
THE SINGULARITIES,

Introduction

In this paper all manifolds and maps are either real C or complex analytic.
A submanifold is always a regularly embedded submanifold, that is, the in-
clusion map into the ambient manifold is a homeomorphism into (real C or
complex analytic).

Let V and M be manifolds of dimensions n and p respectively, and let s
min (n, p). If f is a map of V i M, let S(f) be the set of all v e V such that
rank f, s 1 at v; here f, means the induced map on tangent spaces. If

s (f)S(f) is a submanifold of V, we define to be S(fl S(if)) In this way,
for "sufficiently nice" maps, we may proceed letting Sq (f) S(f Sq-(f)
This is the definition of Thorn [7].

In Theorem 1, S are described "universally" independent of the map.
That is, S are submanifolds of Jq, the space of q-jets at the origin of maps of
n-space in p-space, such that if f maps V in M and the induced jet mapping
Jq(f)" V--. Jq(V, M) is transversal to all the S(V, M), then

S(f) Jq(f))- S V, M) ).

Here gq( V, M) is the bundle over V X M with fibre Jq and group the group
of q-jets of coordinate changes in n-space and p-space; S(V, M) is the sub-
bundle of Jq (V, M) induced by the inclusion S Jq. Jet normal forms are
given which show that whenever Sq is nonempty, then S either is the orbit
of a single point if n _-< p, or is the orbit of [(n p)/2] -t- 1 distinct points

qif n _-> p. The codimensions of S in Jq and the local equations of St (f) are
given. The proof of Theorem I for n _>_ p is given in Section 3. The proof
for the case n < p is omitted since it parallels but is somewhat simpler than
the proof for n >_- p.
Suppose now that V and M are both n-dimensional manifolds, and that

f maps V in M with rank f. _>- n- 1 everywhere. Further assume that
Jq(f) is transversal to the singularities Sg(V, M) for all q. The object of Sec-
tion 2 is to prove that under these conditions, the total characteristic class
(Stiefel-Whitney class (rood 2) in the real case, and Chern class in the com-
plex case) of V, c(V), and the "pulled back" total characteristic class of M,
f*c(M), are related by

c(V) f*c(M) _,q (jq) c(S[(f) ),

where jq is the inclusion of S(f) in V and (jq) is the Gysin homomorphism
of the cohomology of Sq(f) into that of V.
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This result is along the same lines as Theorem 5.5 of [4] in which holomor-
phic maps of V into complex proiective space are studied. There the dimen-
sion of the proiective space is strictly larger than that of V, and the expected
dependence of c(V) on the Chern classes of the singular manifolds does not
appear explicitly; the assumption on the maps is that their induced first
order iet maps are transversal to the first order singularities.

Except for 2.3, Section 2 may be read without reference to Sections 1 and
3. In 2.3, we refer to Theorem 1 for the existence of the singularities S,
and for the iet-normal form of f at points of S(f).

1. The singularities, S

Let A R or C. Using the notation of [3], we let J denote the space of
q-iets at the origin of (real C or complex analytic) maps of A into A which
take the origin into the origin. The group of q-iets of germs of (real C or
complex analytic) diffeomorphisms at the origin of the source, A’, and the
target, A, leaving the respective origins fixed, acts on J by the "chain rule".
For r -< q, let r. be the proiection of J onto J.
Given any map F from A into A" we let F

into J. The components of F are computed relative to fixed product
coordinate systems in the source and target. Also given any element f e J,
we let P/be the map of A into A" taking the origin into the origin such that
(P/)(0) f; the components of P/are polynomials of degree at most q.

If S is a submanifold of J, we let rS J+ be the set of all (q 1)-lets
at the origin of maps F of A into A such that F(0) e S, and such that F
is transversal to S at 0. By S(F) we mean (F)-(S).

Following Thom (see [3], [7], and [9]), we propose to define the qth order
singularity, S, in J as follows"

(1) feS S if and only if rank(P),(O) min (n, p) 1.
Assuming S- is defined and is a submanifold of J-,

Tq--1(2) feSifandonlyiffe and

rank (P/]S-(P/)).(O) min (p, dim S-(P/)) 1

where the inferior asterisk means the induced mapping of tangent
spaces.

A priori it is not clear that this definition for S makes sense for q > 2
q-1since We must know that is a submanifold of J-. In [3] it is proved

that all S S are submanifolds of J, so in particular S S S is. Thus we
know that S are defined for q 1, 2, 3 and are submanifolds for q 1, 2.

THEOREM 1. S[ are submanifolds of Ja for all q.
A. For n p W ,

If q > p, then S
(ii) If q < p, then codim S =qWn-p.

S Si+(iii) If q p, then f e r and f e if and only if i is in the orbit (under
the group defined by the diffeomorphisms of neighborhoods of the origins in the
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source and target) of the (q 1 )-jet at the origin of one of the maps, F, given by

Uo F(x, y, u) u,

(.) y F(x, y, u) =1 +/-y + - xiu/.’I-- xq+l/(q -- 1)! + R(x, u),

where the order of R is greater than q - 1, and

(x, yl,..., yt, u,..., u,_i) (x, y, u), (Y, UI ,..., U_) (Y, U)

are coordinate systems in the source and target.
(iv) For a map F given by (.), the submanifold S(F) is defined in a

neighborhood of 0 by the equations:

OYoF OiYoF
-0, 1 <-_j<=t, and =0, 1 <_i<__q.

Oyj Ox

B. Forp=nWm- 1,
(i) /f(q-- 1)(p- n+ 1) -> n, thenS =O, andifq(p- n+ 1) > n,

then rS 0.
(ii) If (q 1)(p n+ 1) < n, then codim S q(p- n+ 1).
(iii) If q(p n+ 1) <= n, then g e rS[ and g e S+ if and only if it is

in the orbit of the q 1)-jet at the origin of a map G given by

U G(x, u) u,

(**) YjoG(x, u) - (x+/(i + 1)!)u+m -t- R(x, u),

1 <=j<_m-1,

y, G(x, u) - (xi/i!)u, z xq+I/(q + 1)! + S(x, u),

where the orders of R and S are greater than q 1, and

(x, u u,_) (x, u) and (Y1, Y,, UI U,_) (Y, U)

are coordinate systems in the source and target respectively.
(iv) For a map G given by (**), the submanifold S(G) is defined in a

neighborhood of the origin by the equations"

OJyk o G
Ox O, 1 <-j <= q, 1 <- t <__ m.

The codimensions of S are those given by Whitney [9], and the forms for
the (q W 1)-jets have been stated by Haefliger [2].

It is easy to see that if F maps a neighborhood of 0 in A into Ap, and if
F(0) 0, F2(0) e rS1, and F2(0) e S, then ia a neighborhood of 0 we can
choose coordinates so that either

U o F(x, y, u) u,

YoF(x, y, u) ti=1 +/-Y - X/2 if n p -t- t,
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or
U o F(x, u) u,

YjoF(x,u) xuj, 1 <-j <= m-- 1,

Y,,oF(x,u) x2/2 if p nq-m- 1.

In part A of the theorem, the remainder term is independent of the y-coor-
dinates. This suggests that, at least for n => p, to obtain polynomial forms
locally for mappings displaying singularities of type S transversally, it
suffices to consider the case n p for the smallest value of n at which such a
mapping exists. For example, with minor variations in the proof of Whitney
[8] for the case n p 2, it can be shown that if F maps a neighborhood

Sof 0 in A into Ap with n p + t, and if F(0) 0, F3(0) er 1, and
F3(0) e S, then in a neighborhood of 0 we can choose coordinates so that

UoF(x, y, u) us, 1 <= j <= p- 1,

Y F(x, y, u) =1 y -+- XUl + x/3!.
2. Banal vector bundle homomorphisms

In this section we again consider both the real C and complex analytic
cases and will distinguish between them when necessary. In the complex
case, two vector bundles over the same manifold are called equivalent if
they are real C equivalent and if the isomorphisms of the fibres given by the
equivalence are complex. Thus in both the real and complex cases a short
exact sequence of vector bundles

0 - a -- g - , -- 0

gives the equivalence of g with .
2.1. Let and n be n- and p-vector bundles over a manifold V. In

Horn (, n) n (R) *, let S be the submanifold of elements of rank
equal to rain (n, p) /. If -- n is a bundle homomorphism, hen let
Z V -- n (R) * be the section that takes x e V to ,, where is the homo-
morphism obtained by restricting to the fibre of over x, --+ w.

DEFINITION. A homomorphism -- is called banal if
(1) rank >= min (n, p) 1, for all x e V,
(2) S() {x e V[rank min (n, p) 1} is a submanifold of V,

and if x e S(), then dim ((Z).(V) + (S1)z()) =>- dim $1 + 1, where
V is the tangent space to V at x and ($1)z() is the tangent space to $1
at Z(x).

A special case of a banal homomorphism is that of a homomorphism
which satisfies condition (1) above and has the propqrty that Z is trans-
versal to $1.
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LEMMA 2.1. (i) Let ---. be a banal homomorphism such that S()
has codimension 1 in V; then there exist vector bundles and and homomor-
phisms 1, 2, , r such that

commes, and , ad rnk I rk 2 (, p).
(ii) Denote by a prime restriction to S(). Le be he normal line bundle

of S() in V. Then

(a) ker a’ ker ’, and kerr’ X* @ coker ’.
Let be defined by the exactness of

0 ker’ ’ 0, 0 ’ coker’ 0.

Then the following sequees are also exact:

(b) 0 X@ker 0,

(c) 0 X* @ coker ’ ’ 0.

Remark. This lemma is essentially a special case of [4, Theorem 3.2].
There however the construction of the new bundles may be a little obscure
since it is done not on V but on , a manifold obtaed from V by sigma
process; also the new bundles are compared with the original ones lifted to .
Therefore we repeat the proof in this simplified setting. If n p, and if
rank n 1 and Z, were transversal to S, this lemma would be a special
case of the above-mentioned theorem. At present the author does not know
the appropriate fu generalization.

Proof. It suffices to prove the lemma in case n p. The other case can be
obtained from this one by duality.
We will work with coordinate bundles representing and v. Suppose

then that we are given an open covering of V by coordinate neighborhoods
U., a e }, some index set, such that is defined by the diagram"

u.) 7(v.)

1 1
U. X A A>U.X

where the vertical arrows are the coordinate maps for the coordate bundles
representing and v. It is no restriction to assume, for x e U. and a colu
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n-vector, that .(x, t) (x, H.(x).t), where H.(x) is a p n matrix of
the form

h.(x)

where In-1 is the n 1 X n 1 identity matrix and h,(x) is a (p n -t- 1)-
column vector.

Let ?Ii I I0, where a e t0 if and only if U. n S() 9. By condi-
tion (2) for banality of , for any x e S(), dh,(x) O. We assume that
for all a e 1 Ua are chosen small enough so that at least one of the der-
entials of dh. is nonzero throughout U.. We may, without loss of gener-
ality, assume that h. (x., 0, 0). We may further assume that in
U. forae0,h. (1,0,...,0);weletx. lforae0. Thusineach
U., the defining equation for S() n U. is x. 0.
Let d n and d: p. We define mapsN of U. into the d X d matrices

by

i= 1,2.
Xa I(di-n+l)

Let K. be the constant map which takes all of U. into the n p matrix
(InO). Thus on U.
(1) U..= K.N N K..
Suppose E. and F. are the transition functions for the coordinate bundles
we have taken to represent and 7. Then

(2) H.E. F.
If we drop all the indices and write the transition functions in blocks,

whereAandGaren- 1 X n- 1. We see that onS(),BandJvanish
identically. Thus we may write

(A. x/. ( G. P.(3) E.= and F.= in U, nU.

Note that restricted to S() the following are transition functions for the
indicated bundles: A. for , D. for ker ’, M. for coker ’.

Let and be represented by coordinate bundles which are defined by
their transition functions
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on U, n Us, respectively, where L, (x,/x). The L,, S() are the transi-
tion functions for a coordinate bundle representing the normal bundle to
S() in V, h. We see that the functions defined by (4) are the transition
functions of coordinate bundles, for, suppressing as many indices as possible,
we have formally from (3) and (4)

(5) / (N1) (E)(N1)-1 and (N)-I(F)(N2).
Also from (1) and (2) we have

(6) HE FH KNIE FKN= N2KE FNK.
To define the homomorphisms it suffices to do so locally.
are defined by

Bother, i 1, 2,

()." U, A--- U, X AT" (x, t) --> (x, K,(x).t).

The last two pairs of equal terms of (6) together with the defining equations
(5) show that we have well-defined homomorphisms between appropriate
bundles. Both of the thus-defined homomorphisms have rank n. The
homomorphisms a and v are defined for i 1, 2, respectively by

U, A --. U, A (x, t) --> (x, N,(x)t).
That these local homomorphisms piece together correctly is immediate from
(5). The commutativity of the diagram of conclusion (i) is just a restate-
ment of (1), and that S(a) S(v) S() is trivial from the definition of
and . All of the parts of conclusion (ii) follow by inspection of (4).
Remark 1. If in the preceding lemma, n p, then is equivalent to

and is equivalent to . If , , 7, and V are holomorphic, then the equiva-
lences are also holomorphic.
Remark 2. The of the lemma is unique for n -<_ p. In particular let

Gn (7) be the bundle associated with v with fibre the Grassmann manifold of
n-planes in AT, G(A), and let Fn() be the n-vector bundle over
whose points are pairs (X, v) where X e G(v) and v e X. Suppose that

b V S(b) - G() x -- (range of ).

The existence of yields an extension " V -+ G(), a section in G(7).
Let / -(F(v)); clearly 7 is equivalent to . In the obvious way /is
a subbundle of 7, and - v can be factored through 7, i.e., there is a
map 0 -- , which satisfies the hypothesis of the lemma such that i o 0,
where i is the injection of , in 7. Since is unique, so is

Remarlc 3. On S() we have a map analogous to , say b’ S() -- G_()which takes a point x to the range of . That ’-(Fn_(7)) is equivalent
to is obvious since the map of ’ into -(F_(v)) is onto and has kernel
ker ’.

2.2 Notation. Given a map f, of X into Y, X and Y manifolds, we let
be the Gysin homomorphism from the cohomology of X into that of Y.
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Here the coefficients for cohomology are Z2 in the real case and Z in the com-
plex case.
For a vector bundle a, we let c(a) be the total Stiefel-Whitney class (mod 2)

in the real case and the total Chern class in the complex case.

THEOREM 2.2 (see [4, 3.3]). Let be a banal homomorphism of an n-vector
bundle into a p-vector bundle 7, n <= p, both bundles over a manifold V. Sup-
pose that S() has codimension 1 in V. If and are as in the preceding
lemma, then

c() c() j c(),

where j is the inclusion of S( in V.

This theorem is a consequence of the Atiyah-Hirzebruch-Grothendieck-
Riemann-Roch Theorem [1].

LEMMA (Porteous, [6]). Suppose that a and are vector bundles of the same
rank over a manifold X, and let b be a homomorphism from a to such that

(a) Except on a closed submanifold j Y X of codimension 1, b is an
isomorphism.

(b) ’ b l(a Y) is of constant ran.
(c) For each P X, if x is the germ of a function defining Y at P, and if

s is a germ of a section in at P, then xs is in the image under b of a
germ of a section in a.

If and t’ are the corresponding sheaf homomorphisms, then

coker (coker .,)0, and coker ’= }, (R) ker b’,

where (’coker ,)0 is the sheaf coker ’ extended by zero to X Y, and X is the
normal line bundle of Y in X.

Applying the AHGRR theorem [1, Theorem 3.1, Theorem 5.1, 6] to the
sheaf conclusion of the Porteous lemma we have

(( c(coker h’) 1})(1) c(f a) 1 -f- j c(X* (R) coker ’)

where c(h) 1 + v, and h* is the line bundle dual to h. If we denote by
a’ and t’ the restrictions to Y of a and , we have the exact sequence of
bundles:

0 --+ ker ’ -- a’ --+ coker --* 0.

Let / coker(ker b’ -+ a’) ker(’ --+ coker ’). Then substituting in
( 1 we obtain

(2) c( a) 1 A- j(c(’ a’){(1/v)(c(h (R) ker ’) c(ker ’))}).

Multiplying both sides of (2) by c(a) and using the fact that

c(a)j( j[c(a’)( )]
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we have proved

(3) c() c(a) -" J (c(’) f c( (R) kerh’)v -c(ker’)}).
If further ker h’ were a line bundle, then c(h (R) ker ’) c(ker /) v, and
so we have

c() c() + j c().

The verification that the bundles , and the homomorphism satisfy the
conditions on a, , b of the lemma is immediate from the definition of and

(see preceding section).
Using Remarks 2 and 3 above, we have in the situation of Theorem 2.2

c() *c(r()) j’*c(r_()).

2.3. Let V and M be manifolds of dimensions n and p respectively, and
let f map V in M. Suppose that f," T(V) -- f-IT(M) is banal, where
T(V) and T(M) are the tangent bundles. Notice that the dual map,

f* f-I(T(M))* -- T*(V)
is also banal, and that S(f*) S(f,). Call this singular set simply S(f).
We apply Lemma 2.1 and Theorem 2.2 to f, and f* when n =< p and n -> p
respectively. By Remark 2 of 2.1 we have maps

s. V G,(T(M)) and , Y G(T*(V)),
which map a point x e V to the range of (f,) and (f*). Here the map. is the composite of the map given by the remark into G,(f-I(T(M)))
followed by the obvious map into G(T(M)). If we let (f,)’ and (f*)’ de-
note the restrictions to S(f), we have

T(s,), S(f) -- G,_I(T(M)) and T(f,), S(f) --, G,_(T*(V)).
Letting j be the inclusion of S(f) in V and assuming that S(f) has codimen-
sion 1 in V, we have by Theorem 2.2

(a) If n <- p, c(V) (’,)*c(F,(T(M))) j(T(,),)*c(F,_(T(M))).

(b) Ifn >- p,

f*c(T*(M)) ].)*c( F( T*V) ja( T(,), *c( I’_ T*(V))).

Since we will only apply formula (a) above, we restrict our attention now
to the case n <- p. Let g f IS(f), and assume that g, is again banal
with S(g) of codimension 1 in S(f). Since T, IS(f) S(g) agrees with
T(,,), IS(f) S(g), T(s,), ’, Thus we get

(c) c(S(f)) (T.),)*c(r,_(T(M))) ]a(T(.),)*c(F,_(T(M))),

where ] is the inclusion of S(g) in S(f). Thus (a) and (c) collapse to give
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(d) ja c(S(f)) + c(V)

(.)*c(r(T(M))) jala(T(.),)*c(r,_(T(M))).
If we were so fortunate that now f S(g) h had the property that h, were
banal and S(h) had codimension 1 in S(g), we could apply the same argu-
ment again. We would, if the banal und codimension 1 conditions were
satisfied every time we restricted the map of a singular set to its singular set,
eventually obtain

(j) c(S(fi) + c(V) ,)*c( Y,(T(M) ),

where f f S(f_), f0 f, and j is the inclusion of S(fi) in V.
A case in which this simple situation does in fact occur is given by the

following theorem.

THEOnEM 2.3. Let V and M be n-manifolds, and let f be a map of V in M
such that S(f) 0 for i > 1. If Jq(f) is transversal to the singularities sq for
q 1, n, then

c(V) f*c(M) ,= (jq) c(S (f)

where j is the inclusion of Sq S+(f) in V and (f) S(f sq (f) ).

Proof. Since in this case G(T(M) M and F(T(M) T(M), we
have

/, f and (/,)*c(F,(T(M))) f*c(M).
To complete the proof it suffices to show that iff f S(f), then f, is banal,
since we already know that S(fi) S+i(f) is of codimension 1 in S(f) or
is empty. But that f is banal is trivial since the hypotheses that S(f)
for i > 1 and that Jq(f) are transversal to Sq imply respectively that condi.-
tions (1) and (2) of the definition of banal homomorphism are satisfied
for f.

3. Proof of Theorem 1.
Since the proofs of parts A and B are similar, we will iust prove the theorem

in case n ->- p, i.e., part A. In J, let W be a neighborhood of the 1-jet of
the mapping given by

U o F(x, y, u) u, Y o F(x, y, u) O,

Wwhere the notation is as in the statement of the theorem. Further f e if
and only if ((OU(P])/Ou)(O))is nonsingular, 1 _-< i,j <= p- 1.

Let ![9 be the set of all germs at the origin of maps F of A" in A taking the
origin into the origin such that the germ of F is in ! if and only if F(0) e W.
In the following we will use the same notation for the germ of a mapping
and the mapping itself; this abuse of notation should lead to no confusion.
We define a map of ! into itself by giving for each F e ! a diffeomorphism
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of a neighborhood of the origin in the source leaving the origin fixed; OF is
defined by composing the diffeomorphism with F. Such a map, 0, induces a
map of W zq.l(W1) into itself, say O, defined by the equation Of
(0P/)(0). If F e !, then F has the form

(1) U F(x, y,u) U*(x, y, u), Y F(x, y, u) Y*(x, y, u),

where (0U/Ou) (0)) is nonsingular. By virtue of the nonsingularity con-
dition of (1) we can define a diffeomorphism of a neighborhood of 0 in A" into
itself which takes a point with coordinates (x, y, u) into one with coordinates
(x, y, C(x, y, u) ), where U*(x, y, C(x, y, u) u. We let OF be the composi-
tion of F with this diffeomorphism:

(2) U o (OF)(x, y, u) u, Y (OF)(x, y, u) Y*(x, y, C(x, y, u).

Note that whenever (OUi/Ou) is nonsingular, the partials of C with respect
to x, y, u depend only on the partials of U*.
Given a map F from A" to AT, the coordinates of the jet Fq(0) are given

by the partial derivatives of orders up to and including the qth of U o F and
Y F with respect to x, y, u at 0. These coordinates will be denoted by the
corresponding partial derivative symbols, e.g.,

OY Fq O(Y o F) (0) for j< q.(0)) means
Ox

Forf e Wq, q => 2, let K(f) (02Y/Oy Oy,)(oqf), and for eachj 2, q,
let L(f) (O"Y/Ox"-Ou) (oqf) if j -< p, and the zero matrix otherwise, and
let

K( f)

M(f)= O.y

\Ox’-Oyi

if j <= p, and the zero matrix otherwise.

Y,
Oy Ou

L(f)

Here the indices range as follows"
2 <- r <-_j, 1 <= <__j-- 1, 1 <- i,i’ <- t.

Define open sets Nq Wq as follows" N W, and for q >- 2

Nq {f WqlK(f), L(f), and Me(f) are nonsingular for all j 2, q}.

Clearly if Nq , 7rq,r(Nq) Nr, for r -<_ q. Let

Tq f f N
OY OY (oqf) 0 1 < j < }(0qf) =0,1-<_i_-< t; and q

LEMMA 3.1. Tq is a submanifold of Nq and codlin Tq n p - q if q <- p.

Proof. If q p, N O, and there is nothing to prove. Suppose that
q _<_ p. It suffices to prove the following" Let F P] for f Nq; then
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OYoFOY(OF) (0) =--- (0), 1 <= i <= t,
Oyi Oyi

Oy o FOY(OF) (0) =-- (0), 1 < j "< q,
Ox Ox

where congruence means equality modulo a function of the partials of Y o F
other than those listed and of the partials of U F. The proof of this is
trivial using (2). In this proof no use is made of the fact that we are working
inside Nq rather than Wq. The restriction to Nq is for later convenience,
since we will show that S is the orbit of T. If we had defined T in Wq by
the same equations, although T would be Submanifolds of W, the Tq would
contain points not in S.

If F !2B and F (0) N, then for P sufficiently close to 0, F (P) N, and
OF(P) = (OF)q(P), where F(P) is the q-jet at 0 of the map T_() F o T,
where T_F(p) is the translation in A" taking F(P) to 0, and Te is the transla-
tion taking 0 to P in A ". Thus in a neighborhood of 0, the equations of
T(F) are

OY(OF) OY(OF)
0, 1 <-i<-t and =0, 1 <=j<=q.

Oy Ox

If further Fq+l N+e and F OF in a neighborhood of 0, we can choose a
neighborhood of 0 so that M(F) has rank (j 1 -- t) there, for j 2,
q + 1. Thus in this neighborhood, rTq(F) is defined by the equations de-
fining Tq F
Suppose F e !9 and Fq(O) e N, q => 2, and F OF; then the equations

for F are

Y F(x, y, u) Y*(x, y, u).Uo F(x, y, u) u,

Expanding Y* in powers of x yields

Y*(x, y, u)
()

=0(,u)+; ’q (x/.)(a + Gi(y, u)) + xq+R(x, y, u)
where a (OY*/Ox)(O). Since we have assumed that Fq(0)eNq, i.e.,
that Nq 0, we have q =< p, and that the matrices K, L, and Ms are non-
singular for j 2, q. In the notation of (3),

L(Fq(O)) \-] (0); 1 -< r, lc <-_ j- 1.

Thus we may define new coordinates in the source and target by, G,(O, u), U, G,(O, U),
u, U U.,

(4) y, and : Y- Y*(0,0, V),

l____<i=<q--1; q<-j<-p-- 1; l<=k<- t.
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By letting H(, ) G(y, u) G(0, u), i 0, q 1, the equations
defining the mapping F become, after dropping the tildes of the substitutions
(4),

U o F(x, y, u) u,

Y o F(x, y, u) Ho(y, u) -- (x/i!)(a -b u -b H(y, u)- (xq/q !) (aq -b S(x, y, u)),

where the order of S is greater than zero. Define b, and J by

= b y + J(x, y, u) Ho(Y, u) - - (x/i!)H,(y, u)

+ (xq/q!)(S(x, y, u) S(x, O, u));

b, are constants, order J -> 2, and J(x, O, u) O. Letting R(x, u)
S(x, O, u) we have

Y o F(x, y, u)

_
b, y - J(x, y, u)

+ 2_ (x/i!)(a- u,) + (x/q!)(aq + R(x, u)).

Note that

K(Fq(O)
\Oy Oy# \Oy Oy# \Oy Oy#

is nonsingular.

LEMM_ 3.2. Let A be a function of p-bt variables (z z w w)
such that (A) (0) is nonsingular. Then there are functions i 1,
defined in a neighborhood of 0 such that (, w) form a coordinate system there,
and such that

A(z, w) h(w) - ’_ b g,(, w) - -_ -+-z’,
where g,(O, w) 0 and (g,)) is nonsingular at 0 and b, A(O).

Proof. Write A(z, w) f(w) - _bz - J(z, w), where f(w)
A(0, w) and b A,,(0). Let J, J, J(0) 0, and ((J))(0) is
nonsingular. Thus Ji(z, w) 0 can be solved for z in terms of w, say z
,(w), with ,(0) 0, is the solution of this system. Set z, z -t- (w).
Thus

A (z, w) f(w) - ’b,(w) -t- J((w), w)

+ b,z + [J(z’ + (w))

h(w) - t-. b z + K(z’ w).

K(O, w) O, K(O, w) J((w), w) O, and

(K,:)(0, w) (J,)((w), w)



is nonsingular for sufficiently small w. To this function K we apply the
theorem of Morse [5]. That is, there are new coordinates (, w) such that
(($,),;)(0) is nonsingular and K(z’, w) ..1 +/-.
Applying Lemma 3.2 to the function Y o F we have, dropping the tildes,

f o F(x, y, u) =b g,(x, y, u) + -1 +/-y + h(x, u)

+ ’- (x/i!)(a + u,) + (xq/q!)(a + R(x, u)).
q--1Let h(x, u) ,= (x’/i!)h(u) + (xq/q!)hq(x, u). Since Lq(F(O)) is

nonsingular, we may take as new coordinates, u, + h,(u) h,(0), , U, + h,(U) h,(0),

i 1,...,= Y- Y*(0,0, U);

all others remain the same. This yields finally, by letting /c(x, y, )
g(x, y, u) and dropping the tildes,

(5)

U o F(x, y, u) u,

Y o F(x, y, u) =. b k,(x, y., u) + .. +/-y

+ + u,) + (xVq!)(c + u)),

whereci at-{- hi(0),i 1,...,qandordS >- 1. Note thatbi 0for
all i 1,..., if and only if all (OY oF/Oyj)(O) 0, j 1,..., t.
The transformations used to obtain (5) define a map of the set of )F for

F e ! Such that F(0) e N into itself. We call Q, the composition of ) fol-
lowed by this map; the induced map of N into itself we call . The equa-
tions for the germ of F are given by (5). Notice that for F F, Fq(0) e T
f and only if

(6) b=0 and cj=0; l<_i_t, 1 <_j<_q.

Thus we. see that Tq is contained in the orbit of the q-jets of mappings (.)
given in the statement A of the theorem.

LEMMA 3.3. S n Nq Tq.

Proof. The proof goes by induction on q and is trivial for q 1. Suppose
the lemma proved up to but not including q. As usual we set n p W t.
We may assume thatq __< p. LetfeqNqandF P]. ThenFhasthe
form (5). We must show that f Sq if and only if (6) holds. By our induc-
tion assumption Fq-](O) e if and only if bi 0, 1 -< i <= t, and c. 0,
1 -< j -<_ q 1 The equations for (F) in a small neighborhood of 0 are

OY o F O#y o F
=0, l_<_i <_ and =0, l<_.j_q-1.

Oy Ox

These equations become, in this case,
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y 0, 1 _<- i <__ and -(x-J/(i-j)!)u+ (xq-J/(q-j)!)cq-- O,

l<=j<=q-1.

These equations can easily be solved for the u’s in terms of x, and S-I(F) is
defined in a small neighborhood of the origin by

(7) y 0, 1 =< i-< and us j(x), 1 -<j-< q- 1.

For convenience let u. v and Us Vj for j q, ..., p- 1. Restricting
t..q--1F to ) in a neighborhood of 0 gives

U F(x, O, (x), v) (x),

V o F(x, O, (x), v) v,

Y o F(x, O, (x), v) 5(x, v).

At 0 this map has rank (p q), i.e., Fq(O) e S if and only if
oi70(0) =0 and (0) =0.o- aTx

Since
q--10 (0) OY F (o) q- OY F

Ox o, = - (o). -aTx ()

and (OY o F/Ox)(O) 0 since F*(0) e S, we see that Fq(O) e S if and only
if (O/Ox)(O) O. Further we know that on S-(F),

Oy F
Ox (x, O, (x), v) O, j 1,... ,q 1.

Thus on $1-1(F)

0 (OJY o F
o=\

O+y o F(x, o, (x), v) -$7 (x, o, (), v)

+
O+ly o F (x,O, (x) v) 0 (x)

for j 1,... q 1. Since by assumption Lq(F(O)) is nonsingular, we
see that (O/Ox)(O) 0 if and only if cq O.

LEMMA 3.4. Suppose Fq+(O) erTq but Fq+(O) Tq+; then we can choose
coordinates at the respective origins so that

U o F(x, y, u) u,

(8) Y o F(x, y, u) = +/-y + q- (x/,!)u"
+ (xq+/(q + 1)!) + R(x, u),

where ord R > q q- 1.

Proof. Since Fq(O) e Tq, we may assume that F has the form given by
(5) with (6) holding. That is,
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(9)

UoF(x, y, u) u,

Y F(x,y,u) t q-1- (xq/q!)(L(u) - ex/(q - 1) -t- S(x, u)),

where ord S > 1 and L is linear in the u’s and e is a constant. Since

has rankt- q (1 _-< j-<_ q; 1 =< i,i’ <= t;
For our map this matrix becomes

1 =< It__< p- 1).

(10’)
Et 0 0 0

((OL/Ouj)(O))

where Et is a X matrix with -l’s on the diagonal and zeros elsewhere,
Iq_l is the q I identity matrix, and ((0L/0uj) (0)) is a 1 (p 1) matrix.
Since Fq+I(O) Tq+, we know that e 0, so we may assume e 1. Since
the lemma merely states that the order of the remainder is greater than
q 1, it suffices to prove the result without carrying the remainder along if
we make coordinate changes which keep the origins fixed and which do not
change the y-coordinates.
For P any linear function of u,

(x-- P(u) )q lp(u) (x- P(u))) xq+

q! q+ 1 (q-t- 1)! 27
Xq-J

=1 ( j)
Pj(u),

where ord P >_- j + 1. Thus if we replace x by x L(u) in (9) we obtain

Uo F(x, y, u) u,
q-1 xql/Y o F(x, y, u) =1 +/-y + --o (x/.)Q " (u) + (q + 1)I

By the rank condition of (10) we may take as new coordinates

(t Q.(u), Q(V), i 1, q 1, F= Y- YoF(O, O, U).
F now has the desired form.

Let B be any subset of Jq. By O(B) we mean the orbit of B under the
group of q-jets of diffeomorphisms at the origin of the source and target.
LEMMA3.5. S O( Tq).

Proof. Since Sq Nq
fl Tq, we know that O( Tq) C Sq

1. Forq 1, the
assertion of the lemma is trivial. Suppose S O( Tq); we show that

+1 O(Tq+I).
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By our induction hypothesis 0(rT) rS. To prove the lemma it suffices
to show that S+ T+)rT 0( Suppose F is such that F+(0) rT
and F P+0 Since F(0) e T, we may apply to F. Call the re-
sulting map G; we know that G+(0) is in the orbit of F+(0). Let Y*
Y o G. We know that

OY* OY*
Oy

(0) =0, i--- 1,...,t; and (0)=0, j= 1,...,q.

Since G+(0)efT, if it is in the orbit of N+, we are done. If
G+(0) e0(N+), we may apply Lemma 3.4 and assume that G has the
form given by (8) without remainder. The equations for S(G) assume a
very simple form as in (7)"

y 0, i 1,...,t; u. 0, j 1,...,q- 1; x 0.

Restricting G to S[(G) we see that at 0

rankG (p- q) dimS(G).
Thus G+(0) S+.
Applying Lemma 3.5 to Lemma 3.4, we obtain conclusion (iii) of the

theorem. Conclusion (iv) follows since the equations given there defining
S(F) are the defining equations of T(F). We obtain (i) and (ii) also
since the corresponding statements hold for T and rT.
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