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Abstract

In this paper, we state and prove a G-equivariant version of the Dold
Theorem mod k for finite groups G. We then use this theorem to prove an
equivariant version of the Adams Conjecture for G cyclic, using the Becker-
Gottlieb approach. The case for general G and finite structure groups is
also obtained by the methods of Quillen.
We would like to express our gratitude to Professor J. P. May for his

encouragement and many useful suggestions, and to the referee for his
critical reading of the manuscript, and for his improvements on several of
our proofs.

0. Basic Notions and Statement of Results

G will denote a finite ambient group, and if V is a real orthogonal finite
dimensional representation of G, we shall denote the one-point compaeti-
ficatio of V by Sv. For brevity, we shall use the term "G-module" to refer
to such a representation V.

If V and W are G-modules, we say that V and W are stably G-homotopy
equivalent if we can find a G-module X such that Svx and Swx are G-
homotopy equivalent. (That is, there is a G-equivariant based map in each
direction, with each composite homotopic to the identity through basepoint
preserving equivariant maps).

In a more general setting, there is an equivariant J-homomorphism

J K(X)--> Sph(X)

for any finite G-CW complex X. (See, for example, [13].) Here, K(-)
denotes equivariant real orthogonal K theory and Sph(-) is the group of
stable G-equivalence classes of spherical G-fibrations over X. (This group
is described more fully in [16].)
The purpose of this paper is to detect at least part of the kernel of J

for cyclic G.
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Let k be a positive integer prime to the order of G and let s be the order
of k mod [GI. (That is, s is the smallest positive integer such that/d ---mod [GI). Let qk denote the kth equivariant Adams operation [13], and let
[/z] K(X). A G-space X will be said to be G-connected if the fixed-point
set X/of X is connected for each H C G.
Our formulation of the equivariant Adams Conjecture then reads as

follows:

THEOREM 0.1 (Equivariant Adams Conjecture). Let k be a nonnegative
integer, and let G be cyclic of order prime to k. Assume X is a finite G-
connected G-CW complex, and let [/z] K(X).

Then there is an integer n > 0 such that

JG(skn(lllk 1)[/.,]) 0.

The most important technical tool used in realizing this result is an
equivariant version of the Dold Theorem mod k, which we shall state below.
We shall see in 5.3 that Theorem 0.1 remains true when G is arbitrary

of order prime to k and [/z] is represented by a G-vector bundle with finite
structure group. By using equivariant Brauer Lift, Hauschild and May have
proved the result for general finite groups of order prime to k by reducing
to the case of finite structure groups.
By using different methods, McClure has proven a somewhat sharper

result. All methods depend strongly on our version of the Dold Theorem
mod k.
Let U denote the G-module RG, where RG is the regular representation

of G, and consider the group to lim[Sv, sv], where V runs thr)ugh
all finite dimensional submodules of U, and where ] denotes equivariant
homotopy classes. Composition of maps turns to into a ring, and it is well
known that this ring is isomorphic with A(G), and that we may define an
explicit isomorphism A(G) -- to by sending a G-set s to the Pontryagin-
Thom map associated with a G-embedding of s in U. Thus we may interpret
the stable degree of a G-map as an element of A(G).

Let / and be spherical G-fibrations over X and assume that and
have corresponding fibers stably equivalent with respect to the actions by
the isotropy subgroups of their projections. (Observe that, if zr is any G-
map, then if x Im(zr), G acts naturally on r-(x)).
Now let f: rt : be a fibrewise G-map. If x X, then the degree of

the restriction of f to -(x) may be determined as an element of A(Gx),
up to multiplication by a unit in A(Gx). We shall say that f has degree
M A(G) if flr/-l(x) has degree M, regarded as an element of a(Gx) via
the natural forgetful homomorphism, for each x X.
Our version of the equivariant Dold Theorem mod k takes the following

form.
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THEOREM 0.2 (Equivariant Dold Theorem mod k). Let q and be G-
spherical fibrations over a finite G-CW complex X, and assume that cor-
responding fibers are stably equivalent with respect to the action of the
appropriate (isotropy) subgroups. Let f: -- be a fibrewise G-map
of degree M in A(G), and assume that M divides a power of k in A(G).
Then there exists an integer n > 0 and a stable fibrewise G-equivalence
g: k - k.

Remark 0.3. (i) It would seem elegant to allow k to be an arbitrary non-
zero divisor in A(G), and the statement of the theorem does make sense,
at least when k comes from an actual G-set (rather than a virtual one). The
integer n would have to be allowed to be an element of A(G) as well, and
the second author has such a result for k 1 + G.

(ii) The requirement that corresponding fibers "look the same" is the
source of the integer s in Theorem 0.1, as its proof will show.

1. Proof of Dold mod k

The proof of Theorem 0.2 will be set out in several steps. Observe first
that it suffices to assume that M is an actual power of k in A(G). Indeed,
if k AM for some A A(G), we may replacefby its fibrewise suspension
with a G-map of degree A. This replaces f by a fibrewise G-map of degree
ki, and we are in the special case.
By the results in [10], we can find a spherical fibration :+/- such that
A- is stably G-fiber-homotopy trivial; A+/- = X x Sv for some G-
module V. (Here, A denotes fibrewise smash product).

Consider the fibration : rials+/-. This fibration is a V-dimensional
spherical fibration in the sense of [17]. This means that, if x X and if F
denotes the fiber over x, then F is Gx-homotopy equivalent to Sv. The
notion of a G-oriented V-fibration is also defined in [17], and may be de-
scribed as follows.

Let p: E X be V-dimensional. Assume that we are given an open
cover of X by invariant sets of the form G x nU, where U C X is open
and H-invariant, together with local fibrewise G-homotopy trivializations
of the form

(G x I-IU) x Sv E

G x nU *-*- X,

where G acts diagonally on (G nU) x Sv. Let

x d(G x HU) f’) d/(G x H’U’)

for two such trivializations 4 and b’, and write x 4[g, u] 4’[g’, u’].
Consider the composite

T**’]x" Sv U’ v Sv(G x HU) X Sv - E ’ (GXH, X S
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where (s) ([g, u], s) and zr([, 1, s) s. That T**,[x is G-equivariant
is straightforward. We then say that b and b’ are compatible if T++,[x is
stably G-homotopic to 1 (or, equivalently, has degree 1 in A(Gx)) for

x 6(G x nU) (q cb’(G x n,U’).

A G-orientation is then a cover of X by compatible local trivializations,
and the maps ii x are then the orientations for the fibers of p.

Returning to the fibrations r and :, we shall say that r/and : are com-
patible if : is G-orientible.

LEMMA 1.1. Let M A(G) be a non-zero divisor, let q and have
corresponding fibers equivalent (as above), and let f: q -- have degree
M. Then

.(i) and are compatible, and
(ii) f A 1" A :-l __. X x Sv has equivariant degree exactly M on

each fiber, with respect to some orientation (meaning a collection of ho-
motopy trivializations as above).

Proof. X Sv has a standard orientation. For each x X, choose a
local G-fiber-homotopy trivialization

i" (G x IU) x Sv E= A -over a neighbourhood G x nU of x, with G H, x U and U
H-contractible to x. Then the composite

Tx" Sv
x f/l sV sV---- (G nU) sV fl- E X

has degree uM A(Gx) for some unit U A(G,).
If y U, then Ty" Sv Sv is Gy-homotopic with Tx, so that the degree

of Ty is also uM, regarded as an element of A(Gy) via the forgetful map.
Further, Tgx has degree ugM, where ug A(gGxg-1) corresponds to u under
the natural isomorphism A(Gx) A(gGxg-1), and similarly for Zgy if y
U.
Now assume, by fibrewise suspending, that u- may be represented by

an H-equivariant homotopy equivalence Sv Sv. If we replace by
ii if-, where

ff-" (G nU) Sv

is the map ([g, x], s) ([g, x], gu-g-s), then this replaces T by a G-
map of equivariant degree M, and similarly for Ty, Tgx and Zgy above. Thus
such a system of local trivializations gives the degree offA I as exactly M.
Now consider the change-of-coordinate fiber equivalences T66,Ix above.

The degree dx of T66,[x then satisfies dxM M, so that, since M is not a
zero-divisor, d 1 A(Gx), it being easy to verify that non-zero divisors
in A(G) remain non-zero divisors in A(H) for any H C G. This completes
the proof.
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We now have:

LEMMA 1.2. It suffices to prove Theorem O. 1 for the special case
X Sv for some G-module V, a V-dimensional oriented spherical fi-
bration, and f of degree exactly M, with respect to a given orientation of
’1, where M is a power of k.

LEMMA 1.3. Let X be a disjoint union of G-spaces of the form G/Hfor
various H C G, and let h:Sv -- Sv be a G-map of equivariant degree ki.
Then under the hypothesis of the theorem, in the special case of Lemma
1. l, there exists afibrewise G-equivalence g such that thefollowing diagram
is fibrewise stably homotopy commutative (equivariantly). Further, we may
arrange that g be orientation preserving.

f
Sv---X

g% /1 h
XSv

Proof. Clearly we may assume X G/H. Let th" G/H Sv ---> rl
be a G-homotopy trivialization which defines the orientation of . Let

-" Sv ---> Sv denote the restriction to the fiber over the identity coset of

G/H x Sv * f
SV,"- q -- G/H

Now h is H-equivariant and induces a G-map

i(-)" G/H SV--> G/H Sv

by i() ([g], s) ([g], g-(g-s)). One checks that fib i().
Since has degree ki, it is stably H-homotopic to h. Therefore i() is

G-homotopic to i(h), and the latter is 1 h, since h is G-equivariant. Thus
f i(h) 1 h, where "-" denotes G-homotopy (which in this case is
automatically fiber preserving G-homotopy).
The lemma now follows by taking g to be a fiberwise G-homotopy inverse

to $.
Before continuing with the proof of the theorem, we pause to consider

some equivariant homotopy theory.
Let n > O, and let

f: S "--> colim(fVsv)n

be a map such that f(*)" Sw Sw has equivariant degree L A(H), for
large W. We then say that f has equivariant degree L.
Denote the set of homotopy classes of such maps by Fn(n, L), and note

that loop addition gives a map Ft-l(n, L) Fn(n, L’) Fn(n, L + L’).
Given a class If] Fn(n, L), we may form the m-fold Whitney sum

Wm Wm H[j.qm F(n, Lm) by taking the class of the map fro. S" colim(fl S )
obtained by pointwise m-fold smash product.
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We may also define an action on [f] by A(G) given by pointwise com-
position with the given element M A(G), regarded as a stable G-map Sw

--> Sw for large W. We thus obtain an element M[f] Fn(n, ML).
These two operations are related as follows"

LEMMA 1.4. Let [f] Fn(n, L). Then [f]m mLm-[f] + [c], where
c is a constant map in Fn(n, Lm(1 m)), and where addition is defined
pointwise.

Proof. Write f g + h where g is a constant map in Fn(n, L) and
where h f- g (defined pointwise) is in Fn(n, 0). Then

fm=(g+h)m= Xo<i<<.m (im)higm-i,
where the products higm-i are maps S ---> colim(flvmsvm)H given by taking
h pointwise on the first summands and g on the remainder. (Note that
the order in which the summands are taken is irrelevant up to homotopy).
Since h has degree 0, h is null-homotopic if > 2, whence so is higm-i.
Thus

gm + mgm-h gm + mzm-lh gm + mLm-(f_ g)

gm mLm-g + mLm-f= c + mLm-lf,
as required, all equalities being taken up to homotopy.

Remark 1.5. For purposes of obstruction theory, we ignore constant
terms, and write [rim mLm-[j.
We are now ready to prove Theorem 0.2.

Proof of Theorem 0.2. By the above lemmas, we may assume we have
a fibrewise G-map f: r/ ---> X x Sv of degree k

_
A(G), with respect to

given orientations.
In order to induct over skeleta Xn, assume that there exist

(i) r > 0 and a fibrewise degree G-equivalence g" k rl --> X Sw

in some fibrewise suspension, defined over X , and
(ii) a (stable) G-map h" Sw --> Sw such that the following diagram is

stably G-fibrewise homotopy commutative over xn-:
krf

X Swkr "0 > X

Xn-I x SW

(It follows that the degree of h must be a power, kq, of k).

The start (n 1) of the induction is Lemma 1.3 and we may take
r 0. Thus consider the obstruction 0 to extending g over a G-cell of the
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form G/H D". This obstruction is a class [0] Fn(n 1, 1), and the
diagram implies that [hO] 0, that is, kq[O] O.
Taking the kq-fold Whitney sum of the whole diagram, we replace [0] by

[0]" ku[O] 0, by Lemma 1.3. Thus the obstruction vanishes.
Now consider the obstruction to extending the homotopy over the above

G-cell. This obstruction is a class [] Fn(n, kP), where kp is the present
degree on fibers (= (kq)"). We may alter [] by using any element [a] in
Fn(n, 1) to replace g by the composite

X x SV X v

where we are assuming that X Xn- (G/H x D"), and where
is given as follows: Regard a as an H-map (Dn, Sn) (VsV)H with
a(x) 1 for all x Sn. Then let be given by the identity over X-and by the map

((gH, d), s) ((gH, d), ga(d)(g-s))

over G/H x On, for d D and s Sv. This operation alters [] by
[h] [].
Now take the -fold Whitney sum of the whole diagram. This replaces

[] by

[]; ()-[,] ()[],
which may now be altered by ()[a] for some a Fn(n, 1). We choose
[a] -[$]1, where [$] is obtained from [$] by translation to Fn(n, 1).
This replaces ()[$] by

(k)[$] (k)[$]l (k;);([$] [$]) + constant.

Thus the obstruction vanishes and we are done.

To end this section, we consider divisors of k in A(G).
Let denote the set of conjugacy classes of subgroups of G, and consider

the ring homomorphism

O: A(G) ---> xne* Z
obtained by sending a G-set s to that tuple whose Hth coordinate is Isnl.
That 0 is, in fact a monomorphism is shown in [7]. The following is more
or less well known.

LEMMA 1.6. (i) Coker 0 is finite.
(ii) If y t4+Z, then there is a monic polynomial p over A(G) with

p(y) O.
(iii) If a A(G) and there exists b n,Z with ab k for some

n, then. there exists c A(G) with ac k for some m. (Here, k is any
positive integer.
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Proof. Part (i) is well known and may easily be checked using the
finiteness of G. Part (ii) now follows immediately from (i). For (iii), write

b’= Xo + xb + + Xr_br-1

with each x A(G). Then brd A(G), so that if c A(G) is given by
c brar-, then ac brar krn.

COROLLARY 1.7. If K A(G) with each coordinate of O(K) a power of
k, then K divides some power of k in A(G).

2. Torsion in j(*)

The strong hypothesis of Theorem 0.2, namely that corresponding fibers
of the two fibrations be stably equivariantly equivalent, may be shown to
hold in many situations. This amounts fo saying that the differences between
corresponding fibers, measured in Jx(*) for appropriate x, are zero. This
will not be true in general for our application to the Adams Conjecture,
but it will suffice to show that these differences have the correct torsion
in Jx(*). The question of torsion in J(*) for certain groups G has been
studied by tomDieck in [7]. This depends heavily on the particular repre-
sentations involved. In our application however, we shall be given an
equivariant map between corresponding fibers. This will allow us to detect
torsion geometrically for general G.

Let J(X) denote, as usual, the image of J: K(X) -- Sph(X), so that
J(*) RO(G)/--., the ring of virtual representations modulo stable G-
homotopy equivalence.

PROPOSITION 2.1. Let V W represent an element y Jo(*), and
assume that we are given a G-map f:Sv Sw such that

__1 ifV V,
degfn +_ k, prime to IGI, if v v,

(Thus we are assuming dim Vn dim Wn for each H < G.) Let s denote
the order of IklmodlGI. Then sv o in J(*).

Proof. Let K be a maximal subgroup of G such that VI( V. Then K
is normal in G, and K contains every subgroup H of G which fixes V. Re-
gard V as a G/K-module, and choose a new G/K-module R such that R
contains an orbit of type G/K. Then consider the map sf @ 1: Sv(R)g --S‘w(R)R, which we assume trivial outside a little neighbourhood of the origin.
We may choose free G/K orbits in sV @ R, away from any proper fixed-
point set and the little neighbourhood of the origin just mentioned, and use
these to alter the degree of sf @ by arbitrary multiples of IGI by using
the Pontryagin-Thom construction, the point being that we are using free
G/K orbits and that any G/K-equivariant map we construct is automatically
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G-equivariant. By the definition of s, we may alter this degree to
_

1. This
does not affect the degree on any fixed-point subset, which is also

___
1 by

the choice of K. Thus the resulting map is a G-equivalence, as required.

COrOllAry 2.2. Suppose that we are given a fibrewise G-map
f: q of based spherical G-fibrations over a G-space X such that
the restriction fx off to the fiber above x X satisfies

)14 {+-1 if Vn # V,deg(fx +_ k, prime to IGI, if W’ V,

for V q-(x) and subgroups H ofGx. Then sf: sq ---> s has corresponding
fibers equivariantly homotopy equivalent.

Remark 2.3. When G is cyclic and ]G is prime, then the above s is the
smallest possible choice.

3. One and Two Dimensional Bundles

Here we prove Theorem 0.1 in the case of one and two dimensional G-
vector bundles over a finite G-connected G-CW complex. This is done by
generalizing the arguments of Adams in [1, 4].

In order to proceed, we consider the principle structure of G-vector
bundles. Let A be any topological group. Recall [8] that a (G, A) bundle
is an A-bundle on which G acts through A-bundle maps. (In the case of
G-vector bundles, A usually denotes an orthogonal or unitary group.)

If Ix" E --> X is a (G, A) bundle, we may define an associated principle
G-bundle P(/x): P(E) --> X by taking P(E) to be the space of A-bundle
inclusions F --> E of the fiber, and allowing G to act on P(E) via its action
on E. Note that the natural A-action on P(E) is compatible with that of G.

In this way, we obtain a natural decomposition

E P(E) AF
of any (G, A)-bundle E. In particular, when F R and A 0(n), we
obtain E P(E) 0)R. Observe that, in the terminology of [8], P(E)
is a principle (G, 0(n)) bundle.

If qJ: 0(n) --> 0(n’) is a homomorphism, and if

tx P(E) x 0)R --> P(E)/O(n

is a (G, 0(n)) bundle, then one has an induced bundle

(/x): P(E) 0(n)R’ --> e(E)/O(n),

where we let 0(n) act on R’ via k. If k is virtual, one obtains a virtual
bundle (tz) in the evident manner. In particular, if is the virtual rep-
resentation for the kth Adams operation, then (tx) coincides with the kth

Adams operation on
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Now let/x be a (G, 0(1)) vector bundle (of dimension one). If k is even,
then Ial must .be odd, whence/z must have trivial isotropy action on fibers.
It follows that/x is classified by a map

X P(E)/O(1) --> RPn,
where n dim X and G acts trivially on RPn. In this case, Theorem 0.1
follows formally from the nonequivariant case, and we may take s 1.
If k is odd, then qk(/z) /z, since then tO and 1 coincide as representations.
Consider now the two-dimensional case. Thus let/x be a (G, 0(2)) bundle

of dimension 2. If k is odd, then one has the kth power map f: / q(/z),
given on fibers R2 C via z -- zk. Thenf is G-equivariant. Let g" V--> W
denote the restriction offto a fiber V of/x with associated isotropy subgroup
H. Then, one has the following:

PROPOSITION 3.1. For each K C H,

(i) dim V/ dim W/;
+_.k ifVI V,

(ii) deg g/ +_ otherwise.

Proof. Suppose that V/ V. Then clearly W: W, and deg g 1.
If dim V 1, then dim W > 1. But it is clear that the whole of W
cannot be fixed by K, since k is prime to the order of G. Thus dim
W: 1, and since k is odd, degg 1. If dim V 0, then the result
is immediate.
We may now apply Corollaries 2.2 and 1.6 to conclude that

sf: st sq()

satisfies the hypothesis of Dold mod k, and hence that Jskm(1 qtk)(tz)
0, as required.
We now consider the case k even. Here, define a representation

/: 0(2) 0(2)

just as in 1, 4]. One then has a kta power mapf:/x -/ze(z). The restriction
off to a fiber V with isotropy H now satisfies the conclusion of Proposition
3.1. Indeed, one may repeat the proof verbatim, excluding the case
dim V: 1, since G must have odd order. We then conclude that
Jskm(1 /z)(/z) 0. By Adams’ calculation, q(/z) and/z(/z) differ by
h(/x) 1, where h is the determinant representation 0(2)+ 0(1). Since
is odd, h(/z) is classified by a map into RPn, and so, by the argument in
[1, 4.1], JGke(h(I) 1) 0 for some e, and the result now follows.

Remark 3.2. The assumption that the degree of sfis constant in the sense
of 0 follows from the G-connectivity of the base space, although it seems
clear that the connectivity requirement is not needed for this.
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4. Cyclic Group Actions and the Becker-Gottlieb Reduction

When G is a cyclic group, one may generalize the arguments in [5] to
reduce Theorem 0.1 to the two-dimensional case. Let /z: E ---> X be a
(G, 0(n)) vector bundle of dimension n, and write/z as the natural projection

P(E) 0()R ---> P(E)/O(n).

Since the actions of G and O(n) are compatible, we may form the G-
bundle

y: P(E) --> P(E)/N(T)

where N(T) is the normalizer of the (usual) maximal toms in O(n). We then
have a commutative diagram

P(E) x ()R - P(E) x 0()R

P(E)/N(T) 2->P(E)/O(n)= X
which is clearly a diagram of induced bundles. Now assume that X is a
finite G-CW complex, and let

t: X + --> P(E)/N(T) +

denote the equivariant transfer described in [15]. (Here, t is a map XWx+

Xwp(E)/N(T)+ for some G-module W.)

PROPOSITION 4.1. Let X be a G-connected finite G-CW complex with
G cyclic. Then the composite h t is a stable G-equivalence. (That is,
Xwh t is a G-equivalence for large enough W).

Proof. It suffices to show that (h t)n is a stable equivalence for each
subgroup H C G. By the theory of equivariant transfer [15], the map
(X t)n induces multiplication by x(O(n)/N(T))n in generalized cohomology.
Thus, if x(O(n)/N(T))n 1, then (X t)n is a stable equivalence.
By a result of Borel [7], the rational cohomology of O(n)/T is concentrated

in even dimensions. This, together with the fact that x(O(n)/N(T)) 1,
implies that

Q ifm O,Hm(O(n)/N(T); Q) 0 if rn > 0.

Thus, any map f: O(n)/N(T) ---> O(n)/N(T) has Lefshetz number 1.
Let h generate H. Then (O(n)/N(T))n (O(n)/N(T))h, the fixed set of the

element h. By averaging the metric, we may assume that H acts through
isometries. Now if f: M ---> M is an isometry, then the Lefschetz number
off is equal to the Euler characteristic of its fixed point set, A(f) x(MY).
We therefore have

x(O(n)/N(T)n) x(O(n)/N(T)h) A(h) 1,

as required.
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COROLLARY 4.2.
then

is injective.

Ifh* is any generalized equivariant cohomology theory,

h*" h*(B +) h*(P(E)/N(T) +)

In view of the work in [11] and [15], the contravariant functors Spha(-)
and KOa(-) are the zeroth terms of equivariant cohomology theories,
whence X*: Spha(X) Spha(Y) is a monomorphism, where Y P(E)/
N(T). Thus, to prove that a given element of KOa(X) is in the kernel of
Ja, it suffices to prove that its restriction to KOa(P(E)/N(T)) is in ker Ja.
Since pulling back a (G, 0(n)) bundle over h reduces the structure group
to N(T), we may therefore restrict attention to (G, N(T)) bundles when
proving Theorem 0.1, as in the non-equivariant case [5]. Since we are
stabilizing, we may also assume that the given bundle is 2n dimensional.

In order to reduce from the case of N(T) ’n f 0(2)-bundles to the
0(2) case, one may mimic the technique in [5, 7] directly. There, the authors
consider a subgroup H of N(T) and a homomorphism 4): H 0(2) such
that the following is true. If a: E X is the given N(T)-bundle and if :
is the G-bundle P(E) nR2 P(E)/H with H acting on R2 via 4, then
a i(), where is fiberwise induction associated with the inclusion H --N(T). (That is, a has the form P(E) r)i(R2) P(E)/N(T).) Here, as
always, the equivariance is formal in view of the compatibility of the 0(n)-
and G-actions on P(E).
Thus to prove Theorem 0.1, it suffices to show that it is true for G-

bundles of the form i(:), where : is as above. This would be an easy
consequence of Quillen’s argument in [12] and the Dold mod k Theorem,
provided we assume that oki ik in KO(X)[k-]. This is proved in the
next section.

5. Compatibility of I$k and Induction

If p" U B is a finite covering space in the equivariant sense, and if
q: E U is an orthogonal G-vector bundle, we may construct the "in-
duced" vector bundle p(q): pt(E) B by the usual (and natural) geometric
construction. (See, for example, [4].) This gives a well-defined homomorphism

p! K(U) ---> Ko(B).

This map may also be described in terms of the G-transfer and Thom
isomorphism as follows"

If V is a Spin(8n) representation of G, then, by [3], there exists a Thom
isomorphism

Tv" (B +) ---> ,(B + /k sV).

Here, reduced equivariant K-theory is interpreted as the based cohomology
theory associated with K, the notation K being reserved for "reduced"
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equivariant K-theory (that is, virtual G-bundles of (non-equivariant) virtual
dimension zero). The isomorphism Tv is obtained in [3] by multiplication
with a Thom class tv (sV). If z(p): B+ / Sv U+ / Sv is the
geometrically defined G-transfer (for large enough V), then p may be given
by the composite

Tv
+)P! K(U+)_. K(U+ / sV)_ K(B+ / sV)

r-
K(B

the equivalence of the two definitions of p being possible to see geometrically.
Now let (k, IGI) 1, as usual. We first establish:

PROPOSITION 5.1. Computing in (B+)[k-], we have Okp! p!k.

Proof. Using the operations sk and the isomorphisms Tv, one may
obtain a cannabalistic class pkv RO(G), given by

Pv T, Tv(1),
where 1 o(S) RO(G) is the multiplicative unit. From this, one
obtains directly

(1) pkvbk(T(x)) Tl(Ok(x)),

for x g(B+ / sV). (Intuitively, pkv is the "commutator" of Ok and Tv.)
Assume now that the classes pv become units when we invert k in RO(G).
Then we have, in RO(G)[k-],

p,!(lltk(x)) T, (z(p )*(Tv(lltk(x)))
TlO’(p)*(pv)-$(Tv(x))) (by (1)),

(Pv)-lT’ ltk(’r(P)*(Tv(x)))
(pv)-pvp(T,(z(p)*(Tv(x))) (by (1))),

,(p(x)).

Thus it remains to show:

LEMMA 5.2. The classes pv are units in RO(G)[k-].

Proof. The character function gives an inclusion of RO(G) in the ring
C(G, Z[:n]) of class functions G ZIOn], where n IGI and : is a primitive
nth root of unity. By [4], the inclusion is a ring map and thus passes to
a ring map when we localize. Thus it suffices to show that, for each g
G, ipkv(g) is a unit in Z[k-][n].
Now assume that our representation V is given by y" G Spin(8n).

Then we may assume that, for a given g G, y(g) lies in the standard
maximal torus T C Spin(8n), by conjugation.
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By [2, 5.9], we have the identity

ipkV(Zl, Z4n)
.k/2

I-I Z.r Z-k/2

.1/2
l<r4n /.,r Z- 1/2

for (zt, Z4n) Z.
Thus it suffices to show that each factor is invertible whenever Zr is an

nth root of unity, and (k, n) 1.
But

Zk/2- Z -k/2 Zk-1/2(k + l)

Z1/2 z-l/2 Z
Z 1

where the second factor is an nth root of unity in Z[k-IliOn because of the
following case by case consideration:

(i)

(ii)

Ifz 1, then

Zk- 1
1 + Z + + Z

k-I k;

If z is a primitive nth root of unity, then there is a j with kj 1
(mod n), whence

:)_l z- (zk)- 1 zk ,= Z’- + + + (zk) j-"

(iii) If Z is neither, then z is a primitive dth root of unity, where d IGI,
and the argument is the same as (ii).

This completes the proof.

Finally, we may relate p to induction over structure groups by observ-
ing that, if A < B < 0(n) are specified subgroups, and if q" E ---> X is a
(G, A) vector bundle, then the induced bundle

i(q): i(E) ---> P(E)/B

coincides with the construction p(q), for p: P(E)/A --> P(E)/B.

Remark 5.3. In the case of finite structural group and arbitrary finite
ambient group G, we may apply the arguments of Quillen in [12] to obtain
a proof of Theorem 0.1 in this case, using the Dold theorem mod k above.
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