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Introduction
In this paper we shall characterize certain spectral mnifolds for a class of

bounded linear operators acting on a complex Banach space. Each operator
T of the class has a real spectrum (T) and its resolvent operator R(’; T)
(’I T)- satisfies an n-th order rate of growth (G) near (T) in the sense
that

(G) ImFIIIR(F;T) -<K for 0 < imFI < 1,

ImFIIIR(F;T) -< K for 1 <_ Im’l.
This characterization will be as the null spaces (kernels) of certain bounded
operators constructed from T by means of contour integrals. Bounded oper-
ators satisfying (G) were studied by R. G. Bartle [1], [2] and, independently,
unbounded operators satisfying this condition were studied by the author
[6]. Under additional assumptions, each operator of the class has a spectral
decomposition similar to that of a se]f-adoint transformation (cf. [2] or [6]).

For each bounded operator T satisfying the condition (G) and for each
closed subset F R let X(F) denote the closed linear manifold of all vectors
x whose local spectra relative to T lie in F. In 1 we review properties of
operators K(a, b) studied in [6] and introduced by E. R. Lorch [7] for self-
adjoint operators. In 2 we introduce for each R operators H_(t) and
H+(t) and derive their basic properties. We shall prove that X((--o, t])
is the kernel of H+(), that X([, + o )) is the kernel of H-(t), and that
X([a, b]) is the kernel of (T--aI)"(T- bI)’*-- K(a, b). This charac-
terizes X(F) for any closed interval F for each T of the class. These results
strengthen similar results in [6] where the author assumed that T lacked a
point spectrum and then, at a later stage, assumed that T had a purely con-
tinuous spectrum. In 3, with additional hypotheses we shall obtain a
spectral decomposition of T in terms of the kernel of H+(t) and the closure
of its range. These manifolds yield a closed resolution of the identity for T
in the sense of F. J. Murray [8]. The section concludes with a generalization
of a form of the spectral theorem for self-adjoint transformations which is
applied to obtain the classical integral representation for bounded self-ad]oint
operators.
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1. Preliminaries
Let X {0} denote a complex Banach space and let B(X) denote the al-

gebra of all bounded linear transformations from X to X. For a linear trans-
formation T in X we write a(T) for its spectrum and p(T) for its resolvent
set. For each e p(T) the resolvent operator of T at k is

R(X; T) (,I T)-.
If x X then by an analytic extension of R(.; T)x we shall mean an X-valued
function f analytic on an open set D(f) containing p(T) uch that

()I- T)f(X) x

holds for all e D(f). T is said to have the single-valued extension property
if for all x X and any analytic extensions f and g of R(.; T)x we have
f(X) g(X) for ), D(f)nD(g). If T has the single-valued extension
property then for each x e X there is a maximal analytic extension x^(
of R(.; T)x. The domain p(x) of x^( is called the (local) resolvent set
of x relative to T and r(x) C p(x) is called the (local) spectrum of x
relative to T.

1.1. TEOaEM. Let T B(X) have the single-valued extension property.
If x and y are in X and if ) 0 is a scalar, then"

1. la) a(x) is a compact subset of a(T).
(1.1b) a()x) a(x).
1. lc) a(x) is empty if and only if x O.

(1.1d) a(x - y) a(x) u a(y).
(1.1e) a(Ax) a(x) for each A B(X) which commutes with T.
(1.1f) a(x^()) a(x) for each p(x).

Parts (a) and (b) are clear. The proofs of the remaining parts can be
found in [3; pp. 1-3].
We shall assume throughout that T has a real spectrum and that the re-

solvent operator R(.; T) satisfies the condition

(G,) IIm]’llR(;T) <_K if 0< IIml < 1,

IIm’llIR(i’; T) _<g if 1 <_ IIm’]

for a fixed n N and a fixed K > 0. The notation T e (G,) will be used
to indicate that T e B(X) and satisfies the condition (G,). Such operators
T have the single-valued extension property.

1.2. THEOREM. Let T e G,), x e X and let e R. For each closed subset
FR, let X(F) {xeX’a(x) F}. Then"

(1.2a) a(x) {l} if and only if (T tI)"x O.
(1.2b) X(F) is a closed linear manifold in X.
(1.2c) For each > 0 there is a > 0 such that if J is any closed interval



CHARACTERIZATION OF SOME SPECTRAL MANIFOLDS 31

of length less than , then T tI)’x II <- ell x holds for all x e X(J) and
all J.

(1.2d) If (r(x) , t] then there is a c > 0 such that

holds for all in the right-hand half-neighborhood of given by

Proofs are given in [1; pp. 266-267]. If (x) c [t, A- then a result
similar to (1.2d) holds for i" in a left-hand half-neighborhood of t.

Let T e (G) and let a and b be real numbers with a < b. By an admis-
sible contour C(a, b) we shall mean a piece-wise smooth positively oriented
Jordan curve which meets the real axis only at the points a and b and at
nonzero angles. For each such pair a, b consider the operator given by

K(a, b) (2-i) -1 (t" a)’(i b)’R(t’; T)

for any admissible contour C(a, b). It follows from the growth condition
(G) that the integrand is bounded near a(T); hence, the integral exists in
B(X) as an improper Riemann integral. Since R(.; T) is analytic on C R,
it follows that the integral does not depend on the particular contour C(a, b)
chosen. The operators K(a, b) were introduced by E. R. Lorch [7] for self-
adjoint transformations and later used by N. Dunford [4], [5] in his spectral
theory.

1.3. THEOREM. Let T G.) and let a and b be real numbers with a < b.
Then tr(K(a, b)x) c z(x) n [a, b] holds for each x X.

Proof. Let x e X.
the integral

Choose any admissible contour C(a, b) and consider

f(X) (2i)-1 fc(a,b) (X .)-1(. a)’(" b)’R(’; T)x d

for ), in the exterior of C(a, b). Clearly, f is analytic in the exterior of C(a, b).
Using the continuity of T, we have

Tf(k) (2vi)- fc(a,b) (X- )-( a)’( b)TR(; T)x d

(2ri)- fC(a.b) (X ’)-(i" a)(" b)’[’R(’; T)x xl d

(2ri)-1
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Hence,

(),I T)f()) (2ri)- f (" a)(i b)R(’; T)x d g(a, b)x.
(a,b)

It follows that f is an analytic extension of R(.; T)K(a, b)x to the exterior
of C(a, b) and so p(K(a, b)x) contains the exterior of C(a, b). Since this
is true for each admissible contour C(a, b) it follows that (K(a, b)x)
[a, b]. The assertion now follows from (1.1e).
The author used the operators K(a, b) in [6] to study spectral manifolds

for unbounded operators which satisfied the growth condition (G) and
which lacked point spectrum. In the next section we shall study these mani-
folds for bounded T e (G) by introducing new operators H_(t) and H+(1)
and without the need of further assumptions concerning (T).

2. Manifolds corresponding to intervals

Let T e (G) and let t, a and b be real numbers with a _< b. We shall
consider the following closed linear manifolds in X:

X((-,]) ={xX:(x) (-,t]}, X([a,b]) ={x:(z) [a,b]}

and
X([, + )) {x () [, + )}.

By (1.2a), X([a, a]) is the kernel of the operator (T--aI) ’. We shall
characterize the other manifolds in terms of the operators K(a, b) and oper-
ators H_(t) and H+(t) which we now define.

Let T (G.) and let p min a(T) and q max a(T). For e R define
H_(t) and H+(t) to be the integrals

(i" t)R(i*; T) d,

It follows from the growth condition (G.) that H_(t) and H+(t) exist in
B(X). They are independent of the choice of s by the analyticity of R(.; T)
off [p, q].

2.1. TEOEM. Let T Gn), let x X and let t, a and b be real with a b.

(2.1a) (T- sI)’*H_(t) K(s, t) for s < p rain o-(T),

(T- sI)H+(t) K(t,s) fors > q maxa(T).

(2.1b) (T tI)’* U_(t) - S+(t).

(2.1c) (T aI)’(T bI)

(T- bI)’U_(a) -K(a, b) T (T- aI)"H+(b).

(- t)’R(;T)d, s > q.
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(2.1d) a(H_(t)x) (r(x) (-, t]

and r(H+(t)x) or(x) It, + ).
Proof. The first three parts are proved readily by the use of contour in-

tegrals. From part (a) it then follows that

H_(t) (-1)’R(s; T)’K(s, t) for s < p,

H+(t) (-1)R(s; T)’K(t, s) for s > q.

Part (d) now follows from (1.1e) and Theorem 1.3.
From (2.1b) and (2.1d) it follows that each vector y (T- tI)’*X,
R, can be written as a sum y y’ -y" with (y) (-, t] and

r(y’) It, + ). This decomposition was basic in the developments [2]
and [6] of a spectral decomposition for T e (G,). The next result charac-
terizes the manifolds X((-, t]) and X([t, + )) in terms of the operators
H+(t) and H_(t).

2.2. THEOREM. Let T G,) and let R.
(2.2a) X( , t]) is the kernel of H+(t).
(2.2b) X (It, -[- is the kernel of H_(t).

Proof. We shall prove (a); the proof of (b) is similar.
First, suppose x e X is such that H+(t)x O. Choose any u > and then

choosey > max/u, max a(T)}. For any admissible contour C(t, v) we have

0 U+(t)x (2i)- f ( t)’R(; T)x d.
(,v)

Let

g(X) (X t)-(2ri)- (i"- X)-( t)R(i’; T)x d.

Clearly, g is analytic if is in the interior of C(t, v).
T, we have

By the continuity of

Tg(X) (X t)-’(2i)- fc(,.) (i*-),)-1(i"- t)’*TR(; T)x d

(X t)-" 2i)-1 fc(,) (i" X)-I( t)’[R(l’; T)x x] d

( X)-I( t)’R(; T)x d x.

Hence, (k/- T)g(X)= -(k- t)-’H+(t)x + x x for each ), that is
in the interior of C(t, v). Thus (t, v) c p(x) and, in particular, u ep(x).
Since this holds for each u > we have (t, c p(x) so that (-

Conversely, suppose (x) (- , t]. By (1.2d) there is c > 0 such
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that if 0 < t c and Re " > t, then [" J"l] x^(")
Choose u > with u in this right-hand half-neighborhood of and choose
for C (t, u) the circle with center (1/2 (u + t), 0) and radius r 1/2 (u t).
Using

H+(t)x (2,ri)-1 f ( $)R(; T)x d

we obtain }lg+(t)x ]l (2r)-(2g]]x [)(2zr) 2gr]] x ]. If we let
u i+, we obtain H+(t)x O. This completes the proof of (a).

2.3. ThEOREm. Let T (G) and let a < b. Then X([a, b])
precisely of those vectors x such that

T aI)(T bI)x K(a, b)x.

Proof. rst, suppose ,(x) [a, b]. Then

.(z) c (-, b] n [a, +)

so that H_(a)x H+(b)x 0 by Theorem 2.2. The relagon

T aI)(T bI)x K(a, b)x

now follows from (2.1c).
Conversely, suppose that x X is such that

(T aI)(T bI)x K(a, b)x.

By (2.1c) we have (T-aI)H+(b)x=-(T-bI)H_(a)x. Using
(2.1d) and (1.1e), we infer that this vector has spectrum in

(-,a]n[b,+) =0

and so is the zero vector by (1.1c). It then fallows from (1.2a) and (2.1d)
that H+(b)x H_(a)x 0. Hence, ,(x) (-, b]n [a, + [a, b]
by Theorem 2.2. This completes the proof.
Theorems 2.2 and 2.3 show that the manifolds

X((-,$]), X([t,+)) and X([a,b])

are the kernels of the operators

H+($), H_(t) and K(a,b) (T aI)(T bI) ,
respectively. This characterizes the mafolds X(J) for each closed inter-
vM J. By means of arguments similar to those in the proofs of Theorems
2.2 and 2.3 one can show that the sum X((-, a]) + X([b, + )) is the
kernd of K(a, b). We 1 not prove this reset as it is not needed in the
sequd. We remark that this last assertion as well as Theorem 2.3 can be
proved for unbounded transformations which satisfy the growth condition
(G) which are closed and have dense domains.
With additional hypotheses the results of this section l be used in the
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next section to obtain reducing manifolds for the operators T e (G) in terms
of the kernels and ranges of the operators H+(t).

3. Resolving manifolds
If T is a spectral operator in the sense of N. Dunford [5], [4], then for each

closed set F the manifold X(F) has a (full) complement in X. In general,
for T (G) we do not expect a complement for X(J), J a closed interval.
In this section we shall impose further conditions on T and X in order to ob-
tain a quasi-complement for X((- , t]) for each e R. According to F. J.
Murray [8], two closed linear manifolds M and N in X are quasi-complements
in X if M n N {0} and M W N is dense in X. This is equivalent to the
existence of a closed projection (that is, a closed densely-defined idempotent)
in X which has M as its range and N as its null space (kernel). In the sequel
we shall denote the closure of M W N by M V N. If {M1, ..., M} is

V’-IM or M1 V V Many finite collection of subspaces M. of X, then
shall denote the smallest closed subspace of X that contains all the

If T e (Gn) and if e R we shall denote the kernel of H+(t) by M(t) and
the closure of H+()X by N(t). Note that M(t) X((-, t]). We shall
indicate two cases (Theorems 3.2 and 3.3) in which M(t) and N(t) are quasi-
complements in X for each e R. In the first of the two cases we shall require
the following Lemma which is due to N. Dunford ([4; Lemma 13, pp. 261-
262] or [5; Lemma 13, pp. 2159-2160]). We shall refer to it as "Dunford’s
Lemma 13."

3.1. LEMMA. If X is reflexive and if T e (G1), then for each e R the mani-

fold (T- tI)X- {xX (T tI)x 0} is dense in X.

3.2. THEOREM. /f X is reflexive and if T e (G), then M(t) and N(t) are
quasi-complements in X for each real .

Proof. Let t R. We infer from Theorem 2.1(b, d) and Theorem 2.2
that

(T tI)X [H_(t) - H+(t)]X c H_(t)X - H+(t)X c M(t) - N(t).
Also,

{x X (T tI)x 0} X([t, tl) M(t)

by Theorem 2.2. Hence,

(T tI)X - {x: (T tI)x 0} M(t) + N(t)

and so the conclusion X M(t) V N(t) follows from Lemma 3.1. To
show that M(t) n N(t) {0}, we let T* be the conjugate to the operator T
and we let K+(t) be the operator in B(X*) given by

(2i)- f ( t)R(; T*) dK+(t)
(,8)

where s > max (T) max (T*).
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We note that T e (G1) implies that T*e (G1) since R(’; T*) R(i’; T)*
for all i" p(T*) p(T). If we let M(t)* and N(t)* denote the kernel and
the closure of the range of K+(t), respectively, then we infer

X* M(t)* k/N(t)*

by the argument above. Taking ortho-complements in X and using the
fact that K+(t) is the conjugate to H+(t) we infer that {0} M(t) n N(t).
This completes the proof that M(t) and N(t) are quasi-complements.
We remark that a result similar to 3.2 was obtained by Bartle [2; Lemma

3.6] and, independently, by W. R. Parzynski [9; Theorem 2.12] for unbounded
operators. However, they used

X , t]) n C1 Range (T tI) and X([t, -t- o

in the place of M(t) and N(t), respectively.

3.3. THEOREM. f T (G,) and if T has a purely continuous spectrum,
then the manifolds M(t) and N(t) are quasi-complements in X for each real t.

Proof. Let e R. By the density of (T- tI)X in X and induction it
follows that (T tI)’X is dense in X. Using (2.1b) we infer that

M(t) /N(t) X,
as in the proof of 3.2. Let x e M(t) N(t). Then H_(t)x H+(t)x 0
and by Theorem 2.2 we have

a(x) (-, t]a [t, +) {t}.
Thus (T- tI)’x 0 by (1.2a), and it follows from the invertibility of
T- tI that x 0. Hence, M(t) aN(t) {0} and this completes the
proof.

3.4. COROLLARY. If T (G,,) and if T has a purely continuous spectrum,
then the manifolds X( (- , t]) and X([t, + are quasi-complements in X
for each real t.

Proof. Using (2.1d) and (2.2b) we infer that N(t)= C1 (H+(t)X) is
contained in X([t, + )). Also, M(t) X(( , t]). Hence, by 3.3
we have

X((-- , t]) /X([t, + )) M(t) /N(t) X
and soX X((-,t]) k/X([t, +)). Ifx eX((-cc,t]) nX([t, +o))
then a(x) c {t}. From (1.2a) it follows that (T- tI)"x O, whence,
x 0 by the invertibility of T- t/. Thus the manifolds X((-, t])
and X([t, + )) have only the zero vector in common and this completes
the proof that they are quasi-complements.

The result 3.4 was obtained by the author [6; Theorem 3.3] for unbounded
operators satisfying the growth condition (G,) and, independently, by Bartle
[2; Theorem 2.5] for bounded operators.
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We abstract the situations in 3.2 and 3.3 and assume in the next theorem
that X and T are such that for each real the manifolds M(t) (the null space
of H+(t)) and N(t) (the closure of the range of H+(t)) are quasi-comple-
ments in X. If this is the case, then for each e R there is a closed projection
E(t) having M(t) as range and N(t) as null space. The family

is a closed resolution of the identity for T in the sense of [8].

3.5. THEOREM. Let T e (Gn) and suppose that M(t) and N(t) are quasi-
complements in X for each e R. Let E(t) be the closed projection havingM t)
as range and N t) as null space.

(3.5a) E(t) O for < min(T),andE(t) I for > max (T).
(3.5b) Each E(t) commutes with all A e B(X) which commute with T.
(3.5c) If s < t, then E(s) E(t) in the sense that M(s) c M(t) and

N(s) N(t).

Proof. Parts (a) and (b) are clear. For (c) we note that

M(s) X((-c,s]) cX((-,t]) M(t) whenevers < t.

We shall assume that min a(T)_ s <

_
max a(T) in proving that

N(s) N(t) if s t; the assertion is clear oherwise. For this, let y
H+(t)x H+(t)X. Then a(y) c It, - by (2.1d). Since s < we have
sep(y) so that (sI--T)y^(s) y. If we let yl -y^(s), then y
(T sI)yl and a(y) a(y) by (1.1f). Thus s p(y) and this argument
implies the existence of a y. e X such that

yl T sI)y, with a(y) a(y).

Continuing in this manner we obtain yn e X such that y (T sI)’y,
with a(y.) a(y). By Theorem 2.2 we have H_(s)y,, 0; hence, by
(2.1b), we infer

y (T- sI)’y, H+(s)y,.

Thus y e H+(s)X. This shows that H+(t)X H+(s)X and so N(t) c N(s).

The hypotheses of the next theorem are satisfied in the case where X is
reflexive and T satisfies a first order rate of growth (G1) as well as in the case
where X is arbitrary and T has a purely continuous spectrum.

3.6. THEOREM. Let T (Gn) and suppose that for each R the manifold
(T tI)X W {x eX: (T tI)x 0} is dense in X. If a, b and are real
with a < b, then

(3.6a) X X((--,t]) /X([t,+))and
(3.6b) X X((- , a]) /X(ia, b]) /X([b, + )).

Proof. For (a). We obtain by induction the density in X of

(T tI)’X + {x X: (T tI)’x 0}.
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From (2.1b), (2.1d) and Theorem 2.2 it follows as in the proof of 3.2 that
this sum is contained in X , t]) "t- X ([t, -t- oo ). Assertion (a) follows.

For (b). We denote the manifold {x e X: (T- tI)’x 0}
The density of (T bI)X W X(b) in X implies the density of

by X(t).

(T aI)"(T bI)’X + (T aI)’X(b)
in (T aI)’X and, hence, the density of

T aI)’( T bi)X T T aI)’*X(b) - X(a)

in X. Clearly, we have (T- aI)"X(b) -X(a) c X([a, b]).
and (1.3), we have

By

(T aI)’(T bI)X X((- , a]) + X([a, b]) + X([b, -t-- )).

Hence, this last sum is dense in X which proves (b).

3.7. Remark. Under the hypothesis of 3.6 let (a, b) be any open interval
which contains a(T) and let {to, tl, t} be any partition of [a, b].
Then X k/-lX [t._, t.]).
The proof of this assertion consists of an iteration of the method used in

the proof of (3.6b) above, together with the identity

II-o T tI) -1 (Ii-. v t,I)’)K(t_ t),
which can be proved by the use of contour integrals.

This last result and the "Lorch approximation theorem" (1.2c) for T
now yield the following generalization of a form of the spectral theorem for
self-adjoint operators. By Dunford’s Lemma 13, the hypothesis holds if
X is reflexive.

3.8. THEOREM. Let X and T (G) be such that for each R the set

(T tI)X - {x X: (T tI)x 0}
is dense in X. Let (a, b) be any open interval that contains (r(T). For each
> Othereisa(e) > Osuch that ifr {to, tl, t} is any partition

of [a, b] of norm less than (), then
k(3.8a) X /-1X([t._, t.]), and

(3.8b) Tx tx <- x II holds for all x X([t_,, t]),
e [t-l, t], j 1, k.

3.9. Self-adjoint operators. We conclude with a short proof of the integral
representation of a bounded self-adjoint operator using the machinery de-
veloped above.

Let H be a Hilbert space and let T T* B(H). Then T (G) with
K 1. Since T T* and R(; T*) R(; T) it follows that

H+(t) (2i)-1 (" t)(R(’; T) d"
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is self-adjoint (choose C(t, s) symmetric about the real axis). Hence, for
each R, the manifolds M(t), the null space of H+(t), and N(t), the closure
of the range of H+(t), are orthogonal complements in H and so the projection
E(t) is self-adjoint. Let (a, b), e, (e) and be as in Theorem 3.8. The
manifolds

H([t._, t]) Range [E(t.) E(t._)], j 1, k,

are then mutually orthogonal. For any x H we may write

x -x where x. [S(t) E(ti_)]x H([t._, t]).
Then

Tx - Tx and Tx H([t._, t])

since each E(t) commutes with T by (3.5b). Choosing X e [t_, t], j 1,.., k, and using Tx- . x II -< ll x. for each j, we obtain

II Tx .- k[E(t-) E(t_)]x

This shows that T Hence, the
Riemann-Stieltjes integral dE(t) exists in B() and equals T.
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