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1. Introduction

In two recent papers ([6] and [7] of the bibliography) Kesten studied sym-
metric probability densities on discrete groups G. For each such he defined
first a matrix and then an operation on 12 (G), an operation easily shown to
be equivalent to right convolution, o , by . The properties found in [6]
for the family of groups where X2 (), the spectral radius of o operating in
l= (G), is 1 suggested to Kesten the result he proved in [7]: X () 1 for
every symmetric on G if and only if there is an invarant mean on the bounded
functions of G.

In this paper I exploit some results of my earlier work, [1] on invariant
means and [2] on uniform rotundity, to give a simpler proof of a more general
result. My proof uses uniform rotundity in place of symmetry and strong
amenability (see [1, 5, Theorem 1]) to replace Flner’s characterization [4]
of groups with invariant means. This simpler proof with no dependence on
self-adiointness applies to all l spaces, p > 1, and applies also to some semi-
groups which are not groups. In this semigroup case, where right and left
invariance are independent properties of means, it turns out that right invari-
ance of means is to be used in studying right convolutions.
The relation between these results and those of the paper [3] of Dieudonn,

which is concerned with locally compact groups with the property that right
convolution by each (Haar measurable) probability density is an operator of
norm one in every L over G, are discussed but not settled in the final section
of this paper.
Theorem 3 isolates from the many results a response to Kesten’s hope that

some more direct construction of invariant means might be found when 1 is
in the spectrum of enough operators o .

2. Principal results
It is assumed in this section that each semigroup 2 discussed has right

cancellation (rc) and has a nonempty set U of right units (ru). If is a
probability density on E, P { () > 0}. o , or right convolution by, is defined precisely in the next section, as are and f.
THEOREM 1. The following conditions on an (rcru) semigroup E are equiva-

lent:
(a) is right amenable.
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CONVOLUTIONS MEANS AND SPECTRA 101

(b) For each probability density q on and each p >- 1 the linear operator
o has, when considered as a linear operator from 4 () into 4 (), the number
1 in its spectrum.

(c) For each probability density on and each p >= 1 the spectral radius
(q) of the operator o q in l () is 1.
(d) For each probability density q on and each p

_
1 the norm of o q in

4 (z), o :.
(e) For each finite (or countable) subset of Z there are at least one p > 1

and at least one probability density q on such that o q ]{.. 1, P,

_ ,
and P n U is not empty.

(f) Every finitely (or countably) generated subsemigroup of Z is contained
in a strongly right amenable countable subsemigroup of Z.

(g) Z is strongly right amenable.

Starting from (b) and using Lemmas 5 and 6 we give a geometric condition.

TEORE 2. For (rcru) semigroups conditions (a) to (g) are equivalent to
(h) For each p > 1, K, the norm-closed convex hull of the set of right shift

operators in 4 (), : }, consists of operators T each of which is of
norm one and has 1 in its spectrum.

THEOREM 3. For (rcru) semigroups if for any p > 1, (f, n e A) is a net
of nonnegative elements of norm one in 4()such that for every probability
density , f, [1 -+ 1, then (f,, n e A) is a net of probability densities
converging in norm to right invariance.

For groups some additional results follow.

TEOEM 4. When Z is a group with unit element u, the conditions (a) to
(h) are also equivalent to each of the following:

(e’) For each finitely (or countably) generated subgroup Z of there are
at least one p 1 and one probability density q such that u P

_ , P gen-
erates the group ’, and o ]]_, 1.

(f’) Every finitely (or countably) generated subgroup Z’ of Z is amenable.
(a), (b), (h), the conditions obtained from (a), (h) by replacing

right amenability by left amenability and right convolution by left convolution.
The theorem of Kesten [7, p. 150] is similar to the case of (a) vv (e"’) of

the following

COnOARY. If Z is a countable group, then (a) is equivalent to
(e’) There are at least one p > 1 and at least one probability density on

such that q I1-. 1, u e P, and P generates Z.
(e"’) Like (e’) with "1 in the spectrum of q" replacing "]] o I[- 1".

3. Definitions and some lemmas
Terminology for amenable semigroups and general normed spaces can

be found in references [1] and [2], respectively.
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A semigroup is a system Z of elements with an associative binary rule of
multiplication. A semigroup 2: has right cancellation when for a, b, and c in
2:, ac bc implies a b. u is a right unit in 2: if au a for all a in 2:.

If p >__ 1, 1(2:) is (see [2, Chapter 2, 2]) the normed linear space of all
those complex-valued functions f on 2: for which f [[, defined to mean
(8lf(s) I)1/, is finite, l(2:), on rare occasions, will be used to refer
to the space m (2:) of all complex-valued functions x on 2: such that x I1,
defined to be sup {[ x (s) s e 2:}, is finite.
An f in any of these function spaces is called nonnegative, written f -> 0,

if for every s in 2: the function-value f (s) is a nonnegative number.
A mean on 2: is a linear functional on m (Z) such that (i) t 1, and

(ii) u(x) >- 0 if x e m(Z) and x >= 0. If e is the constantly 1 function on Z,
then a mean u also satisfies (iii) (e) 1; also any two of the conditions
(i), (ii), and (iii) imply the third.
The left [or right] translation operators 18 [or r,] in m (2:) are defined when 2:

is a semigroup by the following formulas (see [1, 4])" For each x in m(2:)
and each in 2:,

[l, x] (t) x (st) [or [r, x] (t) x (ts)].

A mean u on 2] is left [or right] invariant whenever

g(lx) g(x) [or g(rsx) tt(x)]

for every x in m (2;) and s-in 2:. 2: is called left [or right] amenable if there
exists a left [or right] invariant mean on 2:. 2: is amenable if there is at least
one mean u on 2: which is both left and right invariant. From [1] we quote
4, (A): If 2: is both left and right amenable, it is amenable; and 4, (B):
A left [or right] amenable group is amenable.
A probability density on 2: is a nonnegative element of 11 (2;) such that

() 1. It is easily seen that if is a probability density on 2:, then
Qq, defined from 11 (2:) to m (2:)* by

[Q] (x) z (a)x ()

for every x in m (2:), is a mean on 2:. For this reason the probability densi-
ties on 2: were called, by slight abuse of language, finite or countable means in
my paper [1].

Define the (Kronecker) i-mapping of Z into 11 (Z) by: For each s in 2:, 8s
is that element of 11 (2:) which is 1 at s and 0 elsewhere.
The operation of convolution is defined among functions on 2: so that ti is an

isomorphism of 2: into the multiplicative semigroup of the convolution algebra
l (Z). Formally if b and are functions on Z, convolution is defined by

(o-) (t),

where the sum is over the unordered set of all those ordered pairs (s, t) of
elements of 2: for which st . Because this set of pairs has no natural
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order, [ o ] (z) is defined only when the series is unconditionally (that is,
absolutely) convergent. Hereafter the defining formula will be abbreviated
as

(1) [ o ] (z) st= P (s) (t) for each z in Z.

5 of [1] discusses the semigroup algebra l (); it is shown there that

nd that the convolution of two probability densities is nother probability
density.
Even in semisgroup, for ech probability density the operator o of

right convolution by cn be regarded as ]iner, not-necessarily-closed-or-
continuous operator defined on some liner, not-necessarily-closed subspce
of l () which includes l (). (See 5, C1 nd C2, for examples.) How-
ever, in the special case of right-cancellation semigroup , is defined
everywhere in ech l (Z), p 1, nd crries l (Z) into l () without increase
of any norm. (See Lemm 4, below.)

If f is complex-vlued function on Z nd if d is positive number, define
the function on by

[]] (s) f (s) sign f (s) for ech s i .
Here, for complex number z, sign z z/ z] if z 0, sign 0 0.

LE 1. Let Z be a set, let p and d be positive numbers, and let f be an
element of l (); then

(i) fel/() and (ii) [[ ]/ [f[].
The proof follows t once from the definitions.

LEM 2. Let and p be probability densities a set , let p exceed 1, and
define f /, r p/. Then

(i) f ] 1 r so f and r are the unit sphere of l (),
l and(ii) ]If-- rl < [l--PJ

(iii) J--pJl P2-jf- r

Proof. (i) follows from Lemms 1.
(ii). If 0 < a < b, concavity of the p*-power function implies that

(b-- a) < b"- a. Hence

[Jll r .] . If() r() S . [()]" [r()]". I() P(sD! - o

(iii). The theorem of the mesh applied to the p-power function in
0 g a g g b g 1 yields number between a nd b such that

b-a= (b- a)pt- (b-a)p(a+b)-.
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Then

-<_ splf(s) r(s) Ill(s) q-r(s) -1.

If q is chosen in the usual way so that 1/p -}- 1/q 1, then p/q p 1,
and If -+- r ]-1 e lq (2); by HSlder’s inequality

II, =< p[E: I() r0)I]’[ I0) + r0)I]"
<-- P f r [[ [ll f " r [1,]/q <-_ p2-1 f r [l,.

The homeomorphism of ll with l was proved by Mazur [9]; this is his proof,
and it is used to get Uniform continuity between the positive parts of the
unit spheres.

LEMMA 3. Let be a right-cancellation semigroup, and let p and d be posi-
tive numbers. Then

(i) for each s in and each f dened on

a] o 8s [f o 8s]d.

(ii) For each s in Z and each p >= 1 the right shift operation o s is an
isometry of l () into l (). The range of s is all of l () if and only if
right multiplication by s is a permutation of .

(iii) If is a probability density on and p >- 1, then

(largest real number in spectrum of o in l ()
-<-,,() -< o II,, <--II , II1- 1.

Proof of (i). For each

[fa o ti] (,) st=, fa (s)/ (t) ,=,fa (s).

By the right-cancellation property this last sum has no more than one term.
By interpreting an empty sum as zero, the original sum equals

,:(s) ] [If o ] ()] [: o ] ().

Since this holds for each in 2, fa iz [f o/ta]a.
Proof of (ii). If r e 21, then If o/tz] (r) ,=f(s), and by right can-

cellation the sum has only one term. Hence

If right multiplication by is a permutation of , then for given g in l (2),
f o ti g can be solved for f by setting f(s) g(sr), so o/ is a mapping of

l (2) onto l (2). If right multiplication by v is not a permutation of 2, it
must fail to map 2 onto Z, that is, there is a r in Z which is not in Zv. Hence,
no matter howf may be chosen, tit is not f o/t. But 1]/it [[ 1, so/it e l (2)
and is not in the range of o/ta.
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Proof of (iii). If f e l (2), then

f o, Z:,.,, ()[f o ].
Hence

Hence
I] sup ill f o I]" f ll } .

The other inequalities of (iii) are standard propeies of elements of a normed
algebra; see [8].

LEMMA 4. Let be a semigroup with right cancellati and a right unit,
let p be > 1, and let be a probability density such that P contains a right unit
u of . Then the following cditis are equivalent:

(i)
(ii) There exist nnegative f, of norm e in l(Z) such that f 1.
(iii) There exist (the same) nonnegative f of norm e in l( such that

f, f o [ 0 for each

(iv) () .
(v) 1 is in the spectrum of .

Proof. Lemma 3 (iii) shows that (v) implies (iv) implies (i). (i) im-
plies (ii) because the sum defining f ]] is not decreased ff f is replaced
by If].

(ii) implies (iii). Given a sequence or net (f, n e A) which fas to satisfy
(iii), then for any right unit u in P and some s0 in P we have the conclusion
that f o u f o s0 [ does not tend to zero. By uniform rotundity of
l(Z) (see [2, pp. 112-113]) it follows that

(u)f u + (so)f o /( (u) + (o)

can not tend to 1 so must have some upper limit 1 v < 1. Then

f [ (u)f o u W (so)f o So W other terms

has an upper limit 1 v ( (u) W (s0)) < 1, so (ii) fas for (f, n e A)
ff (iii) fas.

(iii) implies (v). Choose , n e A) to satisfy (iii). Then

which tends to zero. Hence o (u ) has no bounded inverse; that is, 1 is
in the spectrum of o .
Note that the nature of this proof, especially the crux of it, (ii) implies

(fii), cn be pplied to more geometrical result.
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:LEMMA 5. If B is a uniformly rotund space, if T is a linear operator from
B into B of norm <- 1, if O < o < 1, and if U aI (1 a) T, then the
following conditions are equivalent: (i)[I U 1. (ii) 1 is in the spectrum
of U. (iii) 1 is in the spectrum of T.

Because U =< 1, (ii)implies (i)as before. If u 1, then there
existf of norm one in B such that Vf, "- 1, so afn -t- (1 a) Tf, --* 1;
then (fn + Tf)/2 I1- 1. By uniform rotundity, I[f Tf, II--* O, so
I T can not have a bounded inverse; that is, 1 is in the spectrum of T.
This proves (i) implies (iii). To see that (iii) implies (ii) note that because
I U (1 a) (I T), the operator I U has no inverse if and only if
I T has no inverse, so 1 is in the spectrum of U if and only if it is in the
spectrum of T.

Let us restate Lemma 5 in a more geometric form.

LEMMA 6. Let $ be the unit sphere in the algebra of continuous linear opera-
tors from a uniformly rotund Banach space B into B. Then an element T of 8
has 1 in its spectrum if and only if the segment connecting. T to I (the identity
operator) is a subset of $.

If r is a subset of 2:, define (r) to be the smallest subset of 2 which con-
tains F and contains with any two of s, t, and st the third.

(The family of sets

___
I’ closed under the given process has 2: as a member,

and the intersection of all such has the desired property; hence (r) exists.)
Note that if r is nonempty, then U

___
(r), for /in F and u in U imply

,u , r, so u (r).
For each p >__ 1 and each net (f, n e A) of nonnegative elements of norm

one in l (2:), define

Z, (f,) {o-" lim, f,, f, ll 0}.

LEMMa 7. (i) If p’ => 1 and F, , /’, then Z(f) Z,(F,).
(ii) U, the set of right units of , is contained in Z (f,).
(iii) Z (f (Z (f so for any nonempty subset r of Z (f it follows

that (F) Z (f).

Proof. (i) This follows from Lemma 2 by working from fn to n f,
and then on to F using F’ .

(ii) If u e U, then u is the identity in l (2:).
(iii) If s, e Z Z (f.), then

I1A A o t f A o t + <A A o ) o t 0.

If s and st Z, then

If and st Z, then

f. f. o 6s f. 6t f. o 6st f- f-II o:
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IEMMA 8. If p > 1 and (f., n e A) is a net of nonnegative elements of norm
one in lp(2;), then Zp (fn) U P where the union is taken over the set of all
probability densities such that f o , I1 -> 1 and P meets U.

The proof of equivalence of (ii) and (iii) of Lemma 4 proves this also.

4. Proofs of principal theorems

Proof of Theorem 1. The proof of equivalence of (a) with (g) is the "right"
part of the equivalence of amenability and strong amenability [1, 5, Theorem
1]. That (f) implies (g) is easily shown by the methods which prove a
group is strongly right amenable if every finitely generated subgroup is [1,
4, (K)]. By the definition of ight strong amenability (g) is equivalent
to the existence of a net (, n e A), of (finite) probability densities on 2
such that for each in 2;, lim o/i ]11 0; this is the assertion that
Z1 () 2;. But Lemma 7 (i) allows this to be transferred to f nl in
lv (2;). This is the same as the condition that every o/iz has 1 in its spectrum.
By Lemma 4, this implies (b), (b) implies (c), and (c) implies (d). (e) is
a formal weakening of (d), so we need only prove (e) implies (f). This
proof is based on an idea of Granirer [5, Theorem E, pp. 50-51].
For each countable set there is by (e) a such that P n U 0, P ,

and IIw 1. Therefore there is a sequence of elements f of norm
one in 1(2;) such that IIf llv-- 1. By Lemma 4, (iii) implies (ii),
f f o/i ]Iv -- 0 if P . Setting fv, Lemma 2 shows that

o IIx 0 if e .
hTow le E; hen he above mehod produces a sequence , of prob-

ability densities converging o righ invariance for each in . If
2

___ _
are countable subsets of 2:, he same construction will

give a corresponding sequence . such ha lira, . . o ti 0
for each in . Then le + u U T’.,, and consruc he nex
sequence for his new countable se. Le 2:’ be he smalles semigroup
containing all he hen 2:’ is countable and contains all P.= and . To
show ha ’ is righ amenable, enumerate U as a sequence
si, 2,"’, s,-". For eachkhereisanm m(lz) suchhaalls,
i <= k, are in . Then here is a among he erms of he corresponding
sequence ,= such ha

li o/i < 1// for i 1, 2, k.

Hence lim]lh /tsll 0 if s(U) 2;’. Because P0 also___
2’, this proves [1, Lemma 1, p. 522] that Z’ is right amenable; it was

already known to be countable and to contain .
Proof of Theorem 2. (b) of Theorem 1, restated, implies that the convex

hull of the set of all o s consists exclusively of elements o with 1 in the
spectrum.
By Lemma 6 every o is connected by a straight line segment lying in $
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to I. If T e K, the closed convex hull of the s, then there exist . such that
tl T[I -- 0. Hence for each a between 0 and 1 the sequence
aI (1 a) o q. tends to aI (1 )T, so every point on the closed
segment from I to T is in $. By Lemma 5, 1 is in the spectrum of T.

Proof of Theorem 3. This is part of the proof of Theorem 1. It begins
with "(ii) implies (iii)" from Lemma 4 and is completed with Lemma 2 (iii)..

To prove Theorem 4 recall that for groups amenability is equivalent to
right amenability [1, 4, Theorem 1], and that a group is amenable if and
only if every subgroup, or every finitely generated subgroup, is amenable
[1, 4, (D) and (K)].
The equivalence of (f’) with (e’) is very much like the corresponding proof

--1in Theorem 1. The mapping a - a in G interchanges left and right both
for convolutions and for invariance of means. Since (f’) is invariant under
such a change, the "left" versions (as), ..., (h) are equivalent to the
original conditions when 2) is a group.

5. Examples and remarks
A. The adjoint of o . It is easily calculated that if G is a group and if

for in 11 (G) the element * of ll (G) is defined by" @* (g) complex conjugate
of (g-l), then o q* interpreted in lq (G) is the adioint of o in l (G). Hence
for each probability distribution on G the operator o is self-adioint on
l(G) if and only if is symmetric, that is (g-) q(g) for all g in G; this
is the case studied by Kesten ([6] and [7]). In this case the spectrum of o

is real, and 1 is in the spectrum of o if and only if 1 is the supremum of the
spectrum of o .

B. Random wal/c and convolution. When Z is a semigroup, a random walk
W on 2) may be defined by assigning to a and r the number q (r) as the
probability of taking the step from a to at. When 2 is a group, the walk
W is called symmetric if is symmetric.

If and are probability densities on 2, then is quite naturally
described as the transform of the density by the walk W. Indeed o

assigns to a point r the sum of products of the probability (s) of being at s
by the probability (t) that the step from s to st r will be taken by the
walk. Kesten [6] represents this walk in a group G by a matrix ((met)) where
rest (s-lt). His q is symmetric so his matrix is symmetric, m, m8
for all s, in G. Then he defines the linear operator M from l(a) into
by means of the matrix ((m,))

[Mf](s) _mtf(t)= _(s-t)f(t)= _(t-s)f(t).
Clculation of f o in group shows that

[fo](s) t_f(t)(z)= tf(t)(t-s).
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Hence Kesten’s Mf is f o q whenever q is a symmetric probability density on a
group.

C. In general semigroups convolution by need not be everywhere defined
nor closed, nor bounded, nor need the conditions of the theorems remain
equivalent for general semigroups.

C1. An abelian (therefore amenable) semigroup where 1 is in the point
spectrum of q. Let T be an infinite set containing a point 0, and let T be
made into a trivial semigroup 5 by the rule: for all s, in T the product st O.
Then for any q and f, If o ] (x) 0 unless x 0; also

[fo](0)- =0 f(s)(t) ", f(s) q(t)

whenever this sum is defined, that is, whenever f e 11 (2). Hence f o is
defined if and only if f e 11 (5), and then f o (a f(s) )0.
Then ti0 ti0 o , so 1 is in the point spectrum of o .
For p > 1 all h are in the spectrum of o in l (5). We already know that

1 is in the spectrum. Suppose that for a h 1 there were a Tx defined and
linear and continuous on l (5) such that for each f in l (5), the domain of
definition of hi ,

T(hI- oq)f=f- (hi-- o)TXf.
Then

or
f hTXf (af(s))TtiO,

(f(s) )TtiO hTf f.
The right side depends continuously on f in the l norm, but the left will not
unless TX0 0. On the other hand, ti0 Tx(h0 i0), so TXti0
0/(h 1) 0. Hence all h are in the spectrum of q in l (5).

C2. A left-but-not-right-amenable semigroup where 1 is in the point spectrum
of o . Let L be an infinite set, and let be the semigroup obtained from it
by defining st for every ordered pair of elements s, of L. As 2 has more
than one element, there are no right invariant means or right units nor any
ghost of right cancellation. Also for each f for which the sum converges
unconditionally and for each a in

f o

so, as in 5, convolution of an f by a is defined if and only if f e l (.).
is a probability density, then

Then o , so 1 is a characteristic number of corresponding to the
characteristic vector . To show that every h 1 is also ia the spectrum
of o q in l (2), merely repeat the argument of C1 replacing 0 by .
Note that in both these semigroups 0 is the characteristic number of
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in 11 (2:) corresponding to all elements of the hyperplane {f" f(s) 0}.
There are no other points in the spectrum of o in 11 (5) or 11 (2).

D. The special case p 1 of (b), (c), and (d) of Theorem 1 is true for
every semigroup. II11 1 because b II1 bl 1 whenever
and are nonnegative elements of 11 (2). To show that o has 1 in its

spectrum, for eachnletf, ( - q - - o o)/n. Then
f is also a probability density, and

Hence 1 is in the spectrum of , nd s in 3, these conditions mke the
spectrl rdius of equal to 1.

E. Semigroups satisfying the hypotheses of Theorem 1 which are not groups.
El. Let (Rm be a set of elements (m can be any cardinal number), and

define products so that all elements are right units, that is, ab a for each
pair a, b of elements of (Rm. Then also has.right cancellation, and o

is the identity operation in lp ((R) for every probability density and number
p >- 1. Hence all the conditions of Theorem 1 are trivially verified for

E2. If 2 is any semigroup with right cancellation and a right unit, for
example, if 2 is a group, then X 2; has right cancellation and right unit.
Multiplication is defined coordinatewise, of course, so (u, s) (u’, s’) (u, ss’).
Then, if v is any right unit in 2;, (u, v) is a right unit for (Rm 2:. If 2 is
group, every i (u, s) is an isometry of every lp (( X Z) on itself.

E3. If 2; set of nonnegative integers under the usual addition operation,
let F be any function from ( into 2 such that there is at least one u with
F (u) 0. Let Z’ be the subsemigroup of (R X Z consisting of all these
elements (u, i) with i >_ F (u). Then 2/ is a semigroup with cancellation
and right unit which satisfies all the conditions (a)-(h).

E4. If in example E2, F is any function from ( into 2, let 2;’ be the set
of ordered pairs (u, s) s e F (u). 2:}. Then 2;’ is a subsemigroup of m
with right cancellation. 2;’ has a right unit if and only if there is a u in (
and a right unit v in 2: such that v e F (u). 2: (so (u, v) e 2;’).

This example includes those of E2 and E3 as special cases. 2;’ will be right
amenable if 2: is.

Eb. It is to be noted that if 2: is right amenable in examples E2 and E4,
then m X 2: and 2/satisfy all the conditions (a)-(h) of the principal the-
orems. In particular, if 2; is an amenable group, then X 2 is right amena-
ble but not left amenable.

F. Generalizations to be studied further. The extension of this to Orlicz
spaces is a natural problem for a thesis, and one of my students is currently
at work on it. The relation of this study to that of groups studied
by Dieudonnti [3] is also to be carried forward. Much of the above discussion,
especially the lemmas, can be carried out for measurable or continuous
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probability distributions on locally compact groups, but some of the proofs
involving measurability give trouble when uncountable directed systems
nd nets are used. Also that difference between tomic nd nontomic
measures which is responsible for the Riemnn-Lebesgue theorem lso inter-
feres with direct generalizations of the theorems. Again this is under investi-
gation.
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