
ON THE NUMBER OF CERTAIN TYPES OF POLYHEDRA

BY

HANS RADEMACHER

1. Introduction. The discussions in the following pges re concerned wih
certain enumerations in the morphology of Eulerin polyhedm in 3-spce.
The "morphology" is ctually the topology of the complexes consisting of the
vertices, edges, nd fces of polyhedm, with the restriction that these elements
re linear. A class of polyhedr isomorphic to ech other with respect to
incidences is clled type. We impose lso on this isomorphism the condi-
tion that it preserves the orientation. We shll call such class "type in
the strict sense" in contradistinction to the usage in most classical ppers in
which the preservation of orientation ws not required (Kirkmn, Brfickner).
In Brfickner’s book [1] there is to be found the explicit statement "Verschie-
dene Typen ergeben sich nur, wenn..., denn weiterhin treten die Spiegel-
bilder der bisherigen Vielflche uf". That means that mirror-symmetric poly-
hedm belong in this sorting to the sme type (in our terminology employed
here’"type in the wider sense"). Steinit [9] in most prts of his book shres
Brfickner’s point of view. However, on p. 86 he speks of "direct isomorphy",
which he defines as isomorphy under preservation of orientation. He formu-
lates there his famous theorem on convex polyhedm, which is ctully a
homotopy theorem, stating that two convex polyhedm of the sme type ia
the strict sense re homotopiclly equivalent, gin with the "morphological"
restriction that the complexes which constitute the continuous transition
from one convex polyhedron to directly isomorphic one remain lwys
convex polyhedr of the sme type in the strict sense.

It is clear that the number of types in the strict sense is t least s gret
as the number of types in the wider sense.
The number of types of polyhedm of a given number F of faces, whether

the types are counted in the wider or the strict sense, is problem mentioned
by Euler, Steiner, Kirkman [4], Eberhardt [3], Brfickner [1], nd Steinitz
[8]. Usually attention is only paid to trihedral polyhedm, i.e. those whose
every vertex belongs to 3 faces nd 3 edges. These polyhedr are considered
as "general", whereas those with vertices of higher incidence re looked upon
in such discussions as degenerate. We shall in this rticle lso deal only with
rihedral polyhedra nd shll no longer mention this restriction.
For the types in the wider sense the enumemtioa hs been crried out up to

F 11 by Brfickner and recently, with the help of n electronic computer,
by D. W. Grace, student of G. PSly. The number b(F) of types (ia the
wider sense) increases rapidly with F, nd no general formula hs been found
for it.
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FIGURE 1

However, a special class of trihedral polyhedra has been singled out by
Kirkman [4] namely those of F faces which possess a face of F 1 sides,
called the "base". Such polyhedra I shall call "based polyhedra’’1, and for
these I shall derive explicit formulas for the number of types in the strict
sense and in the wider sense. Examples of based polyhedra, seen in projec-
tion from above into the plane of the base, are given in Figure 1. Kirkman,
in his paper [4] gives a recursive method to determine for each given F the
number of types in the wider sense. However this method becomes soon
unmanageable for increasing F. He does not arrive at an explici formula
nor an asymptotic expression for the number of types as a function of F.
For the number x0(F) of types in the wider sense G. Pdlya has proved that it
satisfies the inequality

1 (2FF -:) 6 (2FF_-- :)(1.1)
2(F 1)(F 2) < xo(F) <

--2(F- 1)(F- 2)

(Personal communication, in a letter dated 25th July 1964.)

PSlya’s proof will be published in a dissertation of his student D. W. Grace.
PSlya conjectured moreover that x0(F) is asymptotic to the left member of
this inequality. I shall prove this conjecture and more, namely the follow-
ing two theorems, which I enunciate with F n - 1, n being the number of
sides of the base of the based polyhedron.

THEOREM 1. If n >= 3, the number of types in the strict sense of based poly-
hedra of F n -- I faces is

(1.2)
o(n -- 1) g(n) G(n) -- 1/2(n/2 -- 1)G(n/2 -- 1)- (n/3 -- 1)G(n/3 - 1),

where

G(n) (2n- 4)!
(1.3) n! (n 2)! for n an integer >- 2

0 otherwise.

Following a suggestion of M. Kac. G. PSlya in a correspondence, which was the
start of these investigations, calls them roofless ’.
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THEOREM 2. If n >= 3, the number of types in the wider sense of based poly-
hedra of F n 1 faces is

x0(n -t- 1) l(n) 1/2G(n) +-(n/2 + 1)G(n/2 + 1)

(1.4) + 1/2(n/3 + 1)G(n/3 + 1)

/ 1/2([n/2] -+- 1)G([n/2] + 1).

We shall devote Section I to Theorem 1 and Section II to Theorem 2. The
short Section III is concerned with the special types of based polyhedra with
only 2 triangles, which have been discussed and enumerated by O. Hermes.

I wish to thank Professor George Pdlya for mentioning this problem to me
and letting me know his inequality (1.1) together with his conjectures.

I. Number of types in the strict sense

2. Description of based polyhedra. In order to construct the based poly-
hedra for small n and to understand their generation for all n we have to
analyze their structure. We can and shall always refer to the projection of
the polyhedron into the plane of its base. The polyhedron is viewed so that
it lies above the base. Such a projection forms a graph in the plane.
There are 3 sorts of edges:

(1) those of the base, n in number;
(2) those issuing from the base, one from each vertex, also n in number;
(3) the remaining ones, forming a complex which we call the "ridge".

Since we have only trihedral polyhedra with V vertices and E edges, so that

3V 2E

and F n 1, we find from Euler’s formula

(2.1) E 3n 3.

The ridge consists thus of

(2.2) r E- 2n n- 3

edges. The whole graph contains

n:3 n:4 n=5

lIGURE 2
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FIGURE 3

(2.3) V 2n- 2

vertices. On the ridge are therefore n 2 vertices.
Taking the n edges of the base away from the graph we obtain a graph Tn

of 2n 3 edges and 2n 2 vertices. This operation does not destroy con-
nectedness of the graph. Since the number of vertices exceeds the number of
edges by 1 we see that T, is a tree. It contains only nodes (vertices) of
order 1 (the endpoints, i.e. vertices of the base) and of order 3 (the branch-
points or inner nodes). Such a tree we shall call a simple tree. The tree T
has n endpoints and n 2 branchpoints.
The ridge R, is obtained by taking away from Tn all the ending edges (end-

segments). No such amputation disturbs the connectivity. The ridge is
therefore also a tree, and indeed we found its number of edges r n 3
by 1 smaller than its number of vertices V -n n- 2.
The trees Tn and R have to be considered as imbedded in the oriented

plane, and not only in a purely combinatorial manner as complexes of seg-
merits and nodes put together by incidence relations. We construct the
based polyhedra starting from the ridges. Examples of ridges Rn are given
in Figure 2, from which we derive the trees T of Figure 3. Connecting now
the endpoints in the order in which they appear in the oriented plane, we ob-
tain the full projections of the based polyhedra; see Figure 1 for n 3, 4, 5
and Figure 4 for n 6. These are all possible based polyhedra to F 7
or n 6. We notice that n 3 and (6d) have a rotational symmetry
(R.S.) of order 3; n 4 and (6b) and (6c) have a rotational symmetry of
order 2. Moreover, (6c) is the mirror image of (6b).

Since each type of a based polyhedron stands in a one-to-one correspondence

The Figures (6a), (6b), (6c) would represent the same tree combinatorially, but
here they are distinguished as imbedded in the plane of the drawing.
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(6o) (6b) (6c) (6d)

FIGURE 4

to a type of (simple) tree in the plane, we may from now devote our attention
solely to these trees.

3. Rotational symmetry. There can be no other R.S.’s than those of order
2 and 3. Of course, it is necessary in these cases that 2In and 3In respectively.
That there are no other R.S.’s becomes clear if we look at more stringent

necessary conditions in the cases of R.S. of orders 2 and 3. For R.S. of order
2 we remove pairs of segments which correspond to each other under the rota-
tion. We first remove the sides of the base polygon in pairs, which shows
that n is even. Then we continue with the inner segments, i.e. those of T..
But the number of segments of T is 2n--3, thus odd. One segment must
remain unmatched, its central segment, and this has the R.S. of order 2.

Similarly, R.S. of order 3 first necessitates n divisible by 3. Then T has
2n--3 segments, a number also divisible by 3. We continue to remove cor-
responding segments in triples. There remains in the end a branchpoint,
the central node, which with its adjacent segments has the R.S. of order 3.

Since T is a simple tree no other outcome is possible for a rotational sym-
metry.
We notice further that each endpoint of the ridge R produces a triangle of

the polyhedron. Since any R must have at least 2 endpoints we observe: A
based polyhedron has at least 2 triangles. And conversely: if a based poly-
hedron has only two triangles then its ridge has only two ends. But that
means that the ridge is a chain of r n 3 segments linked in succession to
each other.
We remark finally that the indicated construction of based polyhedra leads

to configurations which fulfill Steinitz’s condition for K-polyhedra, which can
all be realized as convex polyhedra in Euclidean 3-space, [9, p. 192, pp. 227 ff].

4. Distinctions according to rotational symmetry. Before continuing the
investigation I wish to introduce an abbreviated notation. There is no need
to distinguish between a based polyhedron and the type which it represents.
We shall speak of a based polyhedron T. or T etc. as well as of the type T,,
T’,’, always understanding here the type in the strict sense. The set of all
types T, we shall write (T) and the cardinal number of this set as IT, I.
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We shall also speak of trees Tn, etc., corresponding to the type Tn. With
F n 1 we put the number of types T

,,o(n - 1) g(n)

and break this number down into the sum

(4.1) g(n) gl(n) + g(n) + g3(n),

where g (n) is the number of types of polyhedra T’, with base of n sides and
without rotational symmetry (or R.S. of order 1), (see cases (5), (6a) in
Figure 3), g(n) the number of the types T of R.S. of order 2 (cases (4),
(6b), (6c)) and g3(n) that of types T: of R.S. of order 3 (cases (3), (6d)).
It is clear that

(4.2)
g(n) 0 for 2/n
g3(n) 0 for 3/n,

and only in these cases, as we shall see.
Instead of taking up g(n) directly we shall consider the modified number

(4.3) G(n) gl(n) + 1/2g2(n) + -g(n).

The first values are

(4.4) G(3) 1/2, G(4) 1/2, G(5) 1,

as our examples in . show.
We can express g(n) and g(n) conversely by G(n).
Indeed in a T: (or R.S. of order 2) we cut its central segment into two

segments and split thus T: into two identical trees T with n/2 1
endpoints each. Now this T can be, according to its own rotational sym-
metry, of the sort T’, T, We can conversely use all T to construct all
possible T:, choosing one of the endpoints of T for attachment to an iden-
tical T (after rotation through 180). We have only to observe that, whereas
for a T’ we have choices of endpoints, for a T’ we have only 1/2 choices in
order to avoid repetition, and for a only 1/3 choices. This gives

g(n) lg(1) + (1/2)g2(1) + (1//3)g(1)

()
and thus

(4.5) g(n) (n/2 + 1)G(n/2 + 1), 2In n _>- 4.

TSplitting a (of R.S of order 3) at its central node into 3 identical T,
k n/3 + 1, we obtain similarly, distinguishing again the possibilities T,
T, of T,

(4.6) g (n/3 -t- 1)G(n/3 + 1), 3In, n >= 4.

Our constructions show also that indeed (4.2) are the only cases for vanishing
g(n), g.(n) with n => 4. From (4.1) and (4.3) we infer



ON THE NUMBER OF CERTAIN TYPES OF POLYHEDRA 367

g(n) G(n) + g2(n) + (n-g3

and in view of (4.5), (4.6)

g(n) G(n) + 1/2(n/2 -[- 1)G(n/2 + 1)
(4.7)

+ -(n/3 + 1)a(n/3 -+- 1),
where

for x not integer.

G(x) 0

It suffices therefore to find the function G(x).

n>=4,

5. The recursion formula. We take now n > 4. Then the ridge Rn
(which is a tree as we know) contains at least one segment.
We pick now a segment of Rn and split it into two segments, one going to a

tree Tx, the other to a tree T,. Since Tx and T, each contain a new endpoint
we have

=n-l-2;
moreover

), >- 3, >= 3,

since the segment was chosen in Rn c T, and to each edge of R there are
at least 2 further edges of Tn attached.
We have now to treat the T’n, T:, separately. If we split a T’, in any

of its r n 3 ridge segments we obtain 2(n 3) of ordered pairs of sub-
trees (Tx, T). These ordered pairs are all different since the identity of
Tx and T, (after suitable rotation) would mean a symmetry as it appears in

T "rTtt only. For a we obtain only 2.(n 3)/3 different ordered pairs of
T:subtrees (Tx, T) For a we have 2. (n 4)/2 different ordered pairs

(Tx, T) and from the dissection of the central segment one pair (T, T,)
with n/2 1. If we count now all Tx, T, with n 2, ,
> 3, eachT’ occurs 2(n 3) times, each T occurs 2. (n 4)/2 1

n 3 times, and each T occurs 2. (n 3)/3 times, so that altogether
there are

2(n 3)(g(n) + g(n) + g(n)) 2(n 3)G(n)

ordered pairs (T,, T,).
On the other hand, each pair T,, T, gives rise to several T, namely ac-

cording to the endpoints which we choose for attachments. We have here
to distinguish the cases T, T’, and also T, T . Each of the
endsegments of a T can be joined to each of those of a T. Whereas, e.g.

T" Tonly /3 endsegments of a have to be joined to /2 of a and so on.
This gives
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recombinations of Tx, T into Tn. These recombinations (or conversely
splittings) we have iust counted starting from the Tn. We obtain thus the
relation

(5.1)

Let us put

(5.2)
defined for n >- 3.

(5.3)

2(n 3)G(n) +,=+2;,,_3hG(h)G(), n>_4.

6. Solution of the recursion formula. We have now to find the solution
of (5.4) with the initial condition (5.3). For this purpose we prove the

LEMMA. The recursion formula
(6.1) c0(m) +=;,_ o(p)o(z), m >= 2,

with (1) 1 is solved by

(6.2) (m) 1 (m--)m

Proof. We consider the generating function

(6.3) (z) := (n)x.
Then we have

(x) x + E:xE+,=()() x +
so that

V(x) ( x).
Since (0) 0 only the minus sign cn be vlid:

-4x
ml

This cn be rewritten as

(x) E x,

nG(n) h(n 2),
We had in particular G(3) 1/2 and have thus

h(1) 1.

With m n 2 the formula (5.1) goes over into

(5.4) h(m) m + 2 h(p)h(z) m >_ 2.
2(m 1) ,o+,,-=,,,

p,a_l

Equation (5.3) is a recursion formula which gives the first few next values

h(2) 2, h(3) 5

in agreement with (4.4) and (5.2).
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so that (6.2) is established through comparison with (6.3), and the Lemma
is proved.
We have thus established the formula

o -1(6.4) p+=m p m > 1.

Replacing here m by m W 2 we obtain

(6.5) m +2 + .+a + 1 + 1 +m+l
Now a simple computation shows that

m + 2 + m + 1 (m + 1)(m+ 2)

so that (6.5) can be rewritten as

(6.6) m+ 1 2(m-- 1).+-a + 1 1

We realize further that for m 1

m+l = =1.

If we compare this initial value and (6.6) with (5.3) and (5.4) we see that
we have proved

(6.7) h(m)
m + 1 n

This implies after (5.2)

THEOREM 3. If n >= 3,

(6.8) G(n)
n (n 1)

The function H(n) nG(n) deserves some comments. It was already noticed by
Euler (see e.g. [6, p. 102]) that it represents the number of different dissections of a
convex polygon with n labelled vertices into triangles by diagonals. This has a connec-
tion with our problem, since the enumeration of based polyhedra is the dual to the count-
ing of topologically different dissections of an unlabelled convex polygon of n sides into
triangles by diagonals. This duality has already been noticed by Kirkman [5] and
Steinitz [8]. On the other hand, Cayley [2, p. 114] investigated the number of rooted
planar trees with m endpoints and a rootpoint, and interior nodes of order 3 only. He
found H(m 1) as this number, which he, however, wrote "in the remarkably simple
form"

1.3.5 (2m- 3)
2,,-1.

1.2.3 m
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In view of (4.7) we have thus proved Theorem 1 for n ->_ 4. The case n 3
of Theorem 1 is an easy verification. The formulas (1.2), (4.7) yield for
some low values of F the following results"

0(F)
4 5 6 7 8 9 10 11 12 13 14 15 16
1 1 1 4 6 19 49 150 442 1424 4522 14924 49536

Remark. From its definition (4.3) it follows that the denominator of G(n)
is a divisor of 6. This can be verified by simple number theoretical argu-
ments, also directly from the expression (6.8).

7. Another proof of Theorem 3. The determination of G(n) can be achieved
without the use of the Lemma by solving a differential equation for the gen-
erating function of h(m).
We define

(7.1) (R)(x)

Writing the recursion formula (5.4) in the form

2ink(m) 2h(m) mp+=m;p,_>_l h(p)h(a) -k 2p+_-m;p,_l h(p)h((r)

valid for m >= 2, we obtain

or

or

d d
2x xx ((x) x) 2((x) x) x ((x)2) - 2(x)

x’ q) x(Ix’ -t- 2,

1 2 1
(I)

1+ x

Integration on both sides yields

log- 2log(1 +) logx + C
and thus

/(1 + q)) Kx.
Now (7.1) shows that

(x)/xh(1) 1 as x-0.

Cayley also observes that H(m -{- 1) moreover expresses the number of ways in which a
product A1.A. A, which does not obey the associative law can be understood
through insertion of parentheses. PSlya, in his fundamental paper [6, footnote, p. 198]
indicates an approach to the generating function of H(n) through a functional equation.
For comparison with our notation it should be noticed that he counts all nodes, except
the rootpoint; his n is our 2n 3.

I reproduce here a simplified version of my original proof, which I owe to a remark
by Paul T. Bateman.
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We conclude therefore K 1 and have the quadratic equation for q

x(1 +)2 =,
which has the solution

1 1)(x) --1 -- xx 4- xx %/1 4x.

Here only the minus sign is acceptable since has to be regular at x 0.
We obtain therefore

(1 _4x)(x)= -2x+1-, !27/ --2)! __1 ..1 1 (2mm) Xm"il 1),
x

= m+l
From the comparison of this result th (7.1) we infer again the result (6.7).

8. Asymptotic estimates. Stirling’s formula applied to (6.8) in the case
of n integer yields immediately

and thus

G(n) n-/4
16/

(n/2 -- 1)G(n/2 -- 1) 0(n-3/24n/) O(G(n)i/2).
We have thus

THEOREM 4. For F n + 1 large

(8.1) Co(F) ho(n - 1) g(n) G(n) z70(G(n) 1/:)

(8.2) bo(F) 1 F_5/.4F"
64v/

II. Number of types in the wider sense

9. Reduction of types in the wider sense to those in the strict sense. As
explained in the Introduction, two types in the strict sense which are mirror
symmetric are counted as the same type in the wider sense. It stands to
reason that the majority of types (in the strict sense) is not mirror sym-
metric, and we can thus expect that the number/(n) of types in the wider
sense is about 1/2 of g(n) the number of types in the strict sense.
We introduce some notations. A type (in the strict sense) which is not

mirror symmetric we shall denote by n. A type with mirror symmetry we
shall denote by T*. If (n) and g*(n) are the numbers of types (in the

and less precisely
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strict sense) of n and T* respectively, the number of types in the wider
sense will be

k(n) 1/2(n) + g*(n).
Since evidently the number of all types in the strict sense is

g(n) (n) --k g*(n)
we obtain

(9.1) l(n) 1/2(g(n) + g*(n) ).

The function g(n) is given in Theorem 1.
termination of g* (n).

There remains thus only the de-

10. Let us have a mirror-symmetric based polyhedron with n-sided base.
We discuss its type T* by considering again the projection which is a tree in
the base plane. We call this tree, representing T*, also T* for short.
The number of segments of T* is odd, viz. (2n 3). We pair off the

segments corresponding to each other under the mirror symmetry. An odd
number of segments must remain unmatched, which means that they are
involutory under mirror symmetry. This involution can either keep the
endpoints of a segment fixed or can exchange the endpoints: in the first
case the segment lies in the symmetry axis (of the base plane), in the second
orthogonal to it.

Actually there is exactly one involutory segment. Firstly there cannot be
several involutory elements on the symmetry axis. Since the whole graph is
connected, and the nodes are threefold, there must appear also some nodes
outside the axis, and these, of course, pairwise. The connectivity would then
imply one or more cycles, so that T* could not be a tree. Also several in-
volutory segments among which there is one orthogonal to the symmetry axis
are impossible for the same reason. (See Figure 5.)

Taking the symmetry axis "vertical" we say that T* is an H if its involu-
tory segment is orthogonal to the symmetry axis ("horizontal") and is a
V if its involutory element lies in the symmetry axis (is "vertical").
A given T* can, however, be anH as well as a V. at the same time (see Fig.

6) after a rotation through 90. These two symmetries, for group-theoretical



ON THE NUMBER OF CERTAIN TYPES OF POLYHEDRA 373

FIGURE

reasons, produce together a rotational symmetry of order 2, so that in such
a case the T*n is also a T:, and conversely. We indicate this case by writing
T*". In this case the number n of endpoints must clearly be divisible by 4.
With the pairing off of segments also the n endpoints are paired off. If n

is odd there must be therefore an invariant endpoint under symmetry. This
endpoint belongs to the involutory segment, and thus for n odd there exists
only the class Vn.

11. Now let first n 2, be even. We shall establish among all the T*n a
one-to-one correspondence between all the Hn and the V. We can change
a T* of class Hn into one (and only one) of class Vn by a process of "crossing-
over". For this purpose we keep in a tree of class Ha the 4 nodes P1, P2,
P1, P2 nearest to, but not on the involutory segment fixed. These 4 points
are the endpoints of a subtree H. This subtree we replace by a subtree
Va again with the endpoints P, /51, P2, /52, as indicated in Figure 7. If
and only if the tree subjected to the "crossing-over" process is of a type T*’,
then the two trees Un and V related by the process will represent the same
type (after rotation through 90). Using the notation concerning the cardinal
number of classes of types we can thus state

* T*
(11.1)

g (n) (n)]

(11.2)
rp*tt

since the class ., is counted in (H,) as well as in (V,).
We take now n 2u + 1 as odd. We have seen that a T*, for n odd must

be of the sort V,, with the involutory segment in the symmetry axis.
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/

:FIGURE 8

We take now this involutory segment away, with its two endpoints and
* T*retain a tree Tn-1 of class Hn_ (See Figure 8.) The same

_
is obtained

whether the involutory element points "up" or "down". In general, there-
fore two trees T* correspond to one T* Tn_ has also a-1. However, if this *
second mirror symmetry, i.e. is of the class (n--lj, then the two T* just men-
tioned are identical, going over into each other by a rotation through 180.
The enumeration is thus

(11.3)

since the T*t-1 are among the H. and should be counted only once as we just
stated.

Comparison of (11.2) and (11.3) leads to

THEOREM 5. The number of mirror-symmetric types T*, is the same for
n 2,andn 2,-- 1, that is,

(11.4) g*(2,) g*(2 - 1), u >= 2.
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FGURE 9

1.. We are now going to build up all the T* out of their symmetric halves.
In view of the preceding theorem we need only discuss the case n even, n 2v.
Moreover we restrict our attention to T.* of class (Hn), since those of class
(Vn) can be obtained through the "crossing-over" process.

If we have before us a T2* which is also an H2 then each half is a T+I and
the two halves have an endpoint in common on the symmetry axis. Con-
versely, we take a T,+I, put one of its endpoints on the desired symInetry
axis for Tz*,, and join T,+I at the corresponding endpoint to ’+, the mirror
image of T,+, and then delete the point of junction in order to obtain a
T*.. (See Figure 9.) The number of different T*, obtained from one
T,+ depends on the symmetry character of T,+I. We have 6 classes of
T,+I to consider.
Let us write, for short,

v-t-1 =.
A T, can either be a , or T,*, i.e. a tree without or with mirror symmetry.
These trees can further be distinguished according to their rotational sym-
metry, so that we have to consider the six kinds ’, 2P’t, ", T*’, T*", T*’.
We firstly carry out the process of constructing a T,* out of a . Each

of the u ends of 7, can be joined to the corresponding end of ,, the mirror
image of @t,. This will yield u different T*n However the ’, (which is by
definition different from t,) will also produce the same u different T,*, which
in our construction belong all to the class (Hn). We apply now the crossing-
over process to each of the constructred H, and obtain trees V. so that the
2 trees ’ produce 2u different T*, ,n 2v 2(u- 1).

@" The rotational symmetry of order 2 in this caseNow let us take a -,
demands 2{u. We can make use only of u/2 ends of T, in order to obtain
differen T* Again , will no produce new T*, bu only such which
obtained hrough roion by 180 from he previous ones. The process of
eroszing-over will produce noher se of T*, of he sor V, soh we obtain
logeher 2(/2) z differen T* from pir *, T

Similrly we obtain from pir , by reflexion nd crossing-over
2(t/3) different T*.
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FIGURE 10

We have thus so far from all the , constructed

 {IT.I/1/2LT. I1
different T*.

13. We come now to the class (T*) and its subclasses (T*’), (_),
(T*").
In dealing with a T*’ we have to distinguish t even and odd. If, firstly,
is even, then the endsegments and endpoints of T’ are paired off through

the mirror symmetry. We take two copies of T*’ and attach the partners
of a pair of endsegments to each other, deleting the node in common. In
this way we obtain from the use of each of the /2 pairs of symmetric end-
segments a symmetric T with n 2 2 of the sort H. Using then the
process of crossing-over we get again /2 other T, (of the sort V), together
thus u different T.

If, however, is odd, then we have ( 1)/2 pairs of corresponding end-
segments and one unmatched (involutory) endsegment. Through the process
just described we construct (- 1)/2 T of the sort H. and then also
( 1)/2 further T of the sort V. The single unmatched segment of
T’ lies on its symmetry axis. If we connect it to the corresponding T’ in
mirrored position (see Figure 10) we obtain a T which is of the sort H, but
also a V, by rotation through 90. Again we have 2( 1)/2 + 1
different T gained from one T’.

If we have a T" to start with, then we know that 4]. Again we pair off
the endsegments by mirror symmetry. Because of R.S. of order 2 each such
pair goes over into another one by rotation through 180. We use therefore
only /4 pairs for establishing a T by connecting in mirror fashion one end
of _,T*’ with the corresponding end of another copy of it. (See Figure 11.)
In this way we produce /4 different T, all of the sort H. By means of
crossing-over we get just as many different types T of sort V, thus
altogether.
A _T*" requires 3 because of rotational symmetry of order 3. If now is

odd, then the mirror symmetry expressed by the asterisk * requires that there
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is an endsegment s AB in the symmetry axis with endpoints fixed under
reflexion. Rotation around the central node C through 120 and 240 shows
that then q,,r,, possesses 2 other such endsegments s A1 B1 and s A. B.
(See Figure 12.) Since they are part of a connected graph, there must be a
connection between s and s. The connection by segments BC and CB
would not be possible since it would create nodes of even order, which is ex-
cluded. Any other connection between s and s would through rotation
imply a connection between s and s2 and the corresponding one between s
and s and would thus mean the existence of a cycle in the tree T*’r which is
a contradiction. The only remaining possibility is that B B1 B. C

,v*,,, ,v*,, produces only oneand that the whole _w*" is 3 g 3. This 3
through reflexion, viz., the one shown in, Figure 13. For > 3 we can have

7’*’r’ only witha--
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Through mirror symmetry we pair off the endsegments of T*" into /2
pairs. Through rotational symmetry each such pair goes over to 2 further
equivalent pairs. We have thus /6 pairs of endsegments which we use
through the process of joining in reflexion to produce each a T*. This gives
#/6 different T* of sort Ha. Crossing-over gives another set of t/6 different
T*, so that each T*" produces /3 types T*

If we collect the results of 12 and 13 we see that all T, T,+I produce
the following number of T*, n 2"

(13.1)
g (n) t{ITI-F 1/21T I-F1/21-, I}

+ #{IT*.’I + 1/21T*."I + IT*." I}.

We have obtained all T*, since the process is reversible and leads from a

T* to exactly one T, with one of its endsegments used for the process of re-
flexion and attachment.

Since the r, are mutually exclusive we know that

e(,) ’ + V*’
() ’ + *"l-
g3(t) [" I/1 T*", I.

Formula (13.1) implies thus, for n 2,, t , -F 1"

g (2) ( + 1){gl( + 1) + 1/2g2( + 1) + g3(, + 1)}

( - 1)G( + 1).

In view of Theorem 5 we have thus proved the important

THEOREM 6. If n >= 4,

(13.2) g*(n) (In/2] -F 1)G([n/2] Zr- 1).

If we insert this result together with (1.2) in (9.1), we obtain for n >= 4
the statement of Theorem 2, which was our goal. For n 3 the result of
Theorem 2 is immediate. For a few low values of F n -{- 1, formula (1.4)
yields the following table"

F 4 5 6 7 8 9 10 11 12 13 14 15 16
xo(F) 1 1 1 3 4 12 27 82 228 733 2282 7528 24834

for which the values up to F 11 have already been found by Kirkman [4]
and Briickner [1]. Theorem 2 implies PSlya’s result (1.1) and proves also
PSlya’s conjecture

Brtickner [la] gave also values up to F 16, of which, however, those for 13, 15,
and 16 are in error. In particular his value for F 16 is too small by 522 and violates
even PSlya’s inequality (1.1).
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xo(F)
2(F- 1)(F- 2)

III. On based polyhedra with only two triangles

14. The enumeration of certain very special types of based polyhedra,
viz. of those with only two triangles has been carried out by O. Hermes (1894),
see [1, p. 97] and [8, p. 55].
We can derive his formula easily from the fact that these polyhedra have

a ridge consisting of a chain of r n 3 segments and n 2 nodes, of which
the two terminal ones are already occupied by the legs of the two triangles.
We have thus only the choices to attach the missing n 4 endsegments
"up" or "down" at the n 4 free nodes.
We first count the number s(n) of different types in the strict sense. Let

us take n > 4. We have 2-4 possibilities to attach the endsegments. If n is
odd all these choices are matched off in pairs through rotation by 180 so
that we obtain 2n-5 different polyhedra types (all belonging to T’,).

If however n is even, there are among the 2-4 graphs those in number
2(-4)/2 which are not matched by another one through rotation by 180 but
go over into themselves, belonging thus to T:. We have then

1/2(2- 2(-)/) + 2(-)/ 2- + 2(-)/.

Since this last expression gives the correct value also when n 4, we have
proved

THEOREM 7. If n >= 4, the number of types of based polyhedra with F n - 1
faces and only 2 triangles, the types counted in the strict sense, is

f-5 n odd
(14.1) a(F) a(n -t- 1) s(n) n--5

__
2(-)/2 n even.

Let us now go over to the enumeration in the classical sense of Kirkmaa
and Steinitz, where orientation does not have to be preserved.
We proceed as in the general case treated in Section II. Let (n) be the

number of types (in the strict sense) without mirror symmetry and s*(n)
the number of those with mirror symmetry. Obviously we have

s(n) (n) + s*(n).
Steinitz now counts the number of types in the wider sense:

(14.2) t(n) 1/2(n) + s*(n) 1/2(s(n) -s*(n)).
We have thus still to determine s*(n). This time we take n > 5 (in order to
avoid the possibility that the set of choices might be void in the following
arguments).

Let first n be even. In view of the mirror symmetry we have only to make
the choices "up" or "down" only for one half of the available free nodes.
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That gives 2(n-4)/2 possibilities. But if we interchange all choices "up" and
"down" by the opposite ones we arrive at the same T*, only turned through
180 Therefore in this case

$ (n--6 /2s (n) 2 n even.

If n is odd we choose the middle endsegment as "up". Then there are
(n 5)/2 endsegments to be chosen as "up" or "down", which gives 2
possibilities. This time rotation cannot be used. We have thus here

$ 2(n-5)/2s (n) nodd.

If we insert now these results and the statement (14.1) into (14.2) we have
completed the proof of the theorem of O. Hermes:

THEOnEM 8. If n >-- 5, the number of types in the wider sense of based poly-
hedra with F n + I faces and only 2 triangles is

(14.3) t(F) t(n -t- 1) t(n) 2n- -- 2(n-)/.

Of course the case n 5 can be verified directly.
The formula found in [1] and [8] is expressed in F and distinguishes F even

and odd, but is equivalent to (14.3).
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