ON OPTIMAL STOPPING RULES FOR s_{n} / n

BY
Y. S. Chow and Herbert Robbins

1. Introduction

Let

$$
\begin{equation*}
x_{1}, x_{2}, \cdots \tag{1}
\end{equation*}
$$

be a sequence of independent, identically distributed random variables on a probability space (Ω, \mathcal{F}, P) with

$$
\begin{equation*}
P\left(x_{1}=1\right)=P\left(x_{1}=-1\right)=\frac{1}{2} \tag{2}
\end{equation*}
$$

and let $s_{n}=x_{1}+\cdots+x_{n}$. Let $i=0, \pm 1, \cdots$ and $j=0,1, \cdots$ be two fixed integers. Assume that we observe the sequence (1) term by term and can decide to stop at any point; if we stop with x_{n} we receive the reward $\left(i+s_{n}\right) /(j+n)$. What stopping rule will maximize our expected reward?

Formally, a stopping rule t of (1) is any positive integer-valued random variable such that the event $\{t=n\}$ is in $\mathfrak{F}_{n}(n \geq 1)$ where \mathfrak{F}_{n} is the Borel field generated by x_{1}, \cdots, x_{n}. Let T denote the class of all stopping rules; for any t in T, s_{t} is a well-defined random variable, and we set

$$
\begin{equation*}
v_{j}(i \mid t)=E\left(\frac{i+s_{t}}{j+t}\right), \quad v_{j}(i)=\sup _{t \in T} v_{j}(i \mid t) \tag{3}
\end{equation*}
$$

It is by no means obvious that for given i and j there exists a stopping rule $\mathfrak{J}_{j}(i)$ in T such that

$$
\begin{equation*}
v_{j}\left(i \mid \zeta_{j}(i)\right)=v_{j}(i)=\max _{t \in T} v_{j}(i \mid t) \tag{4}
\end{equation*}
$$

such a stopping rule of (1) will be called optimal for the reward sequence

$$
\begin{equation*}
\frac{i+s_{1}}{j+1}, \quad \frac{i+s_{2}}{j+2}, \cdots \tag{5}
\end{equation*}
$$

Theorem 1 below asserts that for every $i=0, \pm 1, \cdots$ and $j=0,1, \cdots$ there exists an optimal stopping rule $J_{j}(i)$ for the reward sequence (5).

We remark that for any t in T and any $i=0, \pm 1, \cdots$ and $j=0,1, \cdots$ the random variable

$$
\begin{array}{rlrl}
t^{\prime} & =t & & \text { if } i+s_{t} \geq 1 \tag{6}\\
& =\text { first } n>t \text { such that } i+s_{n}=1 & \text { if } i+s_{t} \leq 0
\end{array}
$$

is in T and

$$
\begin{equation*}
i+s_{t^{\prime}} \geq 1, \quad 0<E\left(\frac{i+s_{t^{\prime}}}{j+t^{\prime}}\right) \geq E\left(\frac{i+s_{t}}{j+t}\right) \tag{7}
\end{equation*}
$$

[^0]It follows that

$$
\begin{equation*}
v_{j}(i)=\sup _{t \in T} E\left[\frac{\left(i+s_{t}\right)^{+}}{j+t}\right] \tag{8}
\end{equation*}
$$

where by definition $a^{+}=\max (0, a)$.

2. Reduction of the problem to the study of bounded stopping rules

For any fixed $N=1,2, \cdots$ let T_{N} denote the class of all t in T such that $t \leq N$. By the usual backward induction (see e.g. [1]) it may be shown that in T_{N} there exists a minimal optimal stopping rule of (1) for the reward sequence

$$
\begin{equation*}
\frac{\left(i+s_{1}\right)^{+}}{j+1}, \quad \frac{\left(i+s_{2}\right)^{+}}{j+2}, \cdots \tag{1}
\end{equation*}
$$

that is, an element $J_{j}^{N}(i)$ of T_{N} such that, setting

$$
\begin{equation*}
w_{j}(i \mid t)=E\left[\frac{\left(i+s_{t}\right)^{+}}{j+t}\right] \tag{2}
\end{equation*}
$$

we have

$$
\begin{equation*}
w_{j}\left(i \mid J_{j}^{N}(i)\right)=\max _{t e T_{N}} w_{j}(i \mid t) \tag{3}
\end{equation*}
$$

and such that if \tilde{t} is any element of T_{N} for which

$$
\begin{equation*}
w_{j}(i \mid \tilde{t})=\max _{t \in T_{N}} w_{j}(i \mid t) \tag{4}
\end{equation*}
$$

then $J_{j}^{N}(i) \leq \tilde{t}$. The sequence $J_{j}^{1}(i), J_{j}^{2}(i) \cdots$ is such that as $N \rightarrow \infty$,

$$
\begin{gather*}
1 \leq \mathfrak{J}_{j}^{1}(i) \leq \mathfrak{J}_{j}^{2}(i) \leq \cdots \rightarrow \mathfrak{J}_{j}^{*}(i) \leq \infty \\
0 \leq w_{j}\left(i \mid J_{j}^{1}(i)\right) \leq w_{j}\left(i \mid J_{j}^{2}(i)\right) \leq \cdots \rightarrow \sup _{\text {teT }} w_{j}(i \mid t)=v_{j}(i) \tag{5}
\end{gather*}
$$

the last equality following from (1.8). It is shown in [1] that there exists an optimal element in T for the reward sequence (1.5) if and only if

$$
\begin{equation*}
\mathfrak{J}_{j}^{*}(i)=\lim _{N \rightarrow \infty} \mathbb{J}_{j}^{N}(i) \tag{6}
\end{equation*}
$$

is in T-that is, if and only if

$$
\begin{equation*}
P\left(\mathfrak{J}_{j}^{*}(i)<\infty\right)=1 \tag{7}
\end{equation*}
$$

—and when (7) holds $\mathfrak{J}_{j}^{*}(i)$ is the minimal element of T which satisfies (1.4). The remainder of the present paper is devoted to proving that (7) holds.

3. The constants $a_{n}^{N}(i)$ and $a_{n}(i)$

In order to study the nature of the optimal bounded stopping rules $T_{j}^{N}(i)$ of Section 2 we proceed as follows. Define for $N=1,2, \cdots$ and $i=0$,
$\pm 1, \cdots$ the constants

$$
b_{N}^{N}(i)=\frac{i^{+}}{\bar{N}}
$$

$$
\begin{align*}
& b_{n}^{N}(i)=\max \left(\frac{i^{+}}{n}, \frac{b_{n+1}^{N}(i+1)+b_{n+1}^{N}(i-1)}{2}\right) \tag{1}\\
&(n=1,2, \cdots, N-1) .
\end{align*}
$$

Then
(2) $b_{n}^{N}(i)=\max \left(\frac{i^{+}}{n}, \sup _{t \in T_{N-n}} E\left[\frac{\left(i+s_{t}\right)^{+}}{n+t}\right]\right) \quad(n=1,2, \cdots, N-1)$,
(3) $\quad J_{j}^{N}(i)=$ first $n \geq 1$ such that $b_{j+n}^{j+N}\left(i+s_{n}\right)=\frac{\left(i+s_{n}\right)^{+}}{j+n}$,
and

$$
\begin{equation*}
\sup _{t \in T_{N}} E\left[\frac{\left(i+s_{t}\right)^{+}}{j+t}\right]=\frac{1}{2}\left[b_{j+1}^{j+N}(i+1)+b_{j+1}^{j+N}(i-1)\right] . \tag{4}
\end{equation*}
$$

In view of (2) and (3) it is convenient to introduce the constants $a_{n}^{N}(i)$ defined for $N=1,2, \cdots ; i=0, \pm 1, \cdots ; n=1,2, \cdots, N$ by

$$
\begin{equation*}
a_{n}^{N}(i)=b_{n}^{N}(i)-\frac{i^{+}}{n} \tag{5}
\end{equation*}
$$

then (3) becomes

$$
\begin{equation*}
J_{j}^{N}(i)=\text { first } n \geq 1 \text { such that } a_{j+n}^{j+N}\left(i+s_{n}\right)=0 \tag{6}
\end{equation*}
$$

From (5) and (1) it follows that the constants $a_{n}^{N}(i)$ satisfy the recursion relations

$$
\begin{align*}
a_{N}^{N}(i)= & 0 \tag{i}\\
a_{n}^{N}(i)= & {\left[\frac{a_{n+1}^{N}(i+1)+a_{n+1}^{N}(i-1)}{2}\right.} \tag{7}\\
& \left.+\frac{(i+1)^{+}+(i-1)^{+}}{2(n+1)}-\frac{i^{+}}{n}\right]^{+} \quad(n=1,2, \cdots, N-1)
\end{align*}
$$

from which they may be successively computed for $n=N, N-1, \cdots, 1$. Moreover, from (2) and (4) we have

$$
\begin{equation*}
a_{n}^{N}(i)=\sup _{t \in T_{N-n}}\left\{E\left[\frac{\left(i+s_{t}\right)^{+}}{n+t}-\frac{i^{+}}{n}\right]\right\}^{+} \quad(n=1,2, \cdots, N-1) \tag{8}
\end{equation*}
$$

and

$$
\begin{align*}
& \sup _{t \in T_{N}} E\left[\frac{\left.\left(i+s_{t}\right)^{+}\right]}{j+t}\right] \tag{9}\\
& \quad=\frac{1}{2}\left[a_{j+1}^{j+N}(i+1)+a_{j+1}^{j+N}(i-1)+\frac{(i+1)^{+}+(i-1)^{+}}{j+1}\right] .
\end{align*}
$$

For any $i=0, \pm 1, \cdots$ and $n=1,2, \cdots$ we have

$$
0=a_{n}^{n}(i) \leq a_{n}^{n+1}(i) \leq \cdots
$$

and letting $N \rightarrow \infty$ we obtain constants $a_{n}(i)=\lim _{N \rightarrow \infty} a_{n}^{N}(i)$ such that

$$
\begin{equation*}
a_{n}^{N}(i) \uparrow a_{n}(i)=\sup _{t \in T} E^{+}\left[\frac{\left(i+s_{t}\right)^{+}}{n+t}-\frac{i^{+}}{n}\right] \tag{10}
\end{equation*}
$$

while for $j=0,1, \cdots$

$$
\begin{aligned}
\sup _{t \in \boldsymbol{T}} E[& \left.\frac{\left(i+s_{t}\right)^{+}}{j+t}\right] \\
& =\sup _{t \in T} E\left(\frac{i+s_{t}}{j+t}\right)=v_{j}(i) \\
& =\frac{1}{2}\left[\frac{(i+1)^{+}+(i-1)^{+}}{j+1}+a_{j+1}(i+1)+a_{j+1}(i-1)\right]
\end{aligned}
$$

moreover $\Im_{j}^{N}(i) \uparrow \Im_{j}^{*}(i)$ where

$$
\begin{align*}
\mathfrak{J}_{j}^{*}(i) & =\text { first } n \geq 1 \text { such that } a_{j+n}\left(i+s_{n}\right)=0 \tag{12}\\
& =\infty \text { if no such } n \text { exists. }
\end{align*}
$$

Thus (2.7) holds if and only if

$$
\begin{equation*}
P\left(a_{j+n}\left(i+s_{n}\right)=0 \text { for some } n \geq 1\right)=1 \tag{13}
\end{equation*}
$$

In the next section we shall prove (Lemma 4) that there exists a positive integer n_{0} such that $n \geq n_{0}$ and $i>13 \sqrt{n}$ together imply that $a_{n}(i)=0$. Hence

$$
\begin{align*}
P\left(a_{j+n}\left(i+s_{n}\right)=\right. & 0 \text { for some } n \geq 1) \\
& \geq P\left(s_{n}>13 \sqrt{j+n}-i \text { for some } n \geq n_{0}\right) \tag{14}
\end{align*}
$$

The law of the iterated logarithm implies that the latter probability is 1 and this establishes (13); hence $J_{j}^{*}(i)$ defined by (12) is in T and is optimal for the reward sequence (1.5). We thus have the following:

Theorem 1. For the sequence (1.1) with the distribution (1.2) and the reward sequence (1.5) there exists an optimal stopping rule $\mathfrak{J}_{j}^{*}(i)$ defined by (12);
the expected reward in using $\mathfrak{J}_{j}^{*}(i)$ is

$$
\begin{align*}
v_{j}(i)= & \max _{t \in T} E\left(\frac{i+s_{t}}{j+t}\right) \\
= & \frac{1}{2}\left[\frac{(i+1)^{+}+(i-1)^{+}}{j+1}+a_{j \neq 1}(i+1)+a_{j+1}(i-1)\right] \tag{15}\\
& (i=0, \pm 1, \cdots ; j=0,1, \cdots) .
\end{align*}
$$

The constants $a_{n}(i)=\lim _{N \rightarrow \infty} a_{n}^{N}(i)$ which occur in (12) and (15) are determined by (7).

4. Lemmas

Lemma 1.

$$
a_{n}(0) \leq 1 / \sqrt{n}
$$

$$
(n=1,2, \cdots)
$$

Proof. From (3.7) we have

$$
\begin{array}{rlr}
a_{n}^{N}(i)= & \frac{a_{n+1}^{N}(i+1)+a_{n+1}^{N}(i-1)}{2} & (i \leq-1) \\
& =\frac{a_{n+1}^{N}(1)+a_{n+1}^{N}(-1)}{2}+\frac{1}{2(n+1)} & (i=0) \\
& =\left[\frac{a_{n+1}^{N}(i+1)+a_{n+1}^{N}(i-1)}{2}-\frac{i}{n(n+1)}\right]^{+} & \\
& \leq \frac{a_{n+1}^{N}(i+1)+a_{n+1}^{N}(i-1)}{2}(i \geq 1)
\end{array}
$$

Hence
(2)

$$
\begin{aligned}
a_{n}^{N}(0) & =\frac{a_{n+1}^{N}(1)+a_{n+1}^{N}(-1)}{2}+\frac{1}{2(n+1)} \\
& \leq \frac{1}{2^{2}}\left[a_{n+2}^{N}(2)+2 a_{n+2}^{N}(0)+a_{n+2}^{N}(-2)\right]+\frac{1}{2(n+1)} \\
& \leq \frac{1}{2^{3}}\left[a_{n+3}^{N}(3)+3 a_{n+3}^{N}(1)+3 a_{n+3}^{N}(-1)+a_{n+3}^{N}(-3)\right]
\end{aligned}
$$

$$
+\frac{1}{2(n+1)}+\frac{\binom{2}{1}}{2^{3}(n+3)}
$$

$$
\leq \cdots \leq \sum_{k=0}^{\infty} \frac{\binom{2 k}{k}}{2^{2 k+1}(n+2 k+1)}
$$

since $a_{N}^{N}(i) \equiv 0 . \quad$ By Stirling's formula

$$
\begin{equation*}
\binom{2 k}{k}<\frac{2^{2 k}}{\sqrt{k \pi}} \tag{3}
\end{equation*}
$$

and

$$
\begin{align*}
\sum_{k=n}^{\infty} \frac{1}{2 \sqrt{k \pi}(n+2 k+1)} & \leq \frac{1}{2 \sqrt{\pi}} \int_{r-1 / 2}^{\infty} \frac{d x}{\sqrt{x}(n+2 x+1)} \tag{4}\\
& =\frac{1}{\sqrt{2 \pi(n+1)}}\left(\frac{\pi}{2}-\tan ^{-1} \sqrt{\frac{2 r-1}{n+1}}\right)
\end{align*}
$$

Hence

$$
\begin{align*}
a_{n}(0)=\lim _{N \rightarrow \infty} a_{n}^{N}(0) & \leq \sum_{k=0}^{r-1} \frac{\binom{2 k}{k}}{2^{2 k+1}(\mathrm{n}+2 k+1)} \tag{5}\\
& +\frac{1}{\sqrt{2 \pi(n+1)}}\left(\frac{\pi}{2}-\tan ^{-1} \sqrt{\frac{2 r-1}{n+1}}\right)
\end{align*}
$$

For $r=1$ this gives

$$
\begin{equation*}
a_{n}(0) \leq \frac{1}{2(n+1)}+\frac{1}{\sqrt{2 n}} \leq \frac{1}{\sqrt{n}} \tag{6}
\end{equation*}
$$

Lemma 2. For $n=1,2, \cdots$
(7) $0<\cdots \leq a_{n}(-2) \leq a_{n}(-1) \leq a_{n}(0)$

$$
\geq a_{n}(1) \geq a_{n}(2) \geq \cdots \geq 0
$$

$$
\begin{equation*}
a_{n+1}(i) \geq \frac{n+1}{n+2} a_{n}(i) \quad \quad(\text { all } i) \tag{8}
\end{equation*}
$$

Proof. For $i \leq 0$ we have from (3.10) and (1.7)

$$
\begin{equation*}
a_{n}(i)=\sup _{t \in T} E\left[\frac{\left(i+s_{t}\right)^{+}}{n+t}\right]>0 \tag{9}
\end{equation*}
$$

hence

$$
\begin{equation*}
a_{n}(i) \geq \sup _{t \in T} E\left[\frac{\left(i-1+s_{t}\right)^{+}}{n+t}\right]=a_{n}(i-1) \tag{10}
\end{equation*}
$$

For $i \geq 0$ we have

$$
\begin{align*}
a_{n}(i) & =\sup _{t \in T} E^{+}\left[\frac{i+s_{t}}{n+t}-\frac{i}{n}\right]=\sup _{t \in T} E^{+}\left[\frac{n s_{t}-i t}{n(n+t)}\right] \tag{11}\\
& \geq \sup _{t \in T} E^{+}\left[\frac{n s_{t}-(i+1) t}{n(n+t)}\right]=a_{n}(i+1) \geq 0
\end{align*}
$$

(7) follows from (10) and (11). To prove (8) we shall show that for $n=1$, $2, \cdots, N$,

$$
\begin{equation*}
\frac{n+2}{n+1} a_{n+1}^{N+1}(i) \geq a_{n}^{N}(i) \tag{12}
\end{equation*}
$$

(8) will follow from (12) on letting $N \rightarrow \infty$. (12) is true trivially for $n=N$ since $a_{N}^{N}(i)=0$. Assume now that (12) holds; for $i \neq 0$ we have by (1),

$$
\begin{align*}
\frac{n+1}{n} a_{n}^{N+1}(i) & =\frac{n+1}{n}\left[\frac{a_{n+1}^{N+1}(i+1)+a_{n+1}^{N+1}(i-1)}{2}-\frac{i^{+}}{n(n+1)}\right]^{+} \\
& \geq \frac{n+1}{n}\left[\frac{n+1}{n+2} \frac{a_{n}^{N}(i+1)+a_{n}^{N}(i-1)}{2}-\frac{i^{+}}{n(n+1)}\right]^{+} \tag{13}\\
& \geq\left[\frac{a_{n}^{N}(i+1)+a_{n}^{N}(i-1)}{2}-\frac{i^{+}}{(n-1) n}\right]^{+}=a_{n-1}^{N}(i) .
\end{align*}
$$

The case $i=0$ is treated similarly. Thus (12) holds with n replaced by $n-1$, and hence (12) holds for all $n=N, N-1, \cdots, 2,1$.

Lemma 3. Let i and j be non-negative integers such that $a_{n}(i+j)>0$. Let J_{0} denote the first integer $m \geq 1$ such that $s_{m}=j+1$. Then for any given t in T there exists a 5 in T such that

$$
\begin{equation*}
\mathfrak{J} \geq t, \quad \mathfrak{J} \geq J_{0}, \quad E\left(\frac{i+s_{J}}{n+J}\right) \geq E\left(\frac{i+s_{t}}{n+t}\right) \tag{14}
\end{equation*}
$$

Proof. We have from (3.10) and (3.11) for $i \geq 0$,

$$
\begin{equation*}
a_{n}(i)=\left[\sup _{t \in T} E\left(\frac{i+s_{t}}{n+t}\right)-\frac{i}{n}\right]^{+} . \tag{15}
\end{equation*}
$$

By (7) and (8) the inequality $a_{n}(i+j)>0$ implies that for every positive integer m and every integer $k \leq j$,

$$
\begin{equation*}
a_{n+m}(i+k)>0 \tag{16}
\end{equation*}
$$

and hence that there exists a stopping rule $t_{m, k}$ of the sequence x_{m+1}, x_{m+2}, \cdots such that

$$
\begin{equation*}
E\left(\frac{i+k+x_{m+1}+x_{m+2}+\cdots+x_{m+t_{m, k}}}{n+m+t_{m, k}}\right)>\frac{i+k}{n+m} \tag{17}
\end{equation*}
$$

Let A be the event $\left\{t<J_{0}\right\}$, and define

$$
\begin{align*}
t_{1}(\omega)=t(\omega) & \text { if } \quad \omega \notin A, \\
=t(\omega)+t_{m, k}(\omega) & \text { if } \quad \omega \in A, t(\omega)=m, s_{t(\omega)}=k \tag{18}\\
& \quad(m=1,2, \cdots ; k \leq j) .
\end{align*}
$$

Then t_{1} is a stopping rule, $t_{1} \geq t$, and $t_{1}(\omega) \geq t(\omega)+1$ if $\omega \epsilon A$. Moreover

$$
\begin{align*}
E\left(\frac{i+s_{t_{1}}}{n+t_{1}}\right) & =\int_{\Omega-A} \frac{i+s_{t}}{n+t} d P+\sum_{m, k} \int_{\left\{t=m, s_{t}=k, t<J_{0}\right\}} \frac{i+s_{t+t_{m, k}}}{n+t+t_{m, k}} d P \\
& \geq \int_{\Omega-A} \frac{i+s_{t}}{n+t} d P+\sum_{m, k} \int_{\left\{t=m, s_{t}=k, t<J_{0}\right\}} \frac{i+k}{n+m} d P \tag{19}\\
& =E\left(\frac{i+s_{t}}{n+t}\right)
\end{align*}
$$

Set $t_{0}=t$ and $A_{0}=A$. By a repetition of the preceding argument we may define a sequence of stopping rules t_{l},

$$
\begin{equation*}
t=t_{0} \leq t_{1} \leq t_{2} \leq \cdots \tag{20}
\end{equation*}
$$

and events $A_{l}=\left\{t_{l}<J_{\mathrm{c}}\right\}$ with

$$
\begin{equation*}
A=A_{0} \supset A_{1} \supset A_{2} \supset \cdots \tag{21}
\end{equation*}
$$

such that

$$
\begin{align*}
t_{l+1}(\omega) & =t_{l}(\omega) \quad \text { if } \quad \omega \notin A_{l} \tag{22}\\
& \geq t_{l}(\omega)+1 \quad \text { if } \quad \omega \in A_{l}
\end{align*}
$$

Set

$$
\begin{equation*}
J=\lim _{l \rightarrow \infty} t_{l} \tag{23}
\end{equation*}
$$

then $\{J=\infty\}=\left\{J_{0}=\infty\right\}$, so that \mathcal{J} is in T, and $J \geq J_{0}, \mathcal{J} \geq t$. By the Lebesgue dominated convergence theorem,

$$
\begin{equation*}
E\left(\frac{i+s_{3}}{n+J}\right)=\lim _{l \rightarrow \infty} E\left(\frac{i+s_{t_{l}}}{n+t_{l}}\right) \geq E\left(\frac{i+s_{t}}{n+t}\right) \tag{24}
\end{equation*}
$$

and the proof is complete.
Lemma 4. There exists a positive integer n_{0} such that $n \geq n_{0}$ and $i>13 \sqrt{n}$ imply that $a_{n}(i)=0$.

Proof. Let i be a positive integer such that $a_{n}(2 i)>0$, and let J denote the first integer $m \geq 1$ such that $s_{m}=i$. Then [2, p. 87] as $i \rightarrow \infty$,

$$
\begin{equation*}
P\left(\Im \geq i^{2}\right) \rightarrow \frac{\sqrt{2}}{\pi} \int_{0}^{1} e^{-u^{2} / 2} d u>\sqrt{\frac{2}{\pi e}}>\frac{1}{3} \tag{25}
\end{equation*}
$$

Hence there exists $i_{0}>0$ such that

$$
\begin{equation*}
E\left(\frac{J}{i^{2}+5}\right)>\frac{1}{6} \tag{26}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
E\left(\frac{J}{n+\sqrt[J]{J}}\right)>\frac{1}{6} \quad\left(i \geq i_{0}, 1 \leq n \leq i^{2}\right) \tag{27}
\end{equation*}
$$

By (7), $a_{n}(i)>0$, and hence by Lemma 3 (putting $j=i$) there exists a $t \in T$ such that $t \geq \mathfrak{J}$ and

$$
\begin{equation*}
E\left(\frac{i+s_{t}}{n+t}\right)>\frac{i}{n} \tag{28}
\end{equation*}
$$

Hence by Lemma 1 and (11),

$$
\begin{aligned}
\frac{1}{\sqrt{n}} \geq a_{n}(0) \geq E & \left(\frac{s_{t}}{n+t}\right) \\
& =E\left(\frac{i+s_{t}}{n+t}\right)-E\left(\frac{i}{n+t}\right) \\
& >\frac{i}{n}-E\left(\frac{i}{n+t}\right)=\frac{i}{n} E\left(\frac{t}{n+t}\right) \\
& \geq \frac{i}{n} E\left(\frac{J}{n+J}\right)>\frac{i}{6 n} \quad\left(i \geq i_{0}, 1 \leq n \leq i^{2}\right)
\end{aligned}
$$

Assume now that $a_{n}(j)>0$ for some $j>13 \sqrt{ } \bar{n}$ and $n \geq n_{0}=i_{0}^{2}$. Then by (7), letting square brackets denote integral part,

$$
\begin{equation*}
a_{n}\left(2\left[\frac{j}{2}\right]\right)>0, \quad\left[\frac{j}{2}\right]^{2} \geq n \geq 1, \quad\left[\frac{j}{2}\right] \geq i_{0} \tag{30}
\end{equation*}
$$

Hence, setting

$$
i=\left[\frac{j}{2}\right]
$$

in (29),

$$
\begin{equation*}
\left[\frac{j}{2}\right]<6 \sqrt{n} \tag{31}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
j<12 \sqrt{n}+1 \leq 13 \sqrt{n} \tag{32}
\end{equation*}
$$

a contradiction. The proof of Lemma 4, and hence of Theorem 1 , is complete.

5. Remarks

1. If we define for $n=1,2, \cdots$

$$
\begin{equation*}
k_{n}=\text { smallest integer } k \text { such that } a_{n}(k)=0 \tag{1}
\end{equation*}
$$

then from Lemma 2 it follows that

$$
\begin{equation*}
0<k_{1} \leq k_{2} \leq \cdots \tag{2}
\end{equation*}
$$

and that
(3)

$$
a_{n}(i)=0 \quad \text { if and only if } i \geq k_{n}
$$

It is easily seen that

$$
\begin{align*}
\mathfrak{J}_{j}^{*}(i) & =\text { first } n \geq 1 \text { such that } a_{j+n}\left(i+s_{n}\right)=0 \\
& =\text { first } n \geq 1 \text { such that } i+s_{n}=k_{j+n} \tag{4}
\end{align*}
$$

Hence the stopping rules $\Im_{j}^{*}(i)$ are completely defined by the sequence of positive integers k_{n}. It is difficult to obtain an explicit formula for k_{n}; by Lemma 4 we know that $k_{n}=0(\sqrt{n})$ as $n \rightarrow \infty$. We note also that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} k_{n}=\infty \tag{5}
\end{equation*}
$$

Otherwise we would have $k_{n}<M$ for some finite positive integer M and every $n=1,2, \cdots$. If so, let $t=$ first $m \geq 1$ such that $s_{m}=M$. Then since $a_{n}(M)=0$,

$$
\begin{equation*}
E\left(\frac{M+s_{t}}{n+t}\right) \leq \frac{M}{n} \tag{6}
\end{equation*}
$$

and hence

$$
\begin{equation*}
E\left(\frac{2 M}{n+t}\right) \leq \frac{M}{n}, \quad E\left(\frac{n}{n+t}\right) \leq \frac{1}{2} \tag{7}
\end{equation*}
$$

But as $n \rightarrow \infty$,

$$
\begin{equation*}
E\left(\frac{n}{n+t}\right) \rightarrow 1 \tag{8}
\end{equation*}
$$

which contradicts (7).
2. We have from (3.15),

$$
\begin{equation*}
v_{0}(0)=\max _{t \in T} E\left(\frac{s_{t}}{t}\right)=\frac{1}{2}\left[1+a_{1}(1)+a_{1}(-1)\right] \tag{9}
\end{equation*}
$$

Now by (4.15), since $s_{t} \leq t$,

$$
\begin{equation*}
a_{1}(1)=\left[\sup _{t \epsilon T} E\left(\frac{1+s_{t}}{1+t}\right)-1\right]^{+}=0 \tag{10}
\end{equation*}
$$

and by (4.6) and (4.7),

$$
\begin{equation*}
a_{1}(-1) \leq a_{1}(0) \leq \frac{1}{4}+1 / \sqrt{2}<.96 \tag{11}
\end{equation*}
$$

Hence

$$
\begin{equation*}
v_{0}(0)<.98 \tag{12}
\end{equation*}
$$

This inequality is very crude and can be greatly improved by a more detailed analysis of the term $a_{1}(-1)$, but it is interesting to note that even (12) is not easy to prove directly from the definition of $v_{0}(0)$.
3. In this connection let us define

$$
\begin{equation*}
v_{N}=\max _{t \in T_{N}} E\left[\frac{s_{t}^{+}}{t}\right] \tag{13}
\end{equation*}
$$

then as $N \rightarrow \infty$

$$
\begin{equation*}
v_{N} \uparrow v_{0}(0)=\max _{t \in T} E\left(\frac{s_{t}^{+}}{t}\right)=\max _{t \in T} E\left(\frac{s_{t}}{t}\right) \tag{14}
\end{equation*}
$$

Now for any fixed $N=1,2, \cdots$ the value v_{N} can be computed by recursion; by (3.4) and (3.2),

$$
\begin{equation*}
v_{N}=\frac{1}{2}\left[b_{1}^{N}(1)+b_{1}^{N}(-1)\right]=\frac{1}{2}\left[1+b_{1}^{N}(-1)\right] \tag{15}
\end{equation*}
$$

where by (3.1)

$$
\begin{align*}
& b_{N}^{N}(i)=\frac{i^{+}}{N} \\
& b_{n}^{N}(i)=\max \left(\frac{i^{+}}{n}, \frac{b_{n+1}^{N}(i+1)+b_{n+1}^{N}(i-1)}{2}\right) \quad(n=1,2, \cdots, N-1) . \tag{16}
\end{align*}
$$

The computation of the $b_{n}^{N}(i)$ is easily programmed for a high speed computer; the following results were kindly supplied to us by R. Bellman and S. Dreyfus:

$$
\begin{align*}
v_{100} & =.5815 \\
v_{200} & =.5835 \\
v_{500} & =.5845 \tag{17}\\
v_{1000} & =.5850
\end{align*}
$$

4. Remarks. (i) It would be interesting to see whether the existence of an optimal stopping rule for s_{n} / n can be proved for sequences x_{1}, x_{2}, \ldots with a more general distribution than (1.2). We have some preliminary extensions of Theorem 1 to more general cases but no definitive results as yet.
(ii) While the optimal stopping rules for s_{n} / n and s_{n}^{+} / n are the same, the optimal truncated rules, $1 \leq n \leq N$, are quite different.
(iii) The reward sequence

$$
\begin{equation*}
c s_{1}, c^{2} s_{2}, \cdots, c^{n} s_{n}, \cdots \tag{1}
\end{equation*}
$$

where $0<c<1$ also admits an optimal stopping rule; the proof of this is quite simple compared to that for s_{n} / n.

Added in Proof. A. Dvoretzky has recently communicated to us the proof of the existence of an optimal stopping rule for s_{n} / n for any sequence x_{1}, x_{2}, \cdots of independent, identically distributed random variables with a finite second moment.

References

1. Y. S. Chow and H. Robbins, On optimal stopping rules, Z. Wahrscheinlichkeitstheorie, vol. 2 (1963), pp. 33-49.
2. W. Feller, An introduction to probability theory and its applications, second edition, New York, Wiley, 1957.

Purdue University

Lafayette, Indiana
Columbia University
New York, New York

[^0]: Received February 4, 1964.

