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I. Introduction

A subset ofK ofR2 is a set of range uniqueness (s.r.u.) for entire functions
provided that iff and g are entire and f(K) g(K), then f-- g on g2. This
concept was introduced by Diamond, Pomerance, and Rubel in [1] and, at
the end of that paper, a number of problems concerning s.r.u.’s were posed.
In this note, we answer some of these problems by giving two examples
of s.r.u.’s, one an arc and the other an open topological disk.
The basic idea of our construction is to use the fact that entire functions

preserve angles at most points. Using this fact, and the topological ma-
chinery developed in Section 2, it is then shown that an arc with a dense
set of mutually distinct "kinks" is an s.r.u. In section three we construct
such an arc and, in Section 4, we show how to construct the second example
mentioned above.

I would like to thank several colleagues, Lou Brickman, Dick Goldstein,
Lloyd Lininger, and Don Wilken, for patiently listening to preliminary
versions of this work. I would also like to express my deep appreciation
to Lee Rubel, who sparked my interest in this problem, and to the referee
for helpful suggestions.

2. Images of Compact Sets Under Local Homeomorphisms

The results of this section are stated for a class which properly contains
the class E of non-constant entire functions. It takes no more effort to
establish these results for , and it is hoped that they may be used to give
examples of s.r.u.’s for the class itself.
A function f" R2 --> RE is called a local homeomorphism at x RE

provided f maps some open neighborhood of x homeomorphically onto an
open set in RE. Given a map f" RE --> RE, the singular set, S/, is the set
of points at which f is not a local homeomorphism.
We now define to be the class of continuous maps f: RE ---> RE such
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that

(a) Sr has no limit points in RE (i.e., the intersection of Sr with any
compact set is finite); and

(b) for each y RE, the set of f-(y) has no limit points in R2.

Clearly, the class ’ contains the class of non-constant entire functions.
We begin by establishing a very useful property of functions in .
PROPOSITION 1. Let f be in f and let K be a compact subset of R2.

Given any open set W which meets f(K) f(K f’) Sf), there exists an open
set V C W which meets f(K) and an open set U such that f maps U
homeomorphically onto V and f(K fq U) f(K) fq V.

Proof. Note that since K is compact and f is in (, K f-(y) is finite
for each point y in R2. Choose a point y0 in W which lies in f(K) f(K

Sr) and write

g fq f-(Yo) {x, Xn};

f is a local homeomorphism at each x and, therefore, we can find an open
neighborhood W of Y0, lying in W, and a collection of open neighborhoods
U, Un of X, X, such that each U is mapped homeomorphically
onto W by f.
A simple argument involving upper semi-continuity of point inverses in

K shows that there is a still smaller neighborhood V of y0, lying in W, with
the property that, if y is a point of f(K) V, then every point of K q
f-(y) lies in one of the 0. Let U O fq f-(’); then f maps each U
homeomorphically onto V and f(K) V t.Jf(K fq U).

Let K K U and A f(Ki), for 1, n, so that

f(K) fq V A t.J t.J An.
Choose a minimal subcollection of the A which coverf(K) V and reorder
subscripts so that f(K) V A t_J t.J A, (m < n) but no fewer of
these A/s will cover f(K) fq V. It then follows that no Ai is contained in
the union of the remaining ones. Thus A (A2 t.J t_J Am) 7 .
We now define V to be set V (A2 t.J t.J Am ). The A are relatively

closed in ’ hence V is an open subset of ’ and therefore V is open in R2.
Also f(K) fq V is simply equal to A1 (A2 U t_J A,). We let

U U1 f") f-(V).
Then U is open in R2 and f maps U homeomorphically onto V. It is not
hard to check that f(K f3 U) f(K) fq V, so the proposition is established.
As a consequence, we have the following result.

PROPOSITION 2. Let K be a compact perfect set and suppose f(K)
g(K) where f and g are in . Then there exist open sets U, V, and W with
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the following properties"

(a) U meets K and is mapped homeomorphically onto W by f,"
(b) V meets K and is mapped homeomorphically onto W by g;
(c) The function h (glV)-1 fmaps U homeomorphically onto V and

h(K f3 U) K V.

Proof. Let L f(K) g(K); L is perfect and f(K fq (Sy U S) is finite
so we can certainly choose an open set W which meets L and misses

f(K fl (Sy U S)).
By Proposition 1, we can pick open sets U, W such that U meets K, W
lies in if, f maps 0 homeomorphically onto and f(K N O) L .
Again by Proposition 1, we can pick open sets V and W such that V meets
K, W lies in W, g maps V homeomorphically onto W and g(K fq V) L

W. Let

U 0 Uf-(W);
it is then easy to check that U, V and W are the required sets.
Let us say that a subset K of R2 is conformally rigid provided that if U

and V are open sets in R with U K 4: ft and h is an analytic homeo-
morphism of U onto V which takes K f3 U onto K V, then K U
K f3 V and h is the identity map on K fq V.
By Proposition 2, a conformally rigid set is a set of range uniqueness for

entire functions.

3. A Conformally Rigid Arc

Our construction can be described briefly as follows. We reflect the
Cantor ternary function in the line y x and integrate. The graph of the
resulting function is a conformally rigid arc.

Let I denote the unit interval and let I, 12, 13, be the middle third
sets used in the construction of the Cantor ternary set:

11 [1/3, 2/3], I2 [1/9, 2/9], 13 [7/9, 8/9],

We index sets so that all intervals of a given length are indexed consec-
utively with In lying to the right of In-l. Let D denote the set of diadic
rationals in (0, 1) and let D be indexed in a similar way:

D {dl, d2, d3, ...} where dl 1/2, d2 1/4, d3 3/4,

so that the elements of D with a given denominator are indexed consec-
utively with dn lying to the right of dn- (and d; 4: dj for 4: j).
We define a function f" [0, 1] [0, 1] as follows. For x dn D, f(x)
an where an is the right hand endpoint of the interval In. Note that f is

strictly increasing on D. It is easily verified that if x I D then lim
{f(d)ld D, d x} exists and we define f(x) to be this limit. The function
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f thus defined, has these properties:

(a) f is monotone increasing on [0, 1];
(b) f is continuous at each x I D;
(c) f has a jump discontinuity at each dn D, whose magnitude is

precisely bn a where b is the lefthand endpoint of In.
As alluded to earlier, the best way to picturefand to verify its properties

is to take the standard Cantor ternary function, as described say on page
131 of [2], and restrict this function to I (-J(an, bn]. If the graph of this
restriction is then inverted in the line y x, the resulting set is the graph
of our function f.
We now observe that since f is monotone, it is Riemann-Stieltjes in-

tegrable [4, p. 109], and we define F [0, 1] [0, 1] by F(x) f f(s)ds.
It is easily verified that if x I D then F is differentiable at x and F’(x)

f(x). Moreover if x D, then the right and left hand derivatives D/f,
D-f exist at x. Indeed, if x dn, then D/f(x) bn and D-f(x) an. Let
z (x, F(x)) be a point on the graph of F with x (0, 1) and let cz(z)
denote the acute angle between the right and left hand tangent lines to the
graph of F at z. Then a(z) 0 at precisely those points where F is smooth.
At the point z (x, F(x)) where x =dn D, or(z) is not zero and, in fact,
tan a(z) can be expressed in terms of the right and left hand derivatives
by

bn- antan t(z) + anbn"
We now note that these numbers can be computed explicitly and that they
are all distinct (indeed, they form a strictly decreasing sequence).

Let K be the graph of the function F and let U, V be open subsets of
R2 each of which intersects K. Suppose h is an analytic homeomorphism
of U onto V taking K fq U onto K N V. Using standard techniques, e.g.,
[3, p. 149], it is easy to check that for each z K fq U, c(z) a(h(z)).
It follows that z h(z) for all z K fq U whose first coordinate lies in
D and hence z h(z) identically on K U. Thus, K is conformally rigid.

4. An Open Disk which Is an s.r.u.

The techniques of the preceding section can just as well be used to
construct a conformally rigid simple closed curve.

PROPOSITION 3. Let C be a conformally rigid simple closed curve and
let A be the topological open disk bounded by C. Then A is an s.r.u, for
entire functions.

Proof. Suppose f and g are entire functions with f(A) g(A). This
common image is an open set in R2 and, if we let L denote its boundary,
then L is contained in f(C) g(C).
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Since L is the boundary of an open set in R2 it has at least one component
L’ which is non-degenerate. By a slight elaboration of the proof of Prop-
osition 2, we can find open sets U, V, W such that C tq U fl C q V,
L’ tq W : , f maps U homeomorphically onto W and takes C U onto
L’ W, g maps V homeomorphically onto W and takes C tq V onto L’
tq W. Then (glV) -1 f maps U homeomorphically onto V and takes C q
U onto C tq V. Since C is conformally rigid, f-= g.
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