where the second inequality follows from the facts that G is regular and that
G (x, is lower semicontinuous.
The second statement is immediate from (i).

7. Potentials

Let L0(m) be the space of functions defined over S, a-measurable and (m)
integrable over each compact set.

PROPOSITION 7.1. An excessive (or more generally, quasi-excessive) function
u is in Lo(m) if and only if it is finite a.e. (m).

Suppose u is quasi-excessive and finite a.e. (m). Fix any point y0 of S and
a > 0. Since is regular, there is a point x0 such that G,(xo, yo) > 0 and
u(xo) < . Therefore, for some small > 0, the set A {y; G,(Xo, y) > }
is an open neighborhood of y0. Then

> U(Xo) >- aG, u(xo) >- ae I u(y)m(dy),
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which proves the if part, while the other half is obvious.

PROPOSITION 7.2.
u reg. u a.e. (m).

If u is quasi-excessive and finite a.e. (m), then

It is enough to show that u =< reg. u a.e. (m). Let f be a positive function
of Co. Then

(f, u -< lim_ (af, u lim (f, aG u

(f, reg. u .
Hence u _<_ reg. u a.e. (m), for u is in L0(m).

Let A be a compac set of S. An excessive function u of L0(m) is said to be
a potential if lim s Hz u 0 a.e. (m).11
With this definition of a potential, G(., y) may not be a potential. We will

denote by Se the set of points y for which G(., y) is a potential. It is im-
portant to know when S Sp. This problem will be discussed in Section 13.
We will soon prove that each potential has an integral representation

G fs G( y) (dy),

where is a measure defined over (S, (). But its converse is false unless
S S. Keeping this fact in mind we will call a function G of Lo(m) a
potential in the wide sense.

PROPOSITION 7.3.
compact sets of S.

The measure of a potential in the wide sense is finite for

Fix any point y0 of S. Similarly to the argument in Proposition 7.1 there is
a point x0 such that G(xo, yo) > 0 and such that Gt(Xo) < . Hence the set
A {y;G(xo,y) > e} is an open neighborhood of y0 for a small e > 0. There-
fore

G,(xo) V(xo, y)# (dy) >-s.t(A).

A similar argument gives us

PROPOSITION 7.4. If G 0, then O.

We need one more auxiliary result.

PROPOSITION 7.5. Let Gttn} be a sequence of potentials in the wide sense which
are dominated by a function v of Lo(m). Then (i) there is at least one weak limit
of {n} .12 (ii) /f t is a weak limit of {t} and if G#, converges to a function
u a.e. (m), aG,u increases with a and

(7.1) reg. u -> Gt.
For the meaning of A " S, see footnote 4.
We say is wek limit of { if n infinite subsequence {t()l converges weakly

to t, that is, if f f dt --* f f d (/ for ech f of C0.
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(iii) Equality holds in (7.1) if, for each positive function f of Bo and for any
number O, there is a compact set A such that

fz of(y), (dy) < for all n.(7.2)

(Note that the condition of (iii) is satisfied if every vanishes outside of a
compact set independent of n.)
For the assertion (i) it is enough to show that, for each compact set A,

t(A) is bounded. LeG B be a compact neighborhood of A. By Proposition
6.1, c infA (0(y, B) > 0. Hence

>-faOo(y,B)ttn(dy) c’ttn(A ).

For (ii), let tn(k) converge weakly to and let f be a positive function of B0.
Since v ->= Grin(k) and since (0 f is positive and continuous,

lira f of(y)t,()(dy)
k

>- f of(y)t(dy) (f,

so that u >= Gt a.e. (m). But since

u limn Gtn >_- lim inf_. aG,(G#) >_- aG,(lim_ Gtt) G, u
a.e. (m),

aG,u increases with a everywhere on S according o the remark below Propo-
sition 4.1. Hence reg.

Finally we will prove (iii). By a simple evaluation we have

lim_. f Oof(y)tn()(dy) <- f Oof(y)t(dy) + lim_.. fz Oof(Y),n()(dy)

for each compact set A. Therefore if (7.2) is satisfied, then (f, u -<_ (f, Gt },
which implies that reg. u -< Gt.
We will now give results on the integral representation of potentials.

PROPOSITION 7.6. A function is a potential if and only if it is a potential in
the wide sense of a measure t vanishing outside of Se

Since the proof of the if part is quite easy, it is omitted. We will prove the
only if part. Let u be a potential and let u nG,(u ^ n), where u ^ n
rain {u(. ), n/. The function u is also a potential and increases to u when
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n ---->

Dynkin1
If A is compact, then E{ r() <= G0(x, A < .

wherefn n[(u ^ n) Un] >= O.

n(xt)dt1 + Hzu,,

Letting A T S we have

(7.3) tu, E. f(xt)d Gof

Since both sides are excessive, (7.3) is true everywhere on S.
the potential in the wide sense of the measure #,(dy) f,(y)m(dy).
the fact, which follows from Proposition 6.2, that

By a formula of

a.e. (m)

Therefore u is
Using

Hzu, f HzG(., y)n(dy)

we get

>= fz G(., y)t,(dy),

(7.4) fz of(y), (dy) <= (f, Hzun} (f, Hzu}.

When A T S, (fi Hz u 0. Hence according to the preceding proposition
u is the potential in the wide sense of , a weak limit of n}. It follows from
the Fubini theorem that has no mass outside of Se.

PROPOSITION 7.7. There is a potential, bounded and strictly positive every-
where on S.

First we note that if f is a function of A+ and if G0 f is finite everywhere, then
G0 f is a potential. Indeed

> Gof HzGof E. f(x) d
()

0 asA S.

Also we note that if f is strictly positive on a neighborhood of a point x, then
Go f(x) O. This follows from the right continuity of paths.

Let {A} be an open cover of S and let each A be of compact closure. Let
f be a function of B0, strictly positive on A. Denote by k an upper bound
of Go fn. Then it is clear that G0( 2-.k.f) is what we want.
As a result of the above proposition we have

13 For instance, see p. 632 of Loive’s book, Probability theory, 3rd ed., Princeton,
Van Nostrand, 1963.
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PROI’OSITION 7.8. Any excessive function can be approximated by an in-
creasing sequence of bounded potentials.

PROPOSITION 7.9. Let u be a potential and A, an open set. Then Hau is a
potential in the wide sense of a measure vanishing outside of fI closure ofA ).

First suppose u is bounded. Hu is a potential in the wide sense of a meas-
ure , for u is a potential and hence Hu is so. We have to show that
(-) 0, where - is the complement of . Take any compact set C
of -. It is enough to show that (C) 0. Define

G(., y)(dy).

Since Hau is harmonic on - and since both Ul and HAU Ul are excessive,
u is also harmonic on -. By Proposition 6.2, u is harmonic on . There-
fore, according o Proposition 3.6, u is harmonic on the whole space S. Also
u is a potential, for u Hau. Hence u 0, which implies that u(C) 0
by Proposition 7.4.

If u is unbounded, take an increasing sequence of bounded potentials {Un]
which approximates u. By what we proved above, HAU, Gu, with
,(-) 0. Since u is potential, an evaluation like (7.4) yields that Hau
is the potential in the wide sense of a weak limit of {u,}.
By the remark to Proposition 7.5, the argument of the preceding paragraph

remains still valid for any excessive function of L0(m) if A is of compact closure.
That is,

PROPOSITION 7.10. Let u be an excessive function of Lo(m) and A, an open
set with compact closure. Then the conclusion of Proposition 7.9 is valid.

PROPOSITION 7.11. If and define the same polential in the wide sense,
14then 1

Set u Gu (i 1, 2). First suppose that each u has no mass outside
of a compact set. Then, for each f of C0

so that m =. Next we will consider the general case. Let A be an open

This proposition implies that the family of functions G(x, .) with the index x S
separates points of S.



50 HIROSHI KUNITA AND TAKESI WATANABE

set with compact closure and B, a compact set contained in A. Then

y he previous proposition here are measures and a such that
H,Gpl} G,, H,{fG(., y),(dy)} G and ,(fi-) (J-) 0.
The restriction of to the set B has no mass on on J-. Hence appealing to
the first displayed special case we can conclude that j
be a weak limit of as A T S. Obviously andG Gu u. But
by Proposition 7.5, u Gp. Therefore it follows from Proposition 7.4 that. Since j and depend just on u, the above argument is applied
to with the same {j, } to show that .

PROPOSITION 7.12. If is a signed measure on S and ff u G is an excessive

function of Lo(m), then must be a measure and hence u is a potential in the wide
sense.

Let + be the Jordan decomposition of and A, an open set with
compact closure. LetHjG+} G and Hi{ G-} G. The preceding
proposition and its proof imply that ] and that + (resp. -) is the
unique weak limit of (resp. ]) as A T S. Hence p+ -, i.e., - 0.

8. iesz decomposition of excessive

PROPOSITION 8.1. Each excessive functi of L0(m) can be written uniquely
as the sum of a potential and a harmonic function.

Let A be a Borel set with compact closure and let h’ lim s Hz u h’ is
quasi-excessive and h’ Hz h’ on S, {x; h’(x) < Define

hp u on S,

otherwise.

p’ h’.Obviously u It follows that lim s Hz p’ 0 on S, and that
p Hz p everywhere on S. Hence p’ is quasi-excessive. Set

h reg. h.p reg. p,

p is a potential, for limj s Hz p lim s Hz p 0 on S,. Also u p W h
everywhere on S. It remains to show that h is harmonic, i.e.

(8.1) h limj s Hz h.

But on S,

(8.2) h h’ limjsHz(p + h) limjsHzh h.

This means that j(B) (B) for each Borel subset B of A.
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Hence, everywhere on S

h <= reg. (limsHzh) <__limsHzh_<_ h,

which proves (8.1).
To prove the uniqueness, suppose that

u p-i-h p-h,

where each pi is a potential and each h is harmonic. Let B be the set of
points in S such that u is finite and such that lim s Hz pi 0 (i 1, 2).
Then

(8.3)

on B. However since m(/) 0, (8.3) holds everywhere on S.
PROPOSITION 8.2. If U is a potential, then

(8.4) limsHzu 0 or

In particular the above limit is 0 on the set {x; u(x) < oo }.

By the display (8.2), h h’ on Sh,. But h 0, for u is a potential.
In a way similar to the proof of Proposition 8.1 we can obtain

PROPOSITION 8.3. Let {A} be a decreasing sequence of Borel sets such that
the complement of each compact set contains some A, Then reg. (limnH u)
is harmonic. Moreover

reg. (limH u) limHu

over the set {x; limnH u(x) < oo }.

Summing up the results in this section and the preceding section we have the
Riesz theorem cited in the section title, as follows.

THEOREM 2. Each excessive function u of L0(m) is decomposed uniquely in the
form

f G ", y) (dy) A- (a harmonic function).U

Note. In Section 7 we defined a potential as an excessive function of
L0(m) such that lim
potential, not involving the measure m, is given as follows. Let be the in-
dicator function of the whole space S. A subset A of S is said to be a polar
set if there is an a-measurable set B including A such that H+ 1 0. An
excessive function u is called a potential if, except on a polar set, u is finite
and lim s Hz u 0. With this alternative definition, Proposition 8.1
and 8.2 remain still valid. We will show that these two definitions are equiva-
lent.
Making use of the fact that is regular we can see, without difficulty,
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that a polar set is of (n) measure 0. Moreover an excessive function u is
finite except on a polar set if and only if it is so a.e. (m). To prove this
fact it is enough to show the if part, for the only if part is immediate from the
first asserted statement. Let u be an excessive function finite a.e. (m) and
let A Ix; u(x) }. Then H+ 1 is an excessive function vanishing out-
side of A. Sincere(A) O, H+ I O.
Hence it is clear that the first definition is weaker than the second one.

Conversely, suppose u is a potential in the first sense. Then, by Proposition
8.2, lima s Hz u 0 on the set {x; u(x) < 1. Therefore it is a potential
in the second sense.

9. The Martin boundary
Following the terminology of Hunt [7], we will say a measure r, defined over

(S, (B), is a reference measure if the funcbion

f r (dx) G(x,.)

is strictly positive and continuous on S, allowing the value infinity. Let
L(r) be the space of (r) integrable functions and let S {y; rG(y) < }.
Set

(x, y) G(x, y)
if yS

(9.1) rG(y)

0 if y

We will use the notation f for f m(dx)f(x)(x, ).
Similarly to the proof of Proposition 7.7 it is shown that, given any excessive

function u of L0(m), there is a reference measure having the form r(dx)
f(x)m(dx) such that u is in L(r) and such tha rG is finite everywhere.

Suppose there is a measure r such that

re(A) f r (dx)Go(x, A ).

Then rG 1 everywhere on S and hence r is a reference measure. Also
K(x, y) G(x, y) for every x and y.16 First we will show that is sub-
stochastic. Denote by 1 the indicator function of S. By (5.1), for each
positive function g of B0

f m(dx).aG, g(x)

1 This means that the definition of the function K under hypothesis (D) in the pre-
vious paper [9] is only a special case of the definition under hypothesis (C) there.
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J r(dy)’aGoG, g(y)

<- f r(dy).Gog(y) (1, g).

Hence aO. 1 _<_ 1 a.e. (m). But since aO, 1 is lower semi-continuous by
hypothesis (B), aO, 1 _< 1 everywhere on S. Since is substochastic and
regular, 1 is co-excessive (see the final paragraph of Section 4). On the
other hand

re(A) f r(dx)Go(x, A) fa rG(y)m(dy),

so that rG 1 a.e. (m). Moreover rG is co-excessive. Hence we have

rG lim, a,(rG) lim, a, 1 1.

PaOOSTON 9.1. If u is an excessive function of L(r), then it is in Lo(m).
In particular, if f r(dx)u(x) O, then u is identically zero.

The proof is similar to that of Proposition 7.1. For each y0, since

f r(dx)G(x, yo) > 0and f r(dx)u(x) < , there isanx0such that U(Xo) <
and G(xo, yo) > O. Hence there is some a > 0 such that G,(xo, yo) > O.
Therefore u is (m) integrable on a neighborbood of y0. The latter half is
proved similarly.

PnOPOSTON 9.2. (i) If f is in B0, then f is bounded and continuous.
(ii) If f and g are in B0 and vanish outside of a compact set A, then

(9.2) f(y) g(y) c X sup,s f(x) g(x)[ for all y of S,

where c is a cstant depending only on A.

The continuity off is evident from f(y) of(y)/rG(y). The bounded-
hess is proved as follows. Let B be an open set with compact closure and
let f vanish outside of B. Since (., y) is (r) integrable and therefore since
it is in L0(m), we have

( ., y) S,( ., y) f G( ., z)vv(dz)
(9.3)

] (.,z){rV(z)}(dz)

Moreover the equality holds on the set B in the above display.for each y.
Hence

f(y) f f(z) {rG(z) }(dz)
nr

=< sup If(z)I} X f rG(z)#(dz).
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Again using (9.3)

f rG(z)y(dz),

so that fK is bounded.
The second statement follows from the inequality

fK(y) gK(y) <= If m(dx)K(x, y)} X sup f(x) g(x) I,

for the first term of the right side is bounded relative to y by the first statement.
Before introducing the Martin boundary relevant to the kernel K(x, y),

we will refer to the classical cases well-studied already.

I. Brownian motion case [2], [11]. X is Brownian motion on a Green
space. The measure rn is chosen as the Lebesgue measure on the space.
Hypothesis (B) is satisfied by the unique co-resolvent kernel G. The
corresponding potential kernel is the Newtonian potential kernel. The refer-
ence measure is taken as the unit distribution at any fixed (reference) point
x0. Then, according to the symmetry of the Newtonian potential kernel,
our K-function is nothing but the K-function of Martin except with the
position of variables reversed (that is, K(x, y) K(y, x) )i7 and except the
definition of the value at x y x0.

II. Markov chain case [4], [7], [13]. By a Markov chain we here mean a
Hunt process taking values in a denumerable space with discrete topology.
X is a transient Markov chain and re(A) is the number of points in A.
O,(x, {Y/) G,(y, {x}). (B) is satisfied and the potential kernel of ex-
ponent a is given by G,(x, {y} ). r is any measure such that rG(y) > 0
for all y.

In the above two cases the Martin boundary S’ could be characterized19

by the following properties (a)-(d). (a) S + S’ is a compact metric space.
(b) S is dense and open in S - S’ and its relative topology coincides with its
original topology. (c) To each of S corresponds an excessive function
K(x, v) and if v v’, then K(x, v) K(x, 7’) for some x. (d) For each v of

1 As to the K-function, potentialists usually have followed the original notation of
Martin. Probabilists have also used the same letter K to denote the function defined
here. The difference looks very simple in the present stage and one will have no trouble.
But if he wants to consider more complicated kernels associated with the function K
like the )-kernel of Naim, he will have to be more careful about the position of variables.
This is the reason why we employed the new symbol .

1 By definition, (x0, x0) 0 and K(xo, x0) 1. Such difference is irrelevant to
the boundary theory of this case.

This means that S S’ is uniquely determined up to homeomorphism.
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S’ and for each sequence y of S converging to 7 with the topology of S + S’,
K(x, y) converges to K(x, 7) for all x.
So far the Ascoli-Arzel theorem has been applied to the proof of the

existence of the boundary, based on the fact that (x, y) is uniformly bounded
and equicontinuous as a family of functions of x if x varies on a compast set
and if y varies on a set the distance of which with the compact set is positive.
But in our general case such condition may not be satisfied and hence we need
some new device to define a boundary of Martin type. Indeed we will show
there is a unique boundary having the above-stated properties (a), (b), (c)
and having a property which is a little weaker than the property (d) (see
Theorem 3). This boundary coincides with the previous one in the classical
cases.

Let {fnl be a countable subspace of Co such that each function f of Co can
be uniformly approximated by a linear combination of functions in {fl
each of which vanishes outside of a compact set (depending only onf). More-
over let pl be the metric of one-point compactification of S and let

1 f- (Y) tn (Y’)P(Y’ Y’)
1 b ]-( fn (Y’) i"

The set of points which are adjoined by the completion of S relative to
pl -{- p, denoted by S’, is said to be the Martin boundary (relative to the
kernel K(x, y)). It is easy to show that S’ has the properties (a), (b) in the
classical cases.
By definition, each f K can be extended continuously to S -{- S’. Hence,

for eachf of Co, fK can be so also by the preceding proposition. In other words
the pseudometric p generates the uniformity relative to whichf is uniformly
continuous whenever f is in Co. Therefore S - S does not depend on the
choice of {fn}. The extension off (f e Co) will be denoted by the same symbol
f. Then, for each 7 of S’, f(7) is a positive linear functional on Co, so that
it defines uniquely a measure on S, say (dx, ).

THEOREM 3. (X, y) can be extended uniquely to S (S + S’) in such a
way that, for each 7 fo S’, K(x, 7) is excessive and (dx, 7) m(dx)(x, 7).
Hence S’ can be characterized by the properties (a), (b), (c) in the classical
case and, in place of (d), by the property: (d), if 7 e S’ and if y (in S) 7
with the topology of S - S’, then for each f of Co

m (dx)f(x)K(x, y) ---> f m (dx)f(x)(x, 7).

The proof of the latter half is a routine work, so it is omitted. Also the
uniqueness part of the former half is trivial.
We will prove the existence of (x, 7), 7 e S’, satisfying the asserted condition.

For v e S’, define

(9.4) (x, 7) sup{no>0 f Go(x, z)(dz, 7)}
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Since the integral of the right side is right continuous with respect to a, K(.,
is jointly measurable over S (S + S’). We want to show K(x, is lower
semicontinuous on S S’. Indeed, if f is positive and lower semicontinuous,
then f is lower semicontinuous on S - S’. Hence if we set

.(x, ") a f m (dz)G.(x, z)(z, .)

=, j .(x, z) (dz, (. s,)

,(x, is lower semicontinuous on S + S’. However K(x, is the upper
Senvelope of ,(x, at each point of S + S’ because of (9.4) on and because

of the fact that (x, is excessive relative to x on S. Hence it was proved
that (x, is lower semicontinuous on S + S’. Next we prove (dx, 7)
m(dx)K(x, 7) 7 e It is enough to show that, for each positive function

f of C0

(9.5) f m (dx)f(x)(x, .) f on S W S’,

This is true on S by definition. Since the left side is lower semicontinuous
and since the right side is continuous, the inequality "<=" is true. On the
other hand, if 7 e S’, then

f 7)m(dx)

>_-lim s,up f f(x) (a f Go(x,z) (dz, v)}m(dx)
lim s,up f a,f(z)(dz, 7)

_>_ f lim af(z)(dz, 7) fK(7),

so that (9.5) was proved. Hence we have

>_- f n)m(dz) a f n)G.(x, dz),

which shows that (., 7) is quasi-excessive. Therefore the right side in the
last display increases with a and its limit (a --* is equal to its upper en-
velope (a > 0), that is, to (x, 7), Q. E. D.

PROPOSITION 9.3. Let It be the collection of functions h(x, 7) defined on
S X (S + S’) such that (i) if y e S, then (x, y) (x, y), (ii) for each 7 of
S, ( ", 7) is excessive and (iii) for each x of S, h(x, is lower semicontinuous
on S - S’. Then theexndedkernel (x, 7) of the previous theorem is the upper
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envelope of A. In particular, if (x, y) has the continuous extension ’(x, 7) to
S’ for each x, then (x, v), e S’, is the regularization of ’ (x, v).

The proof is easy, so it is omitted.

10. Reduced functions

PROPOSITION 10.1. Let A be a Borel (or more generally, analytic) set of
S -- S’ and let u be an excessive function of L0(m). Then there is a unique
excessive function I. u such that, if A is open, IA. u is defined by HAns u and

if A is a general Borel set, I u coincides with inf/, u (A’; open and including
A) except on a set of m measure O.

/A u is said to be the reduced function of u to the set A.
The uniqueness of/A u is obvious. The proof of the existence is analogous

to the proof of Hunt [6, Part I] for the measurability of hitting times. Define
HI u rain (n, Hns u) for each open set A. Next define HI u inf HI,
(.4’ open and including A) for a compact set A. Then it follows that H u
is a Choquet capacity (i.e., right continuous and alternating of order 2 on all
compact sets) and therefore it can be extended to all analytic sets. Accord-
ing to Proposition 3.3, such extension gives the original HI u for an open set A.
Hence we have for each analytic set A

(10.1) sups, =A HI, u HI u inf,, HI,, u,

where A’ is compact and A’, open. If A is open, HI u is a-measurable clearly.
Suppose A is compact and A is a sequence of open sets decreasing to A.
Then HI u limk H]k, u, which proves the a-measurability of HI u.
From this, the a-measurability of HI u for a general analytic set A is proved
by a standard tenchnique (for example, see [5, p. 34]). Therefore according
to the second equality of (10.1), HI u is quasi-excessive. Set HI u
limn HI u. We will show that the regularization of the quasi-excessive
function H u is the desired function/ u. Let B be any open set including
A. It is evident that reg. (H u) <- infB lreg. (H u) }. Now choose a func-
tion f, strictly positive everywhere on S, such that
Then an argument on capacitability similar to that for HI u yields that

f ltt’u(x) l(x)m (dx)=infB If {H u(x)}f(x)m(dx) 1
Hence there is a decreasing sequence {B/ of open sets such that

lim f {S u(x)}f(x)m(dx)

is equal to the right side of the above equation. From this it follows that

reg. (H u) lim_,H u a.e. (m),

which completes the proof of Proposition 10.1.
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PROPOSITION 10.2. / U sup /, U (A’; compact and included in A)
and there is an increasing sequence of compact sets {A} such that A’ A and
such that I:I, u -- I u.

In a way similar to the proof of the preceding proposition one can find a
sequence {A} for which thelatter half of the proposition is true a.e. (m).
However since lim, u is excessive, it must be equal to u every-
where on S. The former half is immediate from the latter half.
We will study some properties of the reduced functions to subsets of the

boundary.

PROPOSITION 10.3. (i) U A is a subset of S’, then u is harmonic. (ii)
If A and B are subsets of S’ and if B includes A, then. u , u u.

If A is compact, the .fist assertion follows from Proposition 8.3. For a
general (analytic) set A, it is enough to apply the latter half of the preceding
proposition. As for the assertion (ii), the general case is again reduced to the
case of compact sets. Moreover it is enough to prove that , u u,
because then a u u and hence

Let A and B be compact subsets of S’ and and , their open neighborhoods
in S + S’. Assuming , we have H,s H,s u Hz,s u. Set
S" {x; u(x) < }. Since $" is a polar set and since H$,s u + H] u ( + A)
on Su, we have

Ha,sH]u Hu
on S". By Proposition 8.3, Hau reg. (H]u) au on S, so that
H,s H] u H ,s u a u. Letting B, we have H, a u u
onS. Hence,au u.
PaoeoswON 10.4. Let A be a Borel set of S’. Then (x, ) is jointly

measurable on S X (S + S) in the following sense" For each pair of finite
measures S and on S + S, there is a jointly Borel measurab function

S X (S + S) which coincides with (x, ) except a set of the product
( X ) measure O. Moreover

The first statement is reduced to showing the join measurability of
H] (x, v). H] (x, n) is jointly measurable for an open set A and hence so
for a compact set A. From this, he usual argument on capacitability yields
the joint measurability of H] (x, v) for each analytic set. The proof of the
latter half is also a routine.
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1 1. The Martin representation of excessive functions
Let S’1 be the set of points of S’ for which there is an (r) integrable exces-

sive function u such that/(,I u is not identically zero and let
This section is devoted to the proof of the following Martin representation

theorem.

THEOREM 4. The class of excessive functions u of L(r) is in one-one cor-
respondence with the class of finite (Radon) measures t on SI - S through the
integral formula
(11.1) u f K(.,v)t (d,).

I.S

The total mass of t lies on if and only if u is harmic.

The formula (11.1) is said to be the canonical reesentation of u and the
measure , the canonical measure.
To prove the theorem we will prepare a series of propositions like those

in the classical cases.

PaOOSTION 11.1. Let {} be a sequence of measures on S S such that
(S + S’) is bounded and let be a wea limit of {}. If

(d,)

is dominated by a function g L0(m) and if u converges a.e. m to a function u,
then aG. u increases with a and

reg. u lim= aG. u f ( ,) d).

The proof is easy, recalling that (L ( ", v) ) f(v) is continuous on
S + S’ for each f of C0.

PROeOS:TION 11.2. If A is a Borel set g S’, then there is a measure A
such that

u f (d,)

(A) f r (dx)I. u(x).

A measure on a Borel subset A of S -[- S’ is identified with the measure on
the whole space which coincides with on A and vanishes outside of A.
Hence, for example, the expression that . on Am converges weakly to a measure
on A means that the sequence of the corresponding ,measures on the whole
space converges weakly to a measure on the whole space vanishing outside
of A.



51 ttIROSHI KUNITA AND TAKESI WATANABE

If A is an open set with compact closure 2: in S, then

u HA u f G(., v)t’ (dv),

by Proposition 7.10. Since u is supposed to be (r) integrable, t’ has no muss
outside of St. Therefore we have

If A is any open set of S W S’, choose a sequence A Of open sets with com-
pact closure in S increasing to A S. Let n be the measure on correspond-
ing to H u in the above-stated way. I is clear that {} has a weuk
limit and that is a measure on , the closure of A in S S’. Since

H u u, by Proposition 11.1 we have

u f (., ,) (d,).

Moreover since f r(dx) u(x) is the foCal mass of , its limit is equal to
the totM mass of u. Hence

f r (dx) u(x).

If A is a compact subset of S’, choose a sequence {A.} of open sets in S + S’
decreasing to A. Let , be the measure on corresponding to , u and
let be a weak limit of {}. Similarly to the preceding case, is a measure
on A and

u f (., ,) (d,),

(A ) f r (dx) {lim ,u(x) }.

But we have already shown (see the proof of Proposition 10.3) that

lim. u HI u u

onthesetS {x;u(x) < }. Sincer(") 0, weget

,(A) f r (dx) u(x).

Finally if A is any Borel set of S’, choose an increasing sequence
of compact sets of S’ such that An A and such that u u. For
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convenience, let A0 denote the empty set. Define, for n => 1,

u / u -/-1_ u on S

c on u.
In the same way as in Proposition 8.1 it follows that the regulriztion u of
u is hrmonic nd that u

_
u W u everwhere on S. Also we

hve

An Un An An U An An--1 U An U An--1 U Un on S

and hence .u u everywhere on S. Therefore there is a measure
n On An such that

Un

Define a measure on A by , where each is regarded as a measure
on A with the convention (A An) 0. Then

which completes the proof of the proposition.
An excessive function u is said to be extreme (or minimal) if, whenever

u u + u with u and u both excessive, each u is a constant multiple of u.
By the uniqueness of the measure determining a potential it follows that
if y is in Se, G(., y) is extreme. Therefore if y is a point of &, (., y) is an
extreme excessive function, not identically zero.

Let y be a point of S and u, an excessive function of L(r). By Proposition
11.2, we have

(11.2) ",, u (f r (dx).,,, u(x)} X (" v),

Therefore if is point of S;, (., ) is not identically aero nd

.4) (., ,) (., ).

If } (., n) is no identically aero, then

(.5) f r (d.) (.,,) ,
= Actually, G(., y) is extreme even for y 8 8. See Proposition 12.7.
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which follows from (11.3). Conversely, if (11.5) is satisfied, it is obvious
that the point , belongs to St1. Moreover, as a result of (11.2) and (11.4),
it follows that K(., 7) is extreme if , e S (see [11, p. 155], [13, p. 89]). Thus
we have proved

PROPOSITION 11.3.

(i) f r(dx)I:Ii,I(x,7) 1 if v eS

If e SI then (11.4) holds. Moreover, (., ) is extreme and harmonic.

If u is expressed by

f. ,((’, , t (d?u

then the total mass of t concentrates on a point of A.

PROPOSITION 11.5 ([11, 4, Lemma 5], [13, Lemma 4.7)]. Let
of $1 S and A, a Borel subset of S’. Then

/(.,,) 0 if ,A.

PROPOSITION 11.6 ([11, 4, Theorem II], [13, Theorem 4.5]). The set
S’ S1 is an F-set.
PROPOSITION 11.7 ([11, 4, Lemma 2], [13, Lemma 3.9]). If u is an exces-

sive function of L(r), then Is,-s, u O.

Using the above-obtained propositions, Theorem 4 is proved in the same way
as for the classical cases ([11, 4, Theorem III], [13, pp. 92-93)]. In par-
ticular, if A is a Borel subset of S’, then

(11.6) /Au f {/:/A(’,
1-- JAfll

(11.7) t(A n S) f r (dx)I.u(x),

21 Since f r(dx)K(x, ,:)

_
1 for each , of S - S’, this condition means that

f r(dx)K(x, ,) 1

on a set of () measure 0. This fact is used in the proof.

(ii)

The proofs of the following propositions re quite similar to those for the
classical cases and will be omitted.

PROPOSITION 11.4 ([11, 4, Lemma 1], [13, Lemma 4.4]). Let u be extreme
and t, a finite measure on a Borel subset A of S S’ satisfying

t(A) f r (dx)u(x) > O.
J
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which shows how the canonical measure is determined explicitly by u for the
sets on the boundary.

Note. One can give a characterization of SPl (not involving the reduced
operator/l,I) as follows. SPl is the set of points 7 of S’ such that K(., 7) is
extreme and harmonic and such that f r(dx)K(., 7) 1. This fact follows
from Theorem 4 and Proposition 11.4.

12. Terminal distributions of h-path processes
Let hbe an excessive function and let Sh {x; 0 < h(x) < }. Set

H(x,A)- 1 E{h(xt);xteA} if xeS
(12.1) h(x)

a (x, A)e-t if x e ,
where (x, denotes the unit distribution at the point x. In [10] we proved
there is a standard process X (called the h-path process) such that

h hHt(x,P{xteA} A

Moreover for each x of S, (Y) stopping time r and 5_ e ff+ we have

(12.2) P(A)- 1
h(x) E{h(x); A}.

If h 1, then X X. For this reason the original process is sometimes
called the 1-path process. If h (., 7), 7 e S -t- S’, then we will use the
superfix 7 for the superfix h such as X’ and the word 7-path process for the
(’, 7)-path process. It should be noted that the h-path transform may not
preserve hypotheses (A) and (A) in general.
Suppose h is an excessive function of L(r). Then by Theorem 4, h has the

canonical representation

(12.3) h

where the canonical measure is regarded as a measure over S + S’ with
the usual convention that t

h has no mass outside of
For each w, let l(w) be the set of limit points (in S S’) of xt(w) from the

left at the life time . Hypothesis (A) is equivalent to the statement that
l(w) is either a point of S or a subset of S’, a.e. (P) for each x e S. For each
w such that l(w) is a point of S + S’, we will write

xr_(w) limt,rxt(w).

We will say the excessive function h of L(r) has the property (D) if xr_

We also make the same convention for h G(., y), y S.
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exists a.e. (P) and if

1 f(12.4) P{x- e A} h(x)
K(x, 7) (d),

for each x of Sh and for each Borel subset A of S - S’. Plx- A} is said
to be the terminal distribution of the h-paths. Since, for each

f r(dx)(x, ) 1, the cnonicl mesure of the excessive function h hving
the property (D) is given by

(A) f r (dx)h(x)P{x- e A}.

Doob [3] discovered that, in the case of Brownian motion, every excessive
function of L(r) has the property (D). The same result for Markov chains
was proved in [7], [8]. In the following we will generalize the theorem of
Doob (see Theorem 5) and also obtain several related results.

PROPOSITION 12.1. For each x of S and for each A of if, we have

(12.5) P(A) 1 fs P’
h(x) +s’

K(x, 7) (h) (d,).

The value of P(A) at x ’ is irrelevant to the value of P(A) on the left side.

For each A of ff and x of S, we have formally

P(A) 1_ E{h(xt); A}
h(x)

1 fs E{(x,7);A}h (d)
h(x) +s,

1 f E{(x, 7); h} (d)
h(x) +s,

(x, 7)
(x, 7)

1 fs P’ ah(x)

The above evaluation is justified by the following observations. If K(x, v) 0,
then E{(x, 7); A} 0 and (x, v)P’(A) 0. Since x e S,

(x, ,) 0.

Therefore E{(x, 7); A} (x, )P(A) for almost all relative to a.
Hence (12.5) is true for each h of ff. But since the both sides of (12.5) are
probability measures over if, (12.5) is true over ft.

PROPOSITION 12.2. Let A and B be open sets of S whose closures are disjoint.
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Then if h is a potential, we have

(12.6) limn+ HB HA HB HA h(x) 0

n
at each point x of finitene of h.

Denote by h. the left side of (12.6). By Proposition 7.5 and 7.9, reg. h is
a potential of a measure vanishing outside of fi (= closure of A in S). In
the same way, reg. h. is also a potential of a measure vanishing outside of
/. Hence reg. h 0 by the uniqueness of the potential measure, so that
h 0 a.e. (m). Now let A denote the set of w’s such that the path xt(w)
intersects with both A and B infinitely often. Obviously h e ff and

Therefore
{w;Ow.A} An {t < ’} TA (tO).

that is, P(A) is excessive relative to X. On the other hand an evaluation
based on (12.2) leads to the fact that P(A) h(x)/h(x) for each x of S.
Hence, for each x of S,

hP,(A) lim,+= aG, P,(A)

lim.+ h-x) G.h. (x)

0.

If h(x) 0, obviously h(x) O.
As a result of the preceding proposition and its proof we have

PROPOSITION 12.3. If h is a potential, then X is a Hunt process.

PROPOSITION 12.4. If h is a potential in the wide sense, then is finite a.e.
(P). In particular, X is transient.

Let h Gt. If x e , the assertion is trivial by definition (see (12.1)).
For each x of S we have

E(e-") 1 aG(x, S)

ilfh(x)
h(x) a G,(x, z)h(z)m (dz)

f G,(x, y) (dy)
--’>1

f G(x, y) (dy)
(a 0),

which proves that P{ < 1.
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PROPOSITION 12.5. If y e Se, then x- y a.eY (P) for each x of S.
Let A be a compact set of S. By (12.2) we have

PIr() < } SzG(x, y) -- 0 (A S)
G(x, y)

whence l(w) is included in S a.e. (P). Since X is a transient Hunt process,
x_ exists a.e. (P). Let A be an open neighborhood of y and B, an open set
of positive distance with A. Define the sequence of (if) stopping times by

rl the hitting time for A

al the first time hitting B after

r2 the first time hitting A after

a., r3, aa, are defined successively. Suppose the statement of the
proposition is false. Then it follows that there is a pair of sets A, B such that,
for some n > 0 and for some x of S, PIa < -< rn+} > 0. But using the
fact that

H G(x, y)
1,P r < G(x, y)

we have
P{, < , rn+ < } E{P (T1 < ’); O’n < ’}

P{. < },
which contradicts

0 < P{a < f r+} P{a < } P{a < , r+ < }.

PROPOSiTiON 12.6. If h is a potential of L(r), h has the property (D).

In this case, the total mass of ga concentrates on S. Choose the set
{w; xr- exists and xr- e A as A in (12.5). According to the preceding propo-
sition, if n e S, then

P{xr- exists and xr- e A} (, A),
so that

1 f,P{x- exists and xt- A}
h(x)

(x, v) (d).

In particular, setting A S S’, P{xt_ exists} 1

PROPOSITION 12.7. If y e S Se then G(., y) is extreme and harmonic.

By Proposition 6.2, G(., y) G(., y). Moreover, as in the proof of
Proposition 11.2 one can show that u const. X G(-, y) for each
excessive function u of L0(m). From these two formulas it follows that G(., y)

See footnote 22.
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is extreme. Since G(., y) is not a potential by assumption, it must be
harmonic by Proposition 8.1.

Let y be a point of Sr $1. According to the preceding proposition and
the note of Section 11, there is a point v of St1 such that K(., y) K(., 7).
Such correspondence is one-one, because the function separates Sr and S’
respectively. We will write r(y).

PROPOSITION 12..8. r(Sr $1) is an analytic set of S’.
A subset of S is said to be a K,-set if it is a countable union of compact sets.

A K**-set is defined as a countable irtersectiou of K,-sets. Similarly a K**o-
set is defined as a countable union of Ko,-Sets. Let A be a sequence of open
sets with compact closure increasing to S. That y is a point of S Se is
equivalent to that there are some f of Co and some positive integer p such that

m (dx)f(x)HzG(x, y) > lip every n.for

Noting that the left side is lower semicontinuous relative to y, we can conclude
that S Se is a Ko,o-set. Since S is open, S $1 S n (S Se) is also
a K***-set. On the other hand, r is a continuous mapping, because Yn ---y(in S $1) implies that

f{(y)} f(y,) -- f(y) fK{(y)}

and hence that 7(yn) ""-> (y) (in S’). Therefore the image v(Sr S)
is an analytic set of S’.
PROeOSITION 12.9. Let be a point of SI. (i) If is not a point of

(S S), then (., 7) has the property (D) and hence X’ is a transient Hunt
process. (ii) If is a point of v(S S), then X’ is still transient but not a
Hunt process (and hence ( ., 7) does not have the property (D)). More precisely,
l(w) consists of the two points 7. r- (v) a.e. (P) for each x of S’.

We will only give the proof of (ii)" a similar argument is applicable to
the proof of (i).

Let y r-(7) and let x be any point of S’. Since X’ X, X"is transient
by Proposition 12.4. Since (., 7) is harmonic, P{ r() < i’} 1 for each
compact set A. Hence l(w) intersects with S’ a.e. (P) Let B be a closed
set of S’ not including v and C, an open neighborhood of B in S - S’. Then

(x, ,)

When C $ B, Hc,s (x, 7) --/- K(x, ). Since/, (x, 7) 0 by Proposition
S’ P"11.5, l(w)n {7} a.e. ()
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Next let A be an open set with compact closure and B, a compact neighbor-
hood of A. IfyeA, H(.,y) (.,y). Also since(.,y) is harmonic,
HH(., y) H(., y) (., y). Hence we have

limn_. H Ha H Ha (x, y) (x, y),

n

which means thut y l(w) a.e. (P).
Finally we will prove that, for almost all w (P’), l(w) includes no points of

S {y}. It is enough to show that

(12.7) P’{l(w) intersects with both S {y} and S’} 0.

Take a pair of sets A, B of the preceding paragraph and suppose the point y
does not belong to fi_, the closure of A. By Proposition 7.10 we have

Ha(., y) f G(. z)tz (dz)

f G(., z) (dz)- f G(., z) (dz).

Assume the integral over n (S S) in the above display, say u, is not
identically zero. Then u is harmonic and dominated by an extreme harmonic
function (., y). Hence u is a constant ( 0) multiple of (., y), which
contradicts the uniqueness of the measure of the potential in the wide sense
because of y A. Therefore u must vanish, tha is, we have proved that
H (., y) is a potential. Applying Proposition 12.2 to h H (., y) (also
A --/, B - A), we have

limHH HHH (x, y) 0,

n
which implies (12.7).

PROPOSITION 12.10. For each excessive function h of L(r), X is transient.

We already proved that X’ is transient for every v of S W S. Hence our
assertion is easily derived from the formula (12.5).

THEOREM 5. Each excessive function of L(r) has the property (D) if and
only if Se St. In particular, if S Se, the above statement is true for any

reference measure.

Suppose S S,. Then Sr S, so that for each of S -t- S, (., n)
has the property (D). Hence, similarly to the proof of Proposition 12.6, it
follows that each excessive function of L(r) has the property (D). Next
suppose Se does not include S. ThenS S . WhenyeS S,
(., y) (., v(y) does not have the property (D) by Proposition 12.9.
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IROIOSITION 12.11. Let h be an excessive function of L(r) such that Xh is a
Hunt process. Then h has the property (D).

Since (Sr $1) is an analytic set of Sp, it is measurable relative to the ca-
nonical measure #h of h. Hence it is enough to show that I(Sr $1)/ 0.
Take

A lw; l(w) intersects with both S and S’/.
Then by the assumption and Proposition 12.9, we have

1 f (x, n) (dn)0 P(A)
h (x) (s.-s,)

whence

$1)} f r (dx)h(x)P(A)h{(r O.
.I

3. Conditions for S Se
Let h be an excessive function of L0(m). Then there is a reference measure r

such that h is (r) integrable. Hence, according to Proposition 12.10, L is
transient. Now suppose S Se. Then h has the property (D) relative to
the above introduced r and hence X is a Hunt process. Next suppose S # Se.
Take any point y0 of S S. We may assume y0 eS. According to
Proposition 12.9, Xy is not a Hunt process. Hence we have proved

THEOREM 6. S Se if and only if, for each excessive function h of Yo(m),
X is a Hunt process.

PROPOSITION 13.1. A sucient condition for S Se is that the co-resolvent
kernel is the resolvent lcernel of a standard process .

Let A be an open set of S and/a(x, B), the harmonic measure to the set A
relative to . Like [6, Part III], we have

(13.1) f H(x, dz)G(z, y) f G(x,z)a(y, dz)

for allx, yofS. Supposes # Se. Then forapointyofS- Seandfor
each compact se A, Hz G(., y) G(., y) by Proposition 12.7. Therefore
we have for each f of B0

(13.2) f m (dx)f(z)G(x, y) ff m (dx)f(x)G(x, z)YIz(y, dz).

But the left side is equal to /y{ff(xt)dt} and the right side, to
{f,z) f(xt) dt}. Hence (13.2) is impossible if we choose an A containing y
as an interior point and an f strictly positive on A.

This is a revised form of an incorrect statement of the previous pper [9, footnote 4].
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PROPOSITION 13.2. (i) If h is excessive and bounded on each compact set,
then Xh is a Hunt process. (ii) If every harmonic function of L0(m) is bounded
on each compact set, then S Se

Let A be an open set with compact closure and B, a compact neighborhood
of A. Since h is bounded on A by the assumption, we have

H Ha h =< const. X P.{r(/) + (A, 0()w) < }.

When B $ S, the right side goes to 0 by hypotheses (A), (A). HenceH h is
a potential. Applying Proposition 12.2 to Ha h in place of h (also, A --/,
B -- A), we have

limnHaH HHH h 0,

n

which implies that Xh is a Hunt process.
For the proof of (ii), suppose S # Se. Then by Theorem 6, X, y e S Se,

is not a Hunt process. Hence the harmonic function G(., y) cannot be
bounded on compact sets.

14. Notes on hypotheses (A) and (A)
So far we have assumed that the basic process is a transient Hunt process

satisfying hypothesis (B). In this section we will show that the phrase
transient Hunt can be replaced by the word standard, namely, that hypotheses
(As) and (AT) can be removed. To see this we first note that hypotheses
(As), (AT) were used only in the proof of Proposition 3.6.25 But as is shown
easily Proposition 3.6 remains still valid under the following, a little weaker
than (As) and (A), hypotheses"

(As)’ Under the condition " < , each path xt(w) except on a set of
(P) measure 0 has at most one limit point in S from the left at ’. (In
other words, the other possible limit poin is A, that is, the point at infinity.)2s

(A)’ For each compact set A, r() < a.e. (P).

For each w, let l(w) be the set of limit points (in S -t- {A} of xt(w) from
the left at f. Using this notation, (As) is equivalent to

P{l(w) nS at most one point, or f } 1 forallxofS.

The purpose of this section is to prove

TIEOREM 7. If X is a standard process satisfying hypothesis (B), then hy-

We also used these hypotheses in Proposition 13.2. But since the proposition is
independent of the other results, we ignore it.

For instance, (A)’ is satisfied if X is a standard process such that the resolvent
kernel G,(x, A) maps Co into C. But this is not our case.

v This l(w) is different from that of Section 12.
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potheses (A6) and (AT)’ are satisfied. Hence all the results2s of the preceding
sections remain till valid without hypotheses A6 and (AT).

(A)’isobvious, forE/r()} -< Go(x,A) by (B).
To prove (A6)’ we will use a result on reversed processes (Proposition 14.1),

omitting the proof.
Choose a reference probability measure r such that r(dx) g(x)m(dx)

with g strictly positive everywhere on S and such that rG is finite every-
where (see Section 9 for the existence of such r). Define

(14.1) P()(. f r (dx)P(. ),
J

if(14.2) (:)f(Y)
rG(y)

m (dx) {rG(x) }f(x)G,(x, y).

Using hypothesis (B) and the properties of the above-chosen r, we can easily
show that ((,)(y, A) is a regular substochastic resolvent kernel which maps
B0 into (. Therefore there is a countable subcollection {fn} of positive func-
tions of Co such that (,)fn separates points of S.
Next we define the reversed path x_t(w ). If 0 < <= < x_t has the

obvious meaning. If > or , x_t A by definition. Then we can
prove

PROPOSITION 14.1. X-t 0 < < , is a Markov process with stationary
transition probabilits as a stochastic process defined over the probability space
W, , p(r.) ). Moreover the resolvent kernel of x_t is the kernel )(y, A) de-

fined by (14.2). That is

(r) ’x e E()
J[ -t) {x-.-t x-, u t} ds

a.e. (P(r)) for each > O.

As a result of the proposition it follows that the process y v , (x_)
is a supermartingale is f is positive. Therefore, for the previously defined f,

e-"() (x_) gives a bounded and separable supermartingale and
hence limt0 yY (w) exists a.e. (rr). Take any w such that (w) < and
such that limt0 y7 (w) exists for all n. Suppose y, y’ are points of l(w) a S.

G()fSince is continuous, we have

limt0 yt (w) limt0 e-"t().]n(X--t)"
(r).f(y)
](y ).

But since )r,,n 1, 2, separates points of S, we have y y’.
.8 Strictly speaking, except Proposition 13.2. See footnote 25.
.9 The proof will be given, in a more general form, in the following paper by the

authors: On certain reversed processes and their applications to potential theory, to ap-
in J. Math. Mech., 1966 Also see M. Nagasawa, Time reversions of Markov processes,
Nagoya Math. J., vol. 24 (1964), pp. 177-204.
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LetA {w;l(w) nS at most one point, or oo}. We have proved
p(r) (A) 1. Hence P(A) 1 for almost all x relative to r. From the
definition of r, P(A) 1 a.a. x relative to m. But in the same way as in the
proof of Proposition 12.2 it is shown that P(A) is an excessive function.
Therefore P(A) 1 for all x of S.
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