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Introduction
The present study concerns some modifications of the functional equation

f(x + y) f(x) + f(y)

which arose in connection with certain problems on additive arithmetic
functions. An arithmetic function F(n) (n 1, 2, is said to be additive
provided that F(mn) F(m) F(n) whenever (m, n) 1. In [2] ErdSs
found that if the additive function F(n) is nondecreasing, i.e., F(n) =< F(n - 1
for all n, then it must be of the form F(n) C log n. This result was re-
discovered by Moser and Lambek [3], and recently further proofs were given
by Schoenberg [4] and Besicovitch [1].

ErdSs’ remarkable characterization of the function log n raises the fol-
lowing question: Let p, p,., ..., p be a given set of k (-> 2) distinct
prime numbers. Let F(n) be defined on the set A of integers n which allow
no prime divisors except those among p, p, and let F(n) be additive,
i.e.,

(1) F(pp p;) F(p) + F(p) .-t- + F(p).

If we assume F(n) to be nondecreasing over the set A, is it still true that
F(n) C log n?
One of us having communicated this question to ErdSs, received in reply

a letter dated February 13, 1961, in which ErdSs states, with brief indications
of proofs, that the answer to the above question is affirmative if ]c 3 and
negative if/ 2. We shall deal with these results below under more general
assumptions. The negative answer for ]c 2 is already established by any
counterexample, a particularly simple one being

(2) F(n) [log n/log p] -t- [log n/log

Indeed, it is easy to verify that this particular monotone F(n) satisfies (1),
for k 2, while it is not of the form C.Iog n, for n pp" (see also Sec-
tion 12).
At this point we change notations. If we write F(e) f(x), log p a,

the relation (1) becomes

(3) f(u o + + u a) f(u a) + + f(u o) (ui integers -> 0).
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We shall study the monotone solutions of this functional equation under
various assumptions concerning the number/ and the components
The paper is divided into three parts. In Part I we assume that the

are natural integers, the discussion belonging to the elements of number
theory. In Part II we assume that/c 3 and that the ratios alia2,
a/a are irrational, the result being that the monotone solutions of (3) are
linear (Theorem 2.1). In Part III we study the case when/ 2 assuming
that a/a is irrational. Nonlinear monotone solutions of (3) always exist
in this case, and they will all be constructed (Theorem 3.1). It will be shown
that every monotone solution f(x) admits monotone extensions satisfying
the unrestricted functional equation

(4) f(nl al + n. as) f(n a) + f(n as) (nl, n arbitrary integers)

(Theorem 3.2), We actually determine all monotone extensions of f(x)
which are solutions of (4) (Theorem 3.3). In particular we obtain the con-
ditions for the unicity of this extension (Corollary 3.1). In the course of
this discussion we describe all monotone solutions of the equation (4) (Sec-
tion 11).

Parts II and III contain the main results and may be read independently
of Part I.

I. THE RATIONAL CASE

1. The main result and some auxiliary propositions

In the present rational case all lower case Latin letters, except the func-
tional symbol f, belong to the ring Z of rational integers. Let a, as, a
(/ -> 2) be given positive integers such that (a, a) 1. We wish to
determine all solutions of the functional equation

(1.1) f(ula + + ukak) f(ual) + + f(ua) (ui >- 0),

where f(x) is defined on the set

s {Eu, a, lu >- o, ,u, >- 01.
Clearly S contains all sufficiently large positive integers.
These solutions are described by the following theorem.

THEOREM 1.1. Let di (a ai_ a+ a) (i 1, k).
To every solution f x) of (1.1) there correspond uniquely a real number X and l
periodic functions e(x) (x e Z) of period d respectively, with (0) 0
i 1, k such that

(.2) f(x) xx + ,,(x) + +
if x e S. Moreover, (1.2) extends the solution f(x) to all integers x such that
the extended f x satisfies (1.1) for all integral u

Conversely, every function f(x) defined by (1.2), where X is a constant and the
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(x) have the properties described above, is a solution of (1.1) for all integral
values of the u

Until further notice f(x) will denote a solution of (1.1). We need num-
ber of auxilliary propositions the first of which is

if

f P O, where P a a a

0o

(1.3)

then

(1.4) f(maat) 0 if i j, m >- O.

Indeed, let us show that f(mal a2) 0. In particular (1.1) implies

(1.5) f(ul a + u. a2) f(u a) -f- f(u2 a) (ul >= O, u >- 0).

If we set t f(al a), then by (1.5)

f(2a a) f(a. a A- al a2) f(a. a) A- f(al a.) 2tt,

f(3a a:) f(2a2 a - a a:) f(2a a) - f(a a.) 3tt,

and by induction we obtainf(ma a2) mt. If we choose m a3... ak,
then m f(P) 0 by (1.3). Thus 0, and (1.4) is established.

Returning to the general situation we observe that

o(x) f(x) xf(P)/P

is also a solution of (1.1). Evidently (P) 0 so that by 1

(1.6) o(maa.) 0 if ij, m => 0.

Writing ), f P /P we find

(1.7) f(x) hx - o(x).

The "reduced" solutions (x) enjoy the following property"

If for a given i

u. a. u. a (mod 44) (u >= 0, u. >_- 0),

0.

(1.8)
then

(1.9) o(ui ai) o(uP ai).

(moddl)It suffices to prove (1.9) for i 1. Now (1.8) implies ul a u a
(mod dl) Sinceand since (al, d) 1, we conclude that u u

dl (a:, ak), we can write u u 2w a. and also w. v. v,
where v. -> 0, v. => 0. We thus obtain the relation

ul -4- 2 v. a. ul + v
On multiplying both sides by a we may write

0(ul a -t- v el a.) w(u a A- v. a a.),
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whence from the functional equation and (1.6) we obtain

’el) + co(v al as),o(ul a) + co(vs a as) o(ul

o(u a) co(u; al),

which proves our statement.

2. Proof of Theorem 1.1
For every x ai ui S we define a function (x) by

(1.10) (x) co(a u).

Lemma 2 shows that l(x) is well-defined in S. Indeed, if x e S can be
written as x

_
a ui and also as x a u, then (1.8) holds, which

implies (1.9) for i 1, that is, co(a u) co(a u’).
Moreover, if x and x’, both in S, are such that x =- x’ (rood dl), then by

Lemma 2, (x) q(x’). We finally observe that every residue class
rood dl, contains elements in S, in fact already elements of the subset a ul

(Ul => 0), because (a, d) 1. We may therefore extend the definition of
(x) to all integers obtaining a function having the period d.

Similarly we define a function (x) (i 1, ..., k) over all integers,
having the period di, with the property that

(1.11) qi(x) co(aiui) if x asuseS,

and in particular

(1.12) (0) 0.

If x Z a ue S, then the functional equation gives co(x) co (-’ ai u)
co(ai u) (x) hence

(1.13) co(x) l(x) d- d- (x).

We now use this relation (1.13) to extend the definition of the reduced
solution co(x) to all integers x. Let us show that this implies

(1.14) co(ai ui) ai(ai ui) (ui e Z)"

This is indeed clear from (1.11) if u => 0, while if u < 0, then from the
defining relation (1.13), co(ai ui) ,s s(ai u) qi(ai ui). It follows that
the extended co(x) satisfies the unrestricted functional equation

co(Z a ui) Z co(a u) (ue Z),
for by (1.13) and (1.14)

co( as us) i(-’s as u.) q(a u) co(ai u).

We may now complete a proof of Theorem 1.1 in a few lines: The direct
part is established by (1.7) and the representation (1.13). The converse
follows from the fact that each i(x) is a solution of the unrestricted functional
equation: i()- as us) tfli(ai ui) Zs q(as u).
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In view of (1.12) we see that the periodic function q(x) depends on d 1
arbitrary parameters, and therefore the most general solution (1.2) depends
on 1 -t- (di 1) arbitrary parameters. In particular (1.2) will reduce to
the linear solution kx if and only if all di 1. We state this as

COaOLLARY 1. The functional equation (1.1) has only linear solutions
f(x) kx if and only if every tc 1 among the numbers al ak are relatively
prime.

3. Monotone solutions

Because the monotonicity of the solutions f(x) will play an important role
in Parts II and III, we wish to describe also here those solutions (1.2) of (1.1)
which are nondecreasing functions of x. The least slope among the slopes of
the sides of the polygonal graph of the function (x) (x e Z) is given by

(1.15) --/ minz A(x) (A(x) (x -t- 1) q(x) ).

Evidently >- 0. If in (1.2) we choose k so that k => , then f(x) is
certainly nondecreasing since for all x

Af(x) k -+- A(x) >_- k t 0.

The converse is also true as stated in

THEOREM 1.2. The solution of (1.1) defined by (1.2) is nondecreasing if
and only if the quantities defined by (1.15) satisfy the inequality

(1.16) -’ -<_ X.

Indeed, let the minimum (1.15) be reached for x c (rood d) so hat
A(c) -- (i 1, E). Since the moduli dl, dk are pairwise
relatively prime, we may by the Chinese remainder theorem find an integer
such that --- ci (rood d) for all i. But then A() -- for all i. Now

the monotonicity of f(x) gives

o _<_ +
which proves the theorem.

II. THE THREE-DIMENSIONAL MODULE

4. Statement of the problem and a few lemmas

We start with the following lemma.

LEMMA 2.1. Let 0 be given, 0 0 1, and let us consider the set of reals

S* Ix u + vO u >- O, v >= O, u, v integers}.

Let F(x) be real-valued and defined on a set E of reals, E S*, subject to the
conditions

(2.1) F(u-4-vO) F(u) - F(vO) if u >= O, v >- O,
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(2.2) F(x is nondecreasing in E.

Then the limit

(2.3) ), lim.E F(x)/x

exists, >- O.

Proof. Since 0 < 0 < 1, we may associate with every integer v => 0, an
integer w such that v < w0 < v -b 1. From (2.1) and (2.2) we obtain

F(u + ) <- F(u + w) F(u) + F(w) <__ F(u) + F( + )
and

F(u) + F() -< F(u) + F(wO) F(u + we) F(u + v + 1).

Combining these we obtain

F(u) + F(v 1) __< F(u + v) <- F(u) q- F(v -k 1) (u _-> 0, v >_- 1).

In this relation we replace u by u -k (j 1)v for j 1, m, obtaining
F(u- (j- 1)v) -b F(v- 1) -< F(u- jr) <= F(u- (j- 1)v) + F(v + 1).
Summing these for j 1, m we obtain after cancellations

F(u) q- mF(v 1) __< F(u q- my) <- F(u) + mF(v -k 1),
whence

(2.4) F(u) q- mF(v 1) _< F(u + my) <_ F(u) + mF(v - 1)
u +,.my u + my u + my

We keep v fixed and divide an arbitrary positive integer n by v obtaining
n u -k my. If we now let n --. , also the quotient m -- , while the
remainder u remains bounded, being < v. Under these circumstances the
relations (2.4) show that F(n)/n remains bounded as n --. , and

),’ lim inf F(n)/n, kPP lim sup F(n)/n

are both finite. Given an arbitrary e > 0 we now select v so that

F(v + 1)Iv (F(v "k 1)/(v + 1)).((v + 1)/v) < X’ + e.

Letting in (2.4) n -- o through a sequence of values nk such that
lim F(nk)/n ),P’, we obtain in the limit that XP’ < ’ -b . Therefore, < ’. Hence ’ " and the existence of limn F(n)/n is es-
tablished. If nowxeE, x >- 1,1etn =< x < n + 1, sothat (2.2) implies
F(n)/(n -k 1) -< F(x)/x <= F(n -k 1)In. Letting x o we obtain (2.3),
and the proof of the lemma is complete.
Weturnnowto a study of our functional equation. Giventhree real numbers

a > 0, > 0, , -> 0, (a ), we consider the set of reals

(2.5) S {x ua + v - w’r[u, v, w integers >= 0}.

Let f(x) be real-valued, with domain S, satisfying the following conditions"
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(2.6) f(ua - v + w’) f(ua) - f(v) - f(w’) (u, v, w >- 0),

(2.7) f(x) is nondecreasing in S.

Our objective is to show thut f(x) must be a lineur function under appropriate
additional assumptions on a, , and ,.

If a > , say, it is clear that Lemma 2.1 becomes applicable. Introducing
the function F(y) f(ay) and setting 0 /a we conclude from (2.6) and
(2.7) that F(y) satisfies (2.1), and that it is nondecreasing on the set E
{y u - vO + w(./a)l u, v, w >__ 0}. We therefore obtain the followinu
corollary.

COnOLLaV 2.1. The assumptions (2.6) and (2.7) imply the existence of
(2.8) limx_.,sf(x)/x ), (), >= 0).

We now define a. new function co(x) by

(2.9) f(x) x + co(x) (xe S)

and observe that it enjoys the following properties"

(2.10) co(u + vf + w,) co(u) + co(v) + co(w,) (u, v, w -> 0),

(2.11) (co(y) co(x))/(y- x) >= -X if xeS, yeS, x y,

(2.12) lim.s co(x)/x O.

Indeed, (2.10), (2.11), and (2.12) are respectively equivalent to (2.6), (2.7),
and (2.8) by virtue of the defining relation (2.9).
An essential step in the study of co(x) is contained in

LEMMA 2.2. Let u and u’ be given integers, u >= O, u’ >- O. For any pair of
integers h and ]c (greater than, equal to, or less than zero), the inequality

(u) ,(u’,) >- -x(2.13)
(u u’)a + h -holds, provided that the denominator of the fraction does not vanish.

For every integer j >- 1 let

v =jh, v (j- 1)h if h => 0,

v (j-- 1)lh], v’ =jlh if h < 0,

w =jk, w’= (j-- 1)l if /_>_ 0,

w= (j-- 1)lk[, w’ =j[k if ] <0.

We also define

V -t-1 if h => 0, v +1 if k >- 0,

--1 if h < 0, -1 if / < 0.
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WNotice that in any case v, v, w, are all nonnegative, and that v h,
w w ]. Applying the inequality (2.11) with

y ua-vw’,,, and x u’av’w
and using (2.10), we obtain

(u) (u’) + (v) (,’) + (w) (w’) -x.
(u- u’)a W h +

Adding together these inequalities for j 1, n we obtain

n(() (u’.)) + ,( hl) + ,’() -nX.

Dividing both sides by n and letting n we see that this relation turns
into (2.13), in view of the limit relation (2.12), and this terminates our proof.

5. She min
The main result of this section is

THEOREM 2.1. Let f(x) have the properties (2.5), (2.6), and (2.7). U the
numbers a, , are positive and all three ratios a/, a/, / are irrational,
then f x x on S.

Proof. We apply Lemma 2.2 for a fixed u 0 and u’ 0 obtaining

(2.14) (ua)/(ua + h + ) --X

for any integers h and k, provided that the denominator does not vanish.
The ratio / being irrational, the set of values of h + is everywhere
dense. This means that if we choose s > 0 we cau find integers h and k such
that 0 < ua + h + < s, and now (2.14) shows that (ua)
But we can likewise find integers h and k such that -e < ua + h + k < O,
in which case (2.14) implies w(ua) . Hence (ua) 0 for every
u 0. By the symmetry of our assumptions on a, , and we likewise
obtain (v) 0 (v 0) and (w) 0 (w 0). Finally (2.10) shows
that x e S implies (x) 0. Now (2.9) shows that indeed f(x) x if x e S.
The assumptions of Theorem 2.1 are surely satisfied if a, , are positive

and rationally independent. Therefore also the result of our Introduction
concerning monotone additive functions (k 3) is settled.

III. THE TWO-DIMENSIONAL MODULE

6. Decomposition of a reduced solution into its periodic components
z and k)

Throughout this last part of the paper we assume that a and t are positive,
that the ratio a/ is irrational, and finally that the third component , 0.
The set (2.5) now reduces to



48 CH. PISOT AND I. J. SCHOENBERG

(3.1) S {x ua -f- vlu v nonnegative integers}.

We study functions f(x) defined in S subiect to the following conditions"

(3.2) f(ua -t- v) f(ua) A- f(v) (u >- O, v >= 0),

(3.3) f(x) is nondecreasing in S.

All results derived in Part II which allow the assumption 3’ 0 become
applicable, in particular Corollary 2.1, the relations (2.9) to (2.12), and
Lemma 2.2. For convenience we repeat a few of these here"

(3.4) f(x) ),x -t- (x) (x e S),

(3.5) o(ua A- v) (ua) + o(v) (u -> 0, v _-> 0),

(3.6) ((y) o(z) )/(y x) >= --k if x eS, yeS, xy.
We now define a new function (x) by the following conditions"

(3.7) (v) (v) (v -> 0),

(3.8)
q(x) has the period a, i.e., if (x0) is defined, then by definition
(x0 + ma) (x0) for every integer m.

We see that (x) is defined on the set

(3.9) S {x ma -4- v]v >= O, m an arbitrary integer}.

We define likewise a second function (x) by

(3.7’) g,(ua) (ua) (u >= 0),

(3.8’) (x) has the period ,
so that the domain of definition of (x) is the set

(3.9’) S {x ua + n]u >= O, n an arbitrary integer}.

From (3.5), (3.7), (3.7’) we conclude that

(3.10) c0(x) (x) + (x) (xe S).

7. Properties of the functions (x), ,(x)
Let ua + n and s u’a -4- n’ be any two distinct elements of S.

We now apply Lemma 2.2 for the pair of nonnegative integers u, u. Since
(ua) (ua), (u’a) (u’a), we obtain the inequality

(u) (u’) _> -x.
(u- u’)a-f" h-

Since h is here an arbitrary integer (restricted only by h 0 if u u’), we
may set here h n n. Sinceb(ua) (ua + n) (t) and (u’a)
,,(u’a -f- n’) (s), our last inequality turns into
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(3.11) ((t) h(s) )/(t s) >= --), if eS, s eS, s.

Similarly we can show that

(3.12) ((y) (x) )/(y x) >- -- if x eS,, yeS,, xy.

Observe that (3.12) is equivalent to the statement that kx -+- e(x) is non-
decreasing in S,, and similarly (3.11) means that kx (x) is nondecreasing
in S.

However, we may derive more precise information concerning the slopes of
these functions in a sense already suggested by Theorem 1.2 of Part I. For
this purpose we introduce the quantities

(3.13) -- inf
e(y) e(x), - inf (t) b(s)

,. y- x t,s t- s
xy

which we know to be finite by (3.11) and (3.12).
At this point let us interrupt the logical sequence of our arguments for a

moment and start anew by assuming that we have a function q(x), defined
in S,, of period a, with (0) 0, and likewise a function h(x), defined in
S, of period /, with (0) 0. Let us moreover assume that (3.13) hold,
where g and are finite, necessarily nonnegative. We now define

(x) (x) + (x)

and claim that it satisfies (3.5). But this is evident, because

(x) (u + v) (u + v) + (u + v) ,(v) + (u)
,(uo) + ,(v) + (uo) +
(u) + (v).

From (3.13) we also see that nowhere in S will the slope of c0(x) fall below- . If we select k so that

(3.14) _-> + ,
then f(x) ),x + co(x) will be a function enjoying the properties (3.2) and
(3.3).

8. Proof of the re[atioa X _-> +
We return to our previous train of thought, in particular to the relations

(3.13), and wish to show that the nonnegative t and there defined, do
satisfy the relation (3.14), where lim f(x)/x (x -- , x S).
We need the following lemma.

LEMMA 3.1. Let g(x) be defined in an everywhere dense set E, and let ’ and

’ be points of E, and p a number such that

(3.15) (g(v’) g(’))/(,’ ’) <-- p (’ < 7’).
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If5 is such that 0 < <= (’ ’) /5, then we can find , v eE such that- 55while

(3.16) (g(q) g())/(q ) <= p.

This lemma seems fairly obvious if we think of dividing the interval (, v)
into partial intervals of lengths close to 3 and slightly displacing the points
of division to make them belong to E. A conclusive argument runs as
follows" There exists an odd integer 2r + 1 such that 3(’ ’)/5
2r + 1 < (’- ’)/;indeed (’- ’)/ 3(’- ’)/5 2(’- ’)/5 2.
We now divide (’, ’) into 2r 1 subintervals of equal lengths, and we
select in the (2j) open subinterval a point eE (j 1, ..., r). Let
moreover 0 ’, +1 . Evidently, by construction

(,’-’)/(2r+1) <+-<3(,’-’)/(2r+1) (j=0,1,...,r).

From (3.15) we conclude that if we set , +, for some appropriate
j, then (3.16) will hold. On the other hand

which completes the proof.
We now return to the relations (3.13). Given s > 0 we can certainly find

numbers x, y, s, t, such that

(3.17) ((y) (x) )/(y x) < - + s, x e S, yeS,, x < y,

(3.18) ((t) (s) )/(t s) < -- + , s eS, eS, s< t.

However, Lemma 3.1 will allow us to choose intervals (x, y) and (s, t) which
are nearly comparable in size. More precisely we have

LEMM 3.2. We may choose intervals (x, y), (s, t) satisfying (3.17) and
(3.18) such that

(3.19) y x < t- s < 5(y x).

Proof. Let (x’, y’) and (s’, t’) be two intervals satisfying the conditions
(3.17) and (3.18), respectively, and let us construct the intervals (x, y) and
(s, t) required by our lemma. We consider several cases"

t’We first assume that y x -s. Wesets s,t and will
determine (x, y) by applying Lemma 3.1 to g with (t’ s’)/5 which
is (y’ x’)/5, as required by Lemma 3.1. There exist, therefore, accept-
able x, yS,,x ( y, such that (t’ s’)/5 y x t’ s,i.e.’
(t- s)/5 < y x < t- s which is seen to agree with (3.19).

xSecondly, if(t’- s)/5 <y < s,wesetx x,y y,s s,
t’ and already have what we want.

sThirdly, ify x )/5, we apply Lemma 3.1to g with
y setting x x, y y. We obtain acceptable s, S such that

y x ( s ( 5(y x), and our lemma is established.
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We may now establish the inequality (3.14). We start with the intervals
(x, y) and (s, t) satisfying the conditions (3.17), (3.18), and (3.19). The
first inequality (3.19) may also be written as y < x s. Since a/ is
irrational, we can find positive integers u, v such that y < v ua <
x s, which implys v < x uaandy % ua < vt. However
x < y, and therefore also x % ua < y ua. The positive integers u, v may
also be selected to be as we wish, and we select them so large that all four
numbers

(3.20) s -- v < x -- ua < y -- ua < -- vare elements of S. The function x -- (x) x(x) being nondecreasing in
S, hence also in S, is defined for the values (3.20) which furnish the in-
equality

x(Y -- ua) x(x -- ua) <- x(t -{- v) x(s -- v).

From this and (3.18) we obtain

u(y x) + (y + ua) --(x + ua)
(3.21)

<- u(t- s) + (t) --(s) < e(t- s).

On the other hand, (x + ua) (x), (y + ua) (y), and therefore by
(3.17)

(3.22) (y x) + q(y + ua) e(x + ua) < e(y x).

Adding together the extreme terms of (3.21) and (3.22) we obtain by (3.19)

(t + ’)(y x) + o(y + ua) o(x + ua)

< e(y x -{- t- s) < 6s(y x).

However, by (3.6), o(y + ua) o(x + ua) >= -),(y x), and substituting
this into our last result we obtain

(+ - h)(y- x) < 6s(y- x) or t+ - h < 6.

Since > 0 is arbitrary, we obtain the desired inequality t , =< ,.
9. The main results

We summarize the situation in

THEOnEM 3.1. Let a, be positive, a/ irrational.
the set

(3.1) S {x ua + v u v nonnegative integers}

so as to satisfy the functional equation

(3.2) f(ua + v) f(ua) + f(v) (u >- O, v >- O)

and to be nondecreasing in S.

Let f x be defined in
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Then

(2.8) X limf(x)/x (x , x e S)

exists, and f(x) may be uniquely represented in the form
(3.23) f(x) x -(x) -b(x)

where the functions q(x) and b(x) have the following properties:
in the set

(3.9) S, x ma + v v >= O, m an arbitrary integer}

where it has the period a, (0) O. Moreover

(3.13) inf
e(y) e(x) --x., y- x

is finite. Likewise (x) is defined in the set

(3.9’)
where it has the period , b(O) O. Also

inf ,,(t) (s)
s,t t-- 8

Finally the inequality

(3.13’)

is finite.
(3.14)

holds.

Sa x ua -q- nfl u >= O, n an arbitrary integer}

( _>_ 0)

(x S),

q(x) is defined

( >_ o)

( >= o)

Conversely, let q(x) and (x) be functions of period a and respectively,
q(O) b(O) O, defined in the sets S, and S, respectively, and such that, given by (3.13) and (3.13’), respectively, are finite. If satisfies (3.14),
then f(x) defined by (3.23), is a nondecreasing solution of the functional equation
(3.2), and the limit relation (2.8) holds.

Proof. The direct part summarizes already established results. The con-
verse part is implied by the last paragraph of Section 7, with the exception of
the very last statement that (2.8) holds. This point, however, is settled in
a few words as follows: We know that fo(x) (x) + x is a nondecreasing
solution of (3.2). But then, by Corollary 2.1, lira fo(x)/x lira (x)/x +
exists as x -o, , x e S; in particular lim (x)/x exists. However, since
q(na) (0) 0 for all integers n, we conclude that (x) o(x). Likewise
(x) o(x), and now (3.23) implies (2.8).

10. The extension of solutions
At this stage we can easily establish

THEOnE 3.2. Every nondecreasing solution f x of (3.2) can be extended
to a nondecreasing solution F(x) of the unrestricted functional equation
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(3.24) F(ma -- n) F(ma) -- F(n) m, n arbitrary integers).

module
This requires an extension of the definition of f(x) to the entire

Z {x maWnfl}.

This will be done by the following

Construction. We know that (x) -- x is defined and nondecreasing in the
set S, which is everywhere dense. This implies the existence of the :limits
(x 0) and (x + 0), for every real x, and that (x 0) -<_ (x + 0).
We define an extension (x), of (x), throughout 2 by requiring

(i)
(ii)

(iii)

(x) =(x) if xeS.
If 0 < x < a, x e 2, x t S,, we assign to O(x) an arbitrary value
subiect to (x 0) -< (x) _-< (x -- 0).
(x) has the period a.

We likewise define I, (x) by

(i’)
(ii’)

v(x) =(x) if xS.
If 0 < x < /, x e 2, x t S, we assign to (x) an arbitrary value
subject to k(x 0) _-< (x) -< k(x + 0).

It is now readily verified that

(3.25) F(x)

is a nondecreasing solution of (3.24) which is an extension of f(x).
Let us now prove the converse:

THEOREM 3.3. The above construction of (x) and (x) and formula (3.25)
furnish all nondecreasing F(x), solutions of (3.24), which are extensions of a
given nondecreasing solution f(x) of (3.2).

In particular from this theorem flows

COROLLARY 3.1. The extension F(x), off(x), is unique if and only if q(x)
is continuous in S, and b(x) is continuous in S
A proof of Theorem 3.3 requires the following brief discussion of the mono-

tone solutions of (3.24).

11. The monotone solutions of the unrestricted functional equation
(3.24) and a proof of Theorem 3.3

Wehave to start from the beginning but will proceed very fast as we use
only simplified versions of previous arguments. Throughout this section
E(x) denotes a nondecreasing solution of (3.24). Its restriction f(x) F(x)
to the set S is, of course, a nondecreasing solution of (3.2), while (x) and
b(x) are the old periodic functions associated with f(x).
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LEMMA 3.3. The following limit exists"

(3.26) lim., F x /x >= O.

Indeed, we already know that (3.26) holds if x , x e S. To establish
(3.26) we return to Lemma 2.1 and observe that if we change its assumptions
by allowing u and v to run through all integers, then its conclusion (2.3) may
be changed to

(3.27) lim. F x /x ), >- O.

This is seen as follows" In the relations F(u) -t- F(v 1) -< F(u + v) -<_
F(u) + F(v - 1) which were there derived, u and v my now assume ny
integral values. If we replace u by u jv (j 1, m) and add these
relations, we obtain F(u) mF(v + 1) <- F(u my) <- F(u) mF(v 1).
Let now v be positive and fixed., n arbitrary negative, and let us divide n by v,
obtaining n u my, m O, 0 <- u v, and therefore

F(u) mF(v 1) _< F(u my) <_ F(u) mF(v --[- 1)
u-- my u-- my u-- my

As we can select v so that F(v 1)/v and F(v -[- 1)/v are as close to ), as
we wish, on letting n - we obtain (3.27), whence (3.26) follows.
We now set

F(x) ),x -[- 2(x),

where gt(x) is a solution of (3.24) and satisfies the relation

lim. gt(x)/x 0
and the inequality

((y) (x))/(y- x) >- --.
These, as in Lemma 2.2, imply the inequality

e(m) (m’) >- X (m, m’, h arbitrary integers).
(m-- m’)a + h

But then, if we decompose, as in Section 6, the solution t(x) into its periodic
components (x) and (x), both now defined in 2, we find that they satisfy
the inequalities

(3.28) (y)- (x) __>
y-x y-x

On the other hand, (x) is evidently an extension of the old (x) from
S, to 2, and likewise (x) extends the old k(x) from S to 2. Now (3.28)
means that (x) -[- hx is nondecreasing; hence (x +/- 0) exist everywhere,
(x 0) -_< (x + 0), and in particular

(3.29) (x 0) _-< (x) -< (x
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But S, being everywhere dense we conclude that

(3.30) (x 0) (x 0), (x -t- 0) q(x + 0) for all x.

Now (3.29) and (3.30) imply that

(3.31) (x- 0) =< (x) _-< (x+0) if x, xS,,

and similarly we obtain

(3.32) b(x- 0) -_< I,(x) _-<(x+0) if xe2, xS.
The inequalities (3.31) and (3.32) complete our proof of Theorem 3.3 be-
cause they show that all monotone solutions, extensions of f(x), were ob-
tained by the Construction used in the proof of Theorem 3.2.
Beyond the immediate objective iust reached it might be worthwhile to

add the following remarks concerning monotone solutions of (3.24). By
(3.28) we know that

(3.33) --M inf (Y) --(x)
--N- inf (Y) (x)

y--x y--x

are finite. Beyond this we can easily show that

(3.34) M t, N .
Indeed, clearly

(3.35) M ->_ , N >_- ,
since, by (3.33), M is defined by n extension of . However, given s > 0
and a difference quotient ((y) (x))/(y x) (x < y, x, y ), we

y’ in S, xcan evidently find, because of (3.30), numbers x’, < y’, such that

((y’) q(x’) )/(y’ x’) < ((y) q(x))/(y x) + .
This and (3.13) imply that -- < M -t- , --t <- --M, or -> M. Now
(3.35) gives the first relation (3.34), and the second is shown in a like manner.
Observe that (3.34) and (3.14) imply that k -> M -+- N. At this point we

notice that we have established an exact analogue of Theorem 3.1 for the
functional equation (3.24). This analogue, which we need not state explic-
itly, shows how to construct ab initio the most general nondecreasing solu-
tion (3.25) of the equation (3.24).

12. Two examples
1. Corresponding to the counterexmple (2) of our Introduction we

consider the function

(3.36) f x [x/a] + [x/].

Evidently f(x) x - q(x) - (x), where
--1X O/ + --1, (X) [X/O/]- X/O/, /(X) [X/]- X/,
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and f(x) satisfies (3.2), because and have the right periods and
q(0) (0) 0. Their discontinuities are at x ma and x nf, respec-
tively. Since ma e S, and n e S, we conclude by Corollary 3.1 that there
is a unique monotone F(x) which is an extension of f(x) and satisfies (3.24).
This extension is evidently given by the formula (3.36) because f(x) satisfies
(3.24).

2. Let a be irrational, 0 < a < 1, and let us consider the function

(3.37) f x [x/a] -t- [x + a].

Here f(x) kx + e(x) + (x), where
--1

a + 1, q(x) [x/a]-- x/a, (x) [x-a]-- x.

Again f(x) satisfies (3.2) because q and b have the right periods while
(0) h(0) 0. Notice that (x) is discontinuous at x -a and that
-aeR S. Actually(-a 0) a 1 < (-a + 0) a. We
know by Theorem 3.3 that there are infinitely many extensions of f(x) and
that if we define

(x) [x+a]- x if x -a (rood1),

% wherea- 1__<,_-<a if x--- -a (rood1),
then

F(x) Ix/a] + (x) - x

gives all extensions of f(x).
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