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SPLITTING THEOREMS FOR QUADRATIC RING EXTENSIONS

BY

M. HOCHSTER AND J. E. MCLAUGHLIN

I. Introduction

Let R be a regular Noetherian ring (all rings are commutative, with
identity) and let S R be a module-finite extension algebra. It is an open
question whether R c_> S splits as a map of R-modules, i.e., vhether the
copy of R in S has an R-module complement E such that S R R E.
This is known if R contains a field, and also ifS has a big Cohen-Macaulay
module for every maximal ideal m of S (see [2]). The question can be
reduced to the case where S is a domain (see [2]).
We shall show here that when S is a domain such that the extension of

fraction fields is quadratic the answer is affirmative: In fact, it suffices that
R be supernormal and locally factorial, where "supernormal" means that
the Serre conditions R2 and $3 hold (see [7, p. 124]). The main case is
where R is of mixed characteristic 2.
Moreover, we give an interesting almost "generic" counterexample when

the condition R2 is weakened: In this example, the ring is a factorial com-
plete local domain of mixed characteristic 2 which is a hypersurface. The
most difficult feature of this example is to prove factoriality after completion:
This is achieved by representing the hypersurface as a ring of invariants
and calculating group cohomology (cf. [1], [2]).

It has recently been shown [6] that the direct summand conjecture has
the same homological consequences (i.e., implies the same standard homo-
logical conjectures) as does the existence of big Cohen-Macaulay modules.
This focuses increased attention on the direct summand conjecture. Further
discussion of the conjectures may be found in [3], [4], [5], [6], [8], [9] and
[11].

2. The Splitting Theorems

(2.1) THEOREM. Let R be a locally factorial Noetherian domain which
satisfies RE and $3, e.g., a regular Noetherian domain, and let S be a
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module-finite extension algebra such that the degree of the fraction field
L of S over the fraction field K ofR is two. Then R S splits.

Proof. Let

S** {f L: height{r R" rf S} > 2}

where, for this purpose, height R +. S**, as an R-module, is in fact
the double dual of S into R, so that it is a module-finite R-algebra, and
since R C S C S** it suffices to show that S** can be retracted to R.
Henceforth, we may assume that S is reflexive as an R-module (replacing
S by S**). We next observe:

(2.2) LEMMA. Let R be a Noetherian domain which is R2 and $3 and
let S be a R-reflexive module-finite extension algebra of R. Then S/R is
a reflexive R-module.

Proof. If dim R < 2 then, passing to the case where R is local, we
see that we may assume that R is a regular local ring of dimension less
than or equal to 2. The fact that S is reflexive implies that S has depth
min{dim R, 2} and so is free over R. Moreover, if m is the maximal ideal
of R, 1 q mS, which means that is part of a minimal and, hence, free
basis for S over R, so that SIR is R-free.

If dim R > 3 we may assume that R is local and it suffices to prove that
every R-sequence of length 2 is an (S/R)-sequence. Let x, y be an R-
sequence of length 2. Let an overbar denote reduction modulo R in S. If
x O, xs R, whence the integral element s is in the fraction field of
R. Since R is normal, s R, i.e., 0.
Now suppose y x. We must show that x(S/R). We know that

yt xs r R. We claim that r (x, y)R. For if r q (x, y)R then since
R is $3 all associated primes of (x, y) have height 2, and we will still have
r q (x, y)Re after localizing at a suitable prime P among these. But then
Re has dimension 2 and so Re is a direct summand of Se and (x, y)Re is
contracted from (x, y)Se. Since r yt xs (x, y)S C (x, y)Sp, this is
a contradiction.

Thus, we can write r ya xb for suitable a, b R, and we then
have yt xs r ya xb and so y(t a) x(s b) in S. Hence,
t a xs’ (since S is reflexive) and a xs’, as required. This
completes the proof of Lemma 2.2.
We can now complete the proof of Theorem (2.1) easily. Since we have

reduced to the case where S is reflexive the lemma implies that SIR is
reflexive. Since the field extension is quadratic, S has torsion-free rank two
over R and so SIR has torsion-free rank one. Since R is locally factorial
and factoriality is equivalent to the freeness of rank one reflexives (for a
normal Noetherian domain), we have that SIR is a rank one projective,
whence 0 R S SIR 0 splits, Q.E.D.
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We obtain the following rather odd corollary:

(2.3) PROPOSITION. Let R be a locallyfactorial R2 $3 Noetherian domain’
and suppose wE (4, x2)R, where x R. Then w (2, x)R.

Proof. If char R 2 this is immediate from the normality of R: the
case x 0 is trivial, while if x O, (w/x)2 R implies w/x R. Assume
char R - 2 and w2 4u + x2v, u, v R. Let denote some sq_u_are
root of v in an extension domain of R. Then the elements (w +_- xVv)/2
are in the fraction field of R[/’] and are integral over R since their sum
is w and their product is (w2 x2v)/4 u. By Theorem (2.1), there is an
R-linear retraction

and

f: R[k/-, (w + x)/21 R,

w f(w)

+ xV- ) f xV- )
2f((w + x’k/’)/2) xf(v) (2, x)R,

Q.E.D.
Of course, what we really used about R here is that it is a direct summand

of every quadratic integral extension.
The conclusion of Proposition (2.3) does not seem obvious even when

R is regular (of mixed characteristic 2) in the ramified case.

3. A Counterexample

Our objective here is to show that the condition R2 in Theorem (2.1)
cannot be relaxed: even if the local ring is complete and a hypersurface.

Let A be a regular Noetherian factorial domain in which 2A is a nonzero
proper prime ideal (e.g. A might be Z, Z2), or the completion of Z2), the
2-adic numbers). Let S A[X, W, U, V], and let R S/FS, where X,
W, U, V are indeterminates and F WE 4U xEv. Let x, w, u, v be
the images of X, W, U, V in R. We note the following facts"

(1) R is a hypersurface (hence R is Gorenstein and, in particular, Cohen-
Macaulay, which implies $3).

(2) R is factorial. To see this, note that 2 is a prime element of R, for
R/2R (A/2A)[X, W, U, V]/(W X2V). Hence, localizing at the element
2 does not affect factoriality. But

R[1/2] A[1/2][X, W, V],

since F 0 may be solved for U when 1/2 is in the ring.
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(3) By construction, W2 t (2, x2)R. But w (2, x)R. In fact

R/(2, x) (A/2A)(W, U, V,]/(W2).
(4) Hence, R admits a quadratic extension domain of which R is not

a direct summand, by Proposition (2.3).

This example is also cited in [10].
We now want to modify the example so that R is a complete local domain.

We henceforth assume that A A, a complete discrete valuation ring in
which 2 0 generates the maximal ideal (e.g., A might be the 2-adic
integers).
Let A[[X, W, U, V]] and/ /F, where F WE 4U- xEv,

as before. Thus, is the m-adic completion of R in the case A A, with
m (2, x, w, u, o). Remarks (1), (3) and (4) above remain essentially
unchanged (replacing "[ ]" by "[[ ]]") but the proof of factoriality (2)
is no longer valid, because R[1/2] is smaller than A[1/2][[X, W, V]] (lo-
calization on A does not commute with adjunction of power series inde-
terminates). Nonetheless:

(3.1) THEOREM. is a complete local factorial hypersurface which ad-
mits a quadratic extension domain of which R is not a direct summand.

The proof, by the remarks above, reduces to showing that is factorial.
We conclude with a demonstration of this fact.
The key point is that may be viewed as the ring of invariants of an

action of a cyclic group G of order 2 (with generator, say, tr) acting on a
formal power series ring T A[[x, y, z]]" there is a unique continuous
action such that tr(x) x, tr(y) -y and tr(z) z + xy. It is clear that
X, O y2, Z + tr(Z) 2Z + xy w and ztr(z) z(z + xy) u are fixed
by G. Map A[[X, W, U, V]] continuously into T over A by sending X, W,
U, V to x, w, u, v. Since wE 4u / x2o in T, F is killed and we obtain
a continuous A-homomorphism -- TC- T. Denote the image of/ by
A[[x, w, u, o]]. Then T is integral over Im , the degree of the extension
of fraction fields is two, and the same is true for T and T. It follows that
T is contained in the fraction field of Im/ and integral over it. Krull dim
T 4 implies Krull dim (Im/) 4. Since/ is itself a four-dimensional
normal domain (for R A[X, W, U, V]/F is a normal excellent domain),
the surjection of -- Im is an isomorphism. Thus, Im is normal and
Im T.
The map , -- T therefore permits us to identify/ with T, and it will

suffice to show that T is factorial.
For any commutative ring with identity C let C* denote the multiplicative

group of units in C. Then T* A*. (1 + I), where I (x, y, z)T, and
T* is in fact the direct sum (or product) of A* and + I.
Let r T be a nonzero nonunit, rT factors uniquely, in T, into prime
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principal ideals, say
k

rT H ($JT)m
j---1

where the sjT are distinct. Since G stabilizes rT, G permutes {siT, SkT}
and this set breaks up into G-orbits. If sT and sT are in the same orbit,
m m. If there are h G-orbits and Ix denotes the product of the ideals
in the hth orbit, then

rT Ii Ik
is the unique (except for order) factorization of rT into G-stable principal
ideals which cannot be so factored further. If it were the case that each
Ix is generated by an invariant we would be done: these invariants would
give the factorization of r in T (up to an invariant unit). The situation,
however, is not quite this simple.
Let Ix txT. Then we shall show:

(3.2) For all but evenly many, say 2v, values of h, tx may be chosen
to be G-invariant, while the remaining 2v factors are all associates of y
in T.

It then follows easily that if

L {h: l<X<h,tT#-yT},

then r has the unique factorization (in T) r a(y2)IIxz tx, where a is
a unit of T. (Note: a unit of T which is in T is evidently a unit of T.)

In order to prove (3.2), let t T be a nonzero nonunit which generates
a G-stable ideal. Thus, if G {1, o-}, o-(t) at, where a is a unit of T,
and tr(a,t) tr(a,)a,t T, i.e., tr(a,) o/. 1. Under these circumstances
we shall prove that one of two facts holds:

(1) tT is of the form ryT, where r T. (Then tr(ry) -ry.)
(2) tT is of the form rT, where r T.
In fact, the element a, T* represents an element of HI(G, T*). As

remarked earlier,

T* A* (1 + I), whereI (x,y,z)T.

Thus, HI(G, T*) Ht(G, A*) H(G, + I). We shall show in the next
section that Hi(G, 1 + I) 0 (see Theorem (4.3)). Let us assume this for
the moment. Then the only elements of HI(G, A*), since G acts trivially
on A, are given by the a, such that (OZtr)2 1, i.e., oz, +_ 1. Thus H(G,
T*) { +_ 1}, and this says that given a, we can find ft, T* such that
a, _+o’(fl,) -. If we replace t by tim t then tr(t) tl. If the sign
is /, we are in Case (2). If the sign is we shall show that tl ry,
where r is invariant. In fact, it suffices to show that tl yT, for if t
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yr, r T, then tr(tl) -y, and o-(y) -y imply tr(r) r. But yT is a
G-stable ideal of T and T/yT A[[x, z]] is a trivial G-module (tr(x) x,
o’(z) z + xy z modulo yT), whence the image 1 of tl modulo yT is
both fixed by and negated by o’. Thus, 0, and y divides tl.
We return now to the situation where tx is one of the generators of

G-stable ideals Ix in the factorization of rT. We have shown that each tx
is, up to a unit, either an invariant r or of the form yr, where r is an
invariant. In the second case, r must be a unit of T (and hence of T), for
I cannot be factored further in T.
As before, let L {h" 1 < h < h, txT yT}, and let/z be the number

of h not in L. Assume t /6 for h L. Then

r ay I] x,

where a is a unit of T. If/z were odd, we would have tr(a) -a which
implies y a in T, a contradiction. Hence, /x is even, say/x 2v, and r

a(y2) 1-Iixyrtx. t 16 (since y2 /6) and then ct must be a unit of T6.
The factoriality of 2t6 is now clear: it remains only to prove that H(G, 1
+ I) 0, which we shall accomplish in Section 4 (Theorem (4.3)).

4. Vanishing of Group Cohomology

Throughout this section, G is a multiplicative group of order 2 with
generator o-. When G acts on a domain A we shall always mean that G
acts by ring automorphisms. If h A, N(h), the norm of h, is )to’(h). If
V is a G-stable subgroup of A*, H(G, V) may be identified with

{v V" N(v) 1}/{vo’(v)-" v V}

(4.1) LEMMA. Let A be a domain, I an ideal, and suppose G acts on
A so that I is G-stable. Also, suppose that

W {w A: w-= 1 modI}

is a subgroup of A*. Then if h 21 and 1 + h has norm l, then there
exists w W sueh that 1 + h w-tr(w).

Proof. If 2 0 this is clear, so suppose 2 4: 0. Then

( + X)o-(1 + X)=
implies

X + o-(X) + Xo-(X) 0 or 2 + X 2 + 2X + tr(X) + her(X),

i.e., 2 + X (2 + o’(X))(1 + X). But X 2/x, 2 4 0, whence

(1 + /x) (1 + tr(/x))(1 + h),

and we may choose w- 1 + t, Q.E.D.
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(4.2) LEMMA. Let A be a domain such that 2A is a prime ideal. Let A
A[[s, t]], where s, are formal power series indeterminates, and let G

act continuously, fixing A, so that tr(s) -s, tr(t) t. Let J (s, t)A
and W 1 + JC A*. Then HI(G, W) O.

Proof. SupposeX JandN(1 + X) 1, i.e.,

X + r(X) + Xo’(X) O.

Write X Zo Xs, where X X(t) A[[t]]. Then we have

i=0 i=0 i,j

whence 2ho + hg 0. Since 2 J implies 2 0, we must have h0 0.
At degree (in s) 2k > 0 we get

2X2k+ (-1)Jh,Xj= 0
+j 2k

whence X 2A[[t]], a prime ideal of A[[t]]. Thus, for all k, hk 2A[[t]],
so that h 2J, and 1 + h is 0 in H1(G, W), by Lemma (4.1), Q.E.D.
We are now ready to prove the main result of this section.

(4.3) THEOREM. Let A be a domain in which 2A is a prime ideal. Let
T A[[x, y, z]] andI (x, y, z)T. Let V + I, a subgroup ofT*.
Let G {1, tr} act on T so that tr is the unique continuous (in the I-adic
topology) A-automorphism of T such that

tr(x) x, tr(y) -y and tr(z) z + xy.

Then Hi(G, V) 0.

Proof. Let U 1 + xT C 1 + I V. We haveasurjection

7r" T -- A[[s, t]] A

by or(fix, y, z)) f(0, s, t). Let G act on A as in Lemma (4.2) and let
W 1 + (s, t)A as in Lemma (4.2). Then we have an exact sequence of
G-modules

0-- U c. V-W-O.

Suppose we can show:

(*) if u U and utr(u) l, then there is a v V such that u tr(v)v- 1.
Then it will follow that H1(G, V) 0, for (*) simply says that in the piece

H1(G, U) -- Hi(G, V) -, H1(G, W)
of the long exact sequence, the map a is 0, while we already know from
Lemma (4.2) that H1(G, W) O.
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Before proving (*), we note that if 0 I and N(1 + 0) 1 (i.e., 0 +
o-(0) + 0r(0) 0) then 0 yT. To see this, let F A[[x]] and write
0 E_-00i(z)yi, where Oi(z) F[[z]]. Then

Z Oi(z)Y + Z Oi(Z + yx)(--y)i+ Oi(z)Oj(z + yx)yi(--y)j= O,

and substituting y 0 yields

200(z) + Oo(z )2 0 : Oo(z ) 0

(00(z) -2 ::> 2 I ::)> 2 0 ::> Oo(z) 0, whence Oo(z) 0 in all
cases). Thus, 0 yT, as claimed.
Now suppose u UandN(u) 1. Thus, u 1 + 0, where 0 xT.

Now, by the above remarks, 0 yT : 0 xT N yT xy T, so that
0 yf, wheref xT. Since N(1 + yf) 1, we have

yf ytr(f) yEfir(f) 0

or, equivalently,

(t) f- o’(f yfo’(f ).

To complete the proof it suffices to construct by recursion on > l, a
sequence of elements al, a2, ai, ,j+k=i F yJzk, such that if
a Xi%l ai, then

or, equivalently,

(#)

(1 + a)(1 + yf) 1 + tr(a)

(1 + a)fy tr(a) a,

for thenu 1 + yf= (1 + a)-ltr(1 + a) andl + a + (y,z)TC V.
We can write, uniquely,

f= f/ where f/ 2 F yz= Tio
i=0 j+k=i

Note that each Ti is G-stable.
Since f xT, f xTi, all i. Let f xf3. We choose al fz. Let [t]i

denote the Ti-component of an element T. Then

[(1 + al)fY]l [tr(al) alll.
In fact

[(1 + al)fy], [fYll f0Y fxy
while

[o’(a,) alll r(a,) a, o’(fz) -fz f(z + xy) -fz fxy.

Now suppose n > 1 and we have constructed a, a,_, a L, such
that if A a + + an-l, then

[(1 + a)fY]d [tr(ad) ad]d tr(ad) ad, < d < n 1.
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Let H (1 + A)f Then [H]d-1 Ta, 1 < d < n 1, for [H]d- y
[HY]d tr(ad) ad implies tr([H]d_y)=--[H]d-lY which implies
tr([Hld_) [Hld-1.
We claim that [H]_ T as well. To see this, note that

H- tr(H) (1 + A)f- (1 + tr(A))tr(f)
f- o’(f) + (A o’(A))f + o’(A)(f- o’(f))
(1 + tr(A))(f- tr(f)) + (A o’(A))f
(1 + o(A))fo’(f)y + (A o’(A))f (by )
fo’(B) where B (1 + A)fy + or(A) A.

Thus,

H._ cr(H._ ) [H or(H)]._

[fr(B)]._

f0 or(B)._ + ficr(B)._2 + + f.-2 or(B)1

(for Bo 0). But our induction hypothesis was precisely that Bu 0,
1 < d < n 1, and o-(B) o’(Bi). Thus, H._ r(H._ 0. Moreover, since
f . xT, H xT, and H,,_ xTn-, say H._ Xgn-. We also have then
that o’(gn-1) gn-1. Now let an gn-Z - Tn.
Then

[(1 + a + + an)fY]n [(1 + A + a.)fy]

[(1 + a)fy]n + [anfY]n
[(1 + A)fY]n
[(1 + A)f]n- y

Hn-lY
gn-lXy

gn-l(Z + xy) gn-lZ

tY(an) an,

since tr(gn-) gn-l. NOW, letting a Ei ai, we clearly have

(1 + a)fy tr(a) a,

since this holds for each graded component, Q.E.D.
Theorem (4.3) more than suffices to complete the proof of Theorem (3.1).
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