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Introduction
The purpose of this note is to consider various properties of loops which ark

related to central nilpotency, and to determine some of the implications
which hold among them. Since some of the properties considered are equiv-
alent to nilpotency for the class of finite groups, it is natural to ask whether
or not any of the properties is equivalent to central nilpotency for an in-
teresting class of finite loops. Another reason for studying the problem is
that the standard, group-theoretic proofs in the area of nilpotency ultimately
depend on the rather remarkable properties of Sylow normaliers. Since
neither "Sylow subloops" nor normalizers exist, in general, for loops, some
of the proofs and counterexamples obtained for loops expose the essential
reasons behind the success of the theory for groups.
The paper is divided as follows. In Section 1 we present the conditions

to be studied and list some of the implications among them which hold for
loops in general. Various pathological examples lead us to restrict ourselves
to power-associative loops. We begin Section 2 with a general theorem about
power-associative loops. Although the result is not deep, it seems to be
new, perhaps because no one needed it before. Using this theorem, we next
give a method for constructing new, power-associative loops from old ones.
In particular, we construct enough pathological examples to show that the
results for power-associative loops must be meager. In Section 3, therefore,
we consider diassociative loops. We are able to show that some reasonably
interesting implications hold for rather restricted classes of diassociative
loops, and we obtain an example which shows that even commutative, dias-
sociative 2-loops are ill-mannered, indeed. In the final section, we touch
briefly on the problem for Moufang loops and note that a certain amount of
pathology is still present.

1. The problem for general loops
Throughout what follows we use the notation of [1]. In addition, the

symbol (A) stands for the subloop generated by the set A, and Ai is the
order of (A). We use the symbol A

_
B (A < B) to stand for the statement

that A is a subloop of B (and is not B) and use A <:l B to mean that A is a
normal subloop of B. We parallel the definition in Kurosh [5, p. 215] and
define an N-loop to be a loop in which every proper subloop is normal in a
strictly larger subloop. Finally, if r is a set of primes, we let P be the comple-
mentary set and call a loop a r-loop in case it is power-associative and con-
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tains no element of infinite order or of order a prime in v’. We call a {p}-loop
a p-loop.

Let G be a loop. The conditions on G which we wish to consider are:

(1)
(2)
(3)
(4)
(5)

G is centrally nilpotent;
G is an N-loop;
G is a direct sum of p-loops;
G is commutative;
G is Hamiltonian.

It is well known that if G is a finite group, then (1), (2) and (3) are equiva-
lent and are implied by each of (4) and (5). When any of these conditions
holds for a finite group, G, then also

(6) every non-trivial maximal subloop of G has a non-trivial center which
is normal in G,

so that

(6’) every non-trivial maximal subloop of G contains a non-trivial G-normal
subloop in its center.

It was essentially observed by Bruck [2, p. 275] that (1) implies (2) for
arbitrary loops. Clearly, (5) implies (2), and since (1) is inherited by sub-
loops and factor loops, (1) and (5) together imply (6). In the negative
direction, it is possible to construct a commutative loop of order 7 with no
proper subloops and, by extending this loop by a group of order 3, to produce
a loop of order 21 which is commutative and Hamiltonian but does not satisfy
(1), (3) or (6’).
In what follows we shall produce examples which show that, except as just

noted, no one of (1), (5) implies any other. In view of the existence
of such examples, it seems essential to place some restriction on the loops
considered in order to relate arithmetical, normal and .central properties.

2. A kite-tail construction for power-associative loops
The purpose of this section is to exhibit a method of extending a cyclic

group by a power-associative loop in such a fashion that the extension is a
power-associative loop. We begin with a result about generators of power-
associative loops. In the. statement and proof of the theorem we use the
notation x to stand for (x} where there can be no ambiguity and write H:K for
the index of K in H.

THEOREM 1. Let G be a power-associative loop. Then G contains a subset,
B, with the properties that

(i) for each x in G there is a y in B with (x} (y}, and
(ii) if y and z are in B with y z I and with y: y z a and z: y z b,

then y" z.
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Proof. Let be the collection of all subsets, B, of G satisfying (ii), and
partially order by inclusion. Since has finite character, by Tukey’s
Lemma has a maximal member, say B0. We show that B0 satisfies (i) by
considering cases. Let x be in G.

Case 1. Ix[ is a power of a prime, p. ChooseyinB0sothatx’xyis
minimal, say x’x y a and y’x y b. Since x y (xa) (y), there
is an integer, n, such that y xa. Let u x. Sincen is prime to p,
(u) (x). Suppose thatzisinB0andthatu’uz candz’uz d.
Since x’x y is minimal, and since (x) is a cyclic p-group, u z <_ u y.
Hence, uz uzy _< zay. If y’zy e and z’zy f, then
y z], since y and z are in B0. Letg zy’unzandh uy’uz.
Thenc ah, d fg and y’u z eg bh. Hence,

U
ah bh

Z
f d-u =y --y -z.

Since z was an arbitrary member of Bo, B0 t {u} satisfies (ii). Thus u is in
Bo. We have shown that if x is a prime-power, then there is a u in Bo with
<x> (u>.

Case 2. xl is finite. In view of the result of Case 1, we may assume
inductively that (x) <y)<z) with y and z in Bo and with ynz 1. If
[y[ bandlz[ a, thenx:xny a, x’x n z b, and x ab. There
are integers, n and m, such that an - bm 1. Let u y’z’. Then u y,
u z, and (x)= (u). Suppose that w is in Bo and that x’xw e,
w:x n w f, y’y n w g, w’y w hf, z:z w i and w’z w ft.
Now

xnw (yw) @ (znw), xw’ynw h, xw’zw =j,

so that [zwl h and YW[ j. Hence,

hi Iznwl.(z’znw) Izl a,

and similarly gj b. Thus,

gihj ba xl e.l x n w ehj,

so that gi e. Moreover, since y, z and w are in Bo, yg w and z w’.
Hence,

U U
gi yginzgim whfin+Jfg wanf+bm] Wf.

Since w was an arbitrary member of Bo, Bou {u} satisfies (ii), and u is in
Bo. The proof of Case 2 is completed by induction on Ix I. Thus if xl is
finite, there is a u in Bo such that

Case 3. xl is infinite. There is a y in Bo such that xny # 1, since
otherwise Boa {x} would vacuously satisfy (ii). If x:xny a and
y’xny b, thenx ynb, wheren =t=l. Letu x’. Then(u) (x).
If z is in Bo, and if x’x n z c and z:x n z d, then x zm, where m =i= 1.
Now 1 # xaeynz,sothatxnynz # 1. Letxnynz w. We have



402 c.R.B. WRIGHT

(x’x n y) (y’y z) (z’z x)

(x’w)(y’w)(z’w)/(x n y’w)(y n z’w)(z x’w)

(x’z x)(y’x y)(z’y n z),

so that a(y’y z)d cb(z’y z). Thus, since y and z are in Bo,
Xa(y:yflz)d xCb(z:yfz) zmdb(z:yflz) ymdb(y:yflz) xmdna(y:yflz).

Hence, mn i and m n. Thus u z. Since z was an arbitrary member
of B0, it follows, as above, that u is in B0.
We have shown that for each x in G there is a u in B0 such that

Thus B0 satisfies (i), and the theorem is proved.
Notice that if the orders of the elements of G are bounded, then by selecting

those members of B0 which generate maximal cyclic subgroups of G we get a
subset, B1, of G with the properties that

(i’) if x is in G, then there is a y in B1 with x in (y),
(ii) if y and z are in B1 with ynz # 1 and with y’ynz a and

z’y n z b, then ya zb, and
(iii) if y and z are in B, then y is not in (z).

In view of the existence of groups of type p, we cannot hope for such an
independent, cyclic basis in an arbitrary torsion loop.

Let H be a power-associative loop. Let C be a cyclic group written addi-
tively. We construct an extension, G, of C by H as follows. For each
ordered pair, (h, ]), of elements of H which do not lie in a common cyclic sub-
group of H, arbitrarily choose a quasi-group, (C, *h.k), whose elements are
those of C. Choose a subset, B, of H satisfying (i} and (ii) of Theorem 1.
Let G C X H, and define multiplication in G as follows. If (h, k} is not
cyclic, let

(a, h)(b, k) (a .. b, hie).

If h and k lie in (g} for some g in B, and if h g and k g" (with
0 <_ m < gland0_< n < gliflglisfinite) define

(a,h)(b,k) (a-+-b, hl) if m -n < Ig]
and

(a, h) (b, k) (aWb + 1, hk) if u+n_> Ig[.
One can check that condition (ii) of Theorem 1 insures that the definition

of multiplication in G is independent of the choice of g in B. It is not difficult
to check also that G is a loop with (0, 1) as identity. For each h in
H, C X (h} is a subloop of G. If (h} (b} with b in B and of finite order,
then C X (h} is a cyclic group generated by (0, b). If ]hi is infinite, then

C X <h> C X <b>C @ <b>.
In either event, (a, h) generates a cyclic group for each a C and h in H;
hence G is power-associative.
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Notice that if H is a p-loop and C is of order p, then, since C X (1) is con-
tained in the cyclic p-group ((a, h)) for each non-trivial (a, h) in G, C X (1) is
contained in every proper subloop of G. Thus the lattice of (normal) sub-
loops of G is the lattice of (normal) subloops of H with a segment attached
at the bottom. Since G is also a p-loop, we may repeat the process and attach
another segment to the bottom of the lattice of G. Continuing in this way,
we can construct a p-loop whose lattice of subloops consists of the lattice of
subloops of H with an arbitrarily long tail at the bottom.
We can use the construction just given to produce examples of pathological,

power-associative loops. Norton [6] defines a Hamiltonian loop to be a loop
in which every subloop is normal and proves that every non-abelian, power-
associative, Hamiltonian loop is a direct sum of p-loops. We show now that
if p is odd, then a commutative, Hamiltonian p-loop need not be centrally
nilpotent. Hence, (3), (4) and (5) are together insufficient to imply central
nilpotency.

Let H be a Hamiltonian p-loop--for example, a non-cyclic group of order
p2--and let C be cyclic of order p. In view of the remarks above, C X (1} is
the unique minimal subloop of G, and G is a Hamiltonian p-loop. Routine
calculation shows that C X (1} is in the center of G if, and only if,

a,h,kb (0*h.k0) + a +b

for every a and b in C whenever (h, ]) is non-cyclic. If p is odd and H is
non-cyclic, then for each ordered pair, (h, k), in H X H for which (h, k) is
non-cyclic we can choose *.k in such a way that a .. b b .. a (so that G is
commutative if H is) but so that a ., b is not given by (0 .h, 0) a W b.
For example, if we agree on a particular order for h, ]}, we can define

a..kb a-- b b..1a.
Thus G can be a commutative, Hamiltonian p-loop with trivial center.

It is easy to see that a finite, Hamiltonian 2-loop is necessarily centrally
nilpotent. However, if we begin with the Klein 4-group for H and iterate
the extension process n times we can obtain a commutative, Hamiltonian
2-loop of order 2n+ which is nilpotent of class n + 1, the highest class a loop
of this order can have.
The construction given can also be used to produce nilpotent, power-asso-

ciative loops which are not direct sums of p-loops. For example, letting H be
the Klein 4-group and C be of order 3, we can require that C X (1} be in the
center of G but that G be non-commutative, or we can require that C (1} be
in the center of G, that G be commutative, and that G have no normal 2-sub-
loops.

3. The diassociative case

The following theorem shows that the normal structure of a diassociative
loop has a bearing on the arithmetical properties of the loop.
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THEOREM 2. If G is a locally finite, diassociative N-loop then G is a direct
sum of p-loops for various primes, p.

Proof. Let r be a set of primes. If A is a power-associative loop, let
A be the set of all elements of A whose orders are products of powers of
primes in . If H is a finitely generated subgroup of G, then H is a finite
N-group, so that His nilpotent, and H H @ H,. If x and y are in
G, then (x, y} x, y) (R) (x, y},, so that (x, y) (x, y, since x and y are
in (x, y). Thus xy and x-1 are in G. It follows that G (and similarly,
G,) is a subloop of G. If z is in G, then (z) (z) @ (z), ;hence, G G. G,.
If a and b are in G and if x and y are in G,, then

(ax} (a} (R) (x) and (by) (b} (y),
so that

(ax, by) (a, x, b, y) (a, b) @ (x, y).

Hence, ax.by ab.xy. Since the mapping ax . a (R) x is an isomorphism
of G onto G @ G,, it follows that G G @ G.,. Letting r consist of one
prime at a time, we conclude that G is a direct sum of p-loops.

COROLLARY. A locally finite, centrally nilpotent, diassociative loop is a
direct sum of p-loops.

Later in this section we shall give an example of a finite, commutative,
diassociative N-loop which is also a 2-loop but which is not nilpotent. In
the light of this example, it seems reasonable to examine conditions other
than (3) and (4) which, in conjunction with (2), will insure nilpotency of a
finite, diassociative loop. We begin with a technical lemma suitable for use
with induction on the order of a loop.

Let G denote the n-th member of the lower central series of G.

LEMMA 3. Let G be a loop such that
(i) G,, Gn+l > 1 for some positive integer n,
(ii) G satisfies the maximal condition for subloops,
(iii) if 1 < H <3 G, then G/H is centrally nilpotent, and
(iv) G satisfies (6’).

Then G can be generated by two elements.

Proof. Suppose that 1 < H <:1 G. Then

(G/H),, Gn H/H G,,+I H/H (G/H),,+I,

so that by (iii), G

_
H. If (1 is a maximal subloop of G, then G can be

generated by one element. Suppose that (1} is not maximal. According
to (ii), G has maximal subloops, and according to (iv), each contains a non-
trivial, G-normal subloop in its center. Hence, G,,

_
Z(M) for each maximal

subloop, M, of G, so that Gn

_
(G) < G, where (G) is the Frattini subloop

of G. Let u be in G and u 1. Sinceu cZ(G),thereexistxandyinG
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such that u Z (x, y, u}
u Z(M), a contradiction.

If (x, y, u)

_
M with M maximal in G, then

Thus (x, y, u) G. Since u e (G), x, y) G.

Remark. Condition (i) of Lemma 3 certainly holds in case G is finite but
not nilpotent. One can also show that Lemma 3 remains true if (i) is re-
placed by

(i’) GIG’ is finite and G is not nilpotent.

THEOREM 4. If G is a finite, diassociative loop in which

(7) every maximal subloop is normal,

and if G, together with all of its homomorphic images, satisfies (6’), then G is
centrally nilpotent.

Proof. Suppose that G is a counterexample of minimal order. Since every
maximal subloop of G is normal, G is not a group; hence, G is not generated
by two elements. Since G satisfies (i), (it) and (iv) of the lemma, G has a
proper, normal subloop, H, such that G/H is not centrally nilpotent. But
then G/H is a smaller counterexample than G. Hence, G does not exist, and
the theorem is proved.
Bruck and Paige [4] define an A-loop to be a loop all of whose inner map-

pings are automorphisms.

THEOREM 5. A finite, diassociative A-loop which is also an N-loop is
centrally nilpotent.

Proof. Let G be a minimal counterexample. Since G is an N-loop, G is
not a group, so that G cannot be generated by two elements. Now G satisfies
(i), (it) and (iii) of Lemma 3, since according to [4] every homomorphic
image of an A-loop is an A-loop. Moreover, every subloop of au A-loop is
an A-loop. Thus, if M is maximal in G, then M is centrally nilpotent, so
that Z(M) > 1. Since M <:1 G and Z(M) is characteristic in M, Z(M) < G.
Thus G satisfies (6) and hence also (6’), so that G is a counterexample to the
lemma. We conclude that G does not exist.

In connection with these last two theorems, note that for finite groups
condition (7), while not obviously inherited by subgroups, turns out to be
equivalent to nilpotency and hence, to be hereditary. It is possible that (7)
is equivalent to (2) for finite, diassociative loops. I have no examples to the
contrary. On the other hand, in order to make the proofs work, I have had
to assume either that condition (6’) on maximal subloops is inherited by factor
loops or else that (2) holds, i.e., that every subloop has (7).
As a final step in the positive direction, we note that it follows from Norton’s

work that every diassociative, Hamiltonian loop is centrally nilpotent of
class at most 2, so that (5) implies (1) for diassociative loops.
In the negative direction, now, it is not difficult to find a loop of order 10

in which every two elements generate a group of exponent 2. Such a loop
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satisfies (3) and (4) but not (7), so that it fails to satisfy (1) or (2). With
somewhat more trial and error one can even find a loop of order 16 and of
exponent 2 in which Lagrange’s Theorem is hereditary but in which there is a
(non-normal) maximal subloop of order 4. Thus (3) and (4) have little to
do with the subnormal structure of a diassociative loop. The following ex-
ample shows that one can expect almost no justice at all when dealing with
diassociative loops.

Let A be an elementary abelian group of order 4, generated by a and b, and
let W be an elementary abelian group of order 8, generated by x, y and z.
Let a, and 3’ be the automorphisms of A such that aa ab, (ab)o a,
b ab, (ab) b and 3’ ala. Let G A X Wwith multiplicatio-
defined as follows. For each c and d in A, let

(c, x) (d, y) (cd)a., xy)

(c, x)(d, xy) (c.da., y)

(c, y)(d, xy) (c.do, x)

(d, y)(c, x)

(d, xy)(c, x)

(d, xy)(c, y)

(c, x)(d, z) (cd), xz)

(c, x)(d, xz) (c.d, z)

(c, z)(d, xz) (c.d, x)

(g, z)(c, x)

(d, xz)(c, x)

(d, xz)(c, z)

(c, x)(d, yz) (cd)3", xyz) (d, yz) (c, x)

(c, x)(d, xyz) (c’d3,, yz) (d, xyz) (c, x)

(c, yz) (d, xyz) (c’d"r, x) (d, xyz) (c, yz),

and let (c, u)(d, v) (cd, uv) for all other choices of u and v in W.
One readily verifies the following statements.

1. G is a commutative loop with normal subloop A X (1} isomorphic to
A and with G/A

_
W.

2. If G1 (A, x, y), G. (A, x, z) and G3 (A, x, yz), then the mapping
a -- ab b -- a, x x and y ---> z yz y induces an isomorphism of G1 onto
G2, G2 onto G3 and G onto G.

3. Every two elements of G generate a group of exponent 2; thus G is
diassociative.

4. (G) (b}, (G) (a)and (G) (ab), so that (G) A.
5. G is an N-loop. (Here one need only check that every proper subloop

is of index 2 in another subloop.)
6. Z(Gi) ’(G.i) for i 1, 2, 3, so that Z(G) 1.

Thus G is a commutative, diassociative N-loop which is also a 2-loop but
which is not nilpotent. One can show that a diassociative N-loop which is
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not nilpotent must have order at least p for some prime, p, and at least p5 if
p is 2. Thus our example is of minimal order. It seems plausible that an
analogue of the construction given would produce examples for odd primes,
but the work involved in checking condition (2) would be formidable.

4. Some results on Moufang loops
The outstanding result to date on Moufng loops is Bruck’s theorem imply-

ing that commutative, Moufang loops are locally, finitely, centrally nilpotent
[1, p. 157]. Thus, in particular, (4) implies (1) for finitely generated Moufang
loops. In view of Theorem 2, in order to show that (2) implies (1) for finite
Moufang loops, one may restrict attention to p-loops. We shall show that
finite Moufang N-loops which are 2-loops or 3-loops are nilpotent.
Some of the difficulty in treating larger primes stems from the fact that,

although (6) is amenable to proofs by induction, (6’) is not nearly so easy to
work with. If we wish to base a proof on Lemma 3, then we must have some
guarantee that G (and perhaps its maximal subloops, as well) satisfies (6’).
We shall give a family of examples of Moufang p-loops which satisfy (6’) but
not (6). In view of the examples, there would seem to be little hope of using
(6) to solve the problem for Moufang loops.

PROPOSITION 6. If G is a Moufang loop with normal subloop H, and if
T(H) {x e Z(H) Ix 1}, then T(H) is a normal subloop of G.

Proof. T(H) is a subgroup of Z(H), so that T(H) is a subloop of G. If
0 is an inner mapping of G, and if m e H and x e T(H) then, since is a semi-
automorphism of G,

m (m-l) (x.m-l.x) xO.m.xO.

In particular, 1 xt. 1. x0, so that x0 (x0)-1 and m. x0 x0. m. But also
if m’ e H, then

xO.mm’ xO[m(xO.m’.xO)] xO[([m.xO]m’)xO]

(m.xO)m’ (x0.m)m’.

Thus x0 is in the nucleus of H. It follows that xO T(H).

THEOREM 7. A finite, Moufang 2-loop which is also an N-loop is centralt:!
nilpotent.

Proof. Let G be a minimal counterexample. Since G satisfies (i), (ii)
and (iii) of Lemma 3 but not the conclusion of the lemma, it will suffice to
show that G satisfies (6’) in order to reach a contradiction. Now if M is a
non-trivial, maximal subloop of G, then in view of the minimality of G, M is
nilpotent, so that T(M) is a non-trivial, normal subloop of G contained in
Z(M). Hence, G satisfies (6’), as desired.
We have just used the fact that in a Moufang loop every inner mapping
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is a semi-automorphism. In dealing now with the prime 3, we shall use the
fact that every inner mapping is a pseudo-automorphism.

PROPOSITION 8. Let G be a Moufang loop with normal subloop H. If
is an inner mapping of G which (as a pseudo-automorphism of G) has a com-

panion, c, in H, then Z(H)O Z(H).

Proof. It is noted in [3, p. 62] that 0-1 has companion d (c0-1)-1, which
also belongs to H. If m e H and z Z(H), then

(raO.zO)O-l.d m.zd mz.d,

so that mO. zO (mz) O. Similarly, zO. mO (zm) 0, so that (z0, toO) 1.
If also m’ e H, then

[mO(zO.m’)]O-.d m(zra’.d) mz.m’d [(mz)O.m’O]O-.d
[(mO.zO)m’]o-i.d,

so that (m, zO, m’)
of H, zO Z(H).

1. Since mO and m’O are typical members

THEOREM 9. If G is a finite Moufang 3-loop which is also an N-loop, then
G is centrally nilpotent.

Proof. Let G be a minimal counterexample. As in the proof of Theorem
7, it will suffice to show that Gsatisfies (6’). But if M is maximal in G, then
M contains (x, y) and x for every x and y in G, so that M contains a com-
panion for each inner mapping of G. In view of Proposition 8, Z(M) < G.
Since every maximal subloop of G is nilpotent, G satisfies (6).
The following construction gives a collection of examples of Moufang

p-loops satisfying (6’) but not (6). In addition to the comments made above,
one may also note that the device of considering {x e Z(M)I x 1} fails to
help for these examples, since the loops constructed are of exponent p.

Let p be a prime greater than 3. Let

G {(i,j,k,l, ra)lO <_ i,j,k,l,m < p},

and define multiplication in G by

(i,j, k, l, ra).(i’,j’, k’, l’, m’)

(i-i’,j -j’,l: nt-k’,l+ l’ +al,m+m’-a2),

where al i’k and as 6j’l + i(jk’ -j’k) + i’(4j’k nu 2jk’ - 3jk), and
where addition is modulo p.
As tedious computation would show, G is a Moufang loop of exponent p.

Letting x (1,0,0,0,0), y (0,1,0,0,0), z (0,0,1,0,0),
u (0, 0, 0, 1, 0) and v (0, 0, 0, 0, 1), one easily checks that u (z, x),
v (x, y, z) and (u, y) v6. Routine computation shows that G/(v} and
(y, z, u, v) are groups, that Z(G) (v) and that Z((y, z, u, v)) (z, v). Since
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(z, x) u e Z((y, z, u, v>), it follows that G does not satisfy (6). Finally,
G is nilpotent of class 3, since Z(G) (v) and Z(G/(v))

It can be shown that a Moufang p-loop of order p4 or less is necessarily a
group, so that the examples constructed are of minimal order. Moreover,
this observation removes the necessity of proving that G/(v) and (y, z, u, v) are
groups.

Certainly, the results of this section are far from adequate, but perhaps
they indicate the difficulty of solving the problem for Moufang loops. My
current conjecture is that every finite, Moufang p-loop which is also an N-loop
is nilpotent. If anyone knows of an example to the contrary, I would greatly
appreciate learning of it.

Added in Proof (March 3, 1965). Glauberman has shown (in work to
appear elsewhere) that every finite, Moufang p-loop is nilpotent in case p
is an odd prime. It can be shown that every finite, solvable, Moufang 2-loop
is nilpotent. Whether or not "solvable" is redundant appears to be an open
question.
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