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COMODULE AND COPRODUCT STRUCTURES FOR H,MU

BY

STANLEY O. KOCHMAN

1. Introduction

We observed in [4] that when H,X is torsion free, there is a natural
coaction

: H,X ---> H,H ( H,X
where H is the integral Eilenberg-MacLane spectrum. In this paper we
study in the case X MU. We begin in 2 by deriving the basic properties
of this coaction in terms of the canonical polynomial generators of H,MU.
In 3 we define a coproduct on H,MU which is a natural one for algebraic
reasons. In addition we observe in 4 that this coproduct makes H*MU
isomorphic to the Landweber-Novikov algebra. In 3, use the conjugation
of H,MU to derive the coaction and coproduct on the polynomial generators

mn [CPn]
n+l

of H,MU, and then in 4 we compute the Hopf algebras H*MU and
H*(MU; Q). In 5 we give explicit formulas for three sequences of alge-
braically independent elements of PH,MU, the H,H primitives of H,MU.
The methods are analogous to those applied to H,(MO:Z2) in [3]. In 6,
we compute PH,MU in terms of the elements of 5. We compare PH,MU
with the image of the Hurewicz homomorphism h in 7. We find that Image
h C PH,MU; i.e., the algebraic structures of H,MU contain less infor-
mation than is required to understand the ring ,n’,MU 12, of geometrical
origin. We show that none of the sequences of {}5 are in the image of the
Hurewicz homomorphism, and we compare one of them with the Haze-
winkel generators.

All the results of this paper except 7 have analogues for H,MSp. There
is also an analogous theory for H,(MO; Z2). In this case the analogous
coaction is the A,-coaction q and the analogous coproduct is given by

H,(MO; Z2) A, Q Z2[V In :/: 2 1]
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32 STANLEY O. KOCHMAN

with all the V primitive. Thus in this case Image h P,H,(MO; Z2).
Throughout this paper , A will always denote a coaction, coproduct

respectively, and PH,MU will always denote the primitive elements under
the H,H-comodule structure on H,MU.

2. The Coaction on H,MU
Recall that H,MU Z[bl, bn, ...] where

H,MU(1) H,CP Z{1, bo, bn, ...}

and bn H2n+2MU(1) determines an element of H2nMU. We will use the
following three nontrivial properties of : H,MU ---> H,H ( H,MU from
[4]. First, H,H is a "Hopf algebra" and is coassociative. (The coproduct
A of H,H is defined on a subalgebra of H,H such that (A (R) 1) tO is
defined.) Second, H,H has no p2 torsion for any prime p. Third, is an
algebra homomorphism because MU is a ring spectrum. Thus the coaction
on H,MU is determined by (bn), n > 1. We begin by determining the
coaction on the bn.

LEMMA 2.1. (a) (=0 Zbn is a subcomodule of H,MU. Thus write

Ilt(bn) On,k @ b with On, k n2n-2kH.
k=0

..)k+ where Xh means the(b) On,k (1 + 01,0 - 02,0 "" - Ot,o -" 2n-2k

component of the nonhomogeneous element Xk in degree h.
(c) A(0n,k) ’=k On,i ( Oi,g in H,H.

Proof. (a) This fact follows from the naturality of applied to the
canonical map SCP ---> MU.

(b) Let p be a prime. Let y: H HZ, be the canonical map to the
mod p Eilenberg-MacLane spectrum. Then the following diagram commutes"

H,CP ---> H,H ( H,CP

(*) ,I, y, $ y, (R) y,

H,(CP; Zp) --> A, @ H,(CP;
Note that we have identified H,(HZp; Zp) with A,, the dual of the mod
p Steenrod algebra. Write

H,(CP; Zp) Zp{1, bO, b’n, ...}

It is well known that

(k’(b,) O’n,k () b,
k=O
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where
xk+0, (1 + 01,o + 0,o + + 0;,o + "")2-

...+l have the same modThus O,k and (1 + 01,0 "- -" Ot,O -- I2n-2k

p reductions for all primes p. Since H2n-2kH is a finite group with
no pE-torsion for any prime p, it follows that On,k and (1 + 01,0 + +

)k+lOt,O "- 2n-Ek are equal.
(c) This formula follows from the coassociativity formula

because

while

(A () 1) O(bn) (1 () ) O(b.)

(A () 1) qJ(b.) A(O.,k) ( bk
k=0

(1 @)(bn) On,i@Oi,kQbk.
i=0 k=0

The argument used in [3] to construct primitive elements requires ana-
logues b.,k in H,MU of the O.,k in H,H.

LEMMA 2.2. Define dpn,k i H2n-2kMU by ., (1 +
+ These elements have the following properties:b / "’12n-Ek"

(a) l(n,k) On,i Q 6i, k,
i=k

(b) n,pk_l p6n,pk_l when n -lmod pk,

(c) when n tpk- 1.

b + +

Proof. (a)
q(d).,k) [1 + q(b) + + q(bt) + ...]k+l2n-2k

O,,.i( b
t=0 j=0 2n-2k

j+
z.t_j @ where A + 0,o + + Ot,O +

t=0j=0 2n-2k

AJ+l @
j=O 2n-2k

j j+0 2n- 2k

n-k. s+k+l k+l
__

@B whereB 1 + b + + b +

20n,k+s @ k+s,k"
s=O
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(b) and (c) These formulas follow from applying the multinomial ex-
pansion to the definition of b,k. Observe that the b,,p_ are uniquely
determined by (b) and (c) because H.MU is a free abelian group.

Before deriving the analogues of Lemma 2.2 (b), (c) for the On, pk_l we
investigate the 0,,o.

LEMMA 2.3. (a) /f n + 1 is not a power of a prime then 0,,,o 0.
(b) If p is prime then Op,_ 1,o 0 and pOp,_ 1,o 0.

Proof. Fix a prime p and use the notation of the proof of Lemma
2.1 (b). It follows from [6] that 0,,0 is zero for n :/: pt 1. Thus we see
from the diagram (*) in Lemma 2.1 that Y.(On,o) 0 if and only if n :
pt 1. Therefore p does not divide the order of On,o or p divides On,o when
n :/: pt 1. Since n2nH is a finite abelian group with no q2 torsion it
follows that 0n,0 0 if n qS 1 for all primes q and positive integers
s. In addition for q prime, 0 q,_ ,0must be nonzero and must have order q.
We can expand the expression for O,k in Lemma 2.1 (b) by the multinomial

expansion where we remove the terms which are zero by Lemma 2.3. We
thus obtain an analogue of Lemma 2.2 (b), (c).

LEMMA 2.4. (a) On, pk--1 pO,,p_ when n is not of the form pt 1 with
p prime and > k.

pk(b) Op,_ ,p_ p@_,_ + 0,-_ ,o where p is prime and t > k.

Observe that since H.H has torsion, the Otn,pk_l are not uniquely deter-
mined by the formulas of Lemma 2.4.

3. A Hopf Algebra Structure on H,MU
In Section 2 we defined analogues n,k in H,MU of the On,k in H,H. We

proved that

(n,k) E On,i Q fi,k"
i=k

To imitate the methods of [3] for constructing elements of PH.MU we
require a coproduct A on H.MU which is an analogue of in the sense
that A(bn,) is obtained from the formula for (b,,k) above by replacing
each On,i by +n,. Clearly there is at most one such coproduct A, and the
following theorem shows that such a A exists. We then study the conjugation
on H.MU in Theorem 3.2 and determine t0(mn) A(mn) in Theorem 3.4. In
Theorem 4.1 we will show that H.MU with the coproduct A is isomorphic
as a Hopf algebra to the dual S. of the Landweber-Novikov algebra
S. Thus some of the results Of this section such as Theorems 3.2(a) and
3.4(a) are what one expects from the known Hopf algebra structure of
S. [1, Theorem 11.3].
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For K (k, k) define

br bk’ bk*

Let 0.o 1.

and Or oklo 0k*
$,0"

THEOREM 3.1. Let H,MU have the Hopf algebra structure induced by
defining

A(bn) tn,k () bk.
k=0

Then A has the following properties"

(a) m(n,k) Ei=k Cn,i Q
(b) IfX H,MU and A(X) ,, al,j b ( bj for integers ala then

,(x) ,. o; (R) b.
l,J

Proof. (a) The proof of this fact is analogous to the proof of Lemma
2.2 (a).

(b) If A(Xi) 1 J Ol’(’i),j b () bj for 1, 2 then

A(XIX2) E .,(i, .,(2) bl (b&t’tll ,Jl ut12 ,J2 +12 +J2"
I ,12 ,J ,J2

If (b) is true for X and X2 then

#,(xx2)

II ,J1

E ..,,1) ,,(2) Oil QI,J1 Utl2 ,J2 +12 +J2
I ,12 ,J1 ,J2

Thus (b) is true for XIX2 Therefore it suffices to prove that (b) is true for
X bn. This follows from the definition of A and Lemma 2.1.

Since H,MU is now a Hopf algebra we study its conjugation X. Recall
from [1, p. 64] that H,MU Z[m, mn, ...] where f(t)

2 n+l+ ml + + mn + is the inverse power series of g(t)
+ bt2 + + btn+l + "".

THEOREM 3.2. The conjugation X ofH,MU has the following properties:

(a)
(b)

X(bn) m.;
X(dP,,k) tZ,,k where IX,,k (1 + m + + m, + "")k+2n -2k"

Proof. Note that b. .,0 and m. /Z.,o. We prove that X(4J.,k)
/Xn, by induction on deg hn, 2n 2k: Now X(bl) -b ml. Assume
that the theorem is true in degrees less than 2s. If n k s, and for
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fixed 2n 2k we use induction on k, then

X(4),o) x(b)

bs

s-I, X(4s,i)bi from A(bs)
i=1

/.s,b by induction

m

The last step follows from the observation that the coefficient of ts/l in
g(f(t)) t is

bj(1 + m + + m + "..)J+2s-zj ms + ] /xs,jbj + bs
j=o j=

which must be zero.
If k > 0 then

k/(.,k) [(1 + b + + b + "":,-:k]

k+(1 + x(b) + + x(b) + "":.:k

,k+ by induction(1 + m + + m2.-2k

ftn,k.

COROLLARY 3.3.
s-1

(a) ms b , txs,jbj
j=l

(b) b ms 6s,jmj.
j=l

Proof. The formula in (a) was derived in the proof of Theorem 3.2.
Now (b) follows from (a) by Cramer’s rule as in [3, Lemma 2.2].

THEOREM 3.4 (a) A(mn) ]=0 mk ( [.Ln,k.
(b) There are nonzero elements a,

_
H(,_ Hfor p prime, > O, such

that
ptpOtp 0 and m ) () m -t- Z Olp ( ms

=pt(s + 1)-

Proof. (a) By Theorem 3.2 and [7; Prop. 8.6],

A(m,,) Ax(b,)

(X () X) T A(bn)

--(X(X)( k=o bk ( fn,k)
m ( t-n,"

k=0



COMODULE AND COPRODUCT STRUCTURES FOR H,MU 37

(b)

Let

By Corollary 3.3 (a),

A(mn)
k=O

k_, )j=l

where Vt,o Ot,o . bt, iOi,o

By Lemma 2.3, v,o is zero unless t p for some prime p and
p9_, 0. By Theorem 3.1 (b),

If s pt 1 for some prime p then G,0 0 by Lemma 2.3 (a). In addition
pt pt

lIk, p lop’- 1,0 (1 + Vl,0 + + Vr,O + "")2k-2pt+2Opt- 1,0

which is zero unless k p" 1 with u > t. Thus, in the above formula
for ql(mn) the summands with k pt 1 for some prime p are zero. Hence

(_Ilt(mn) pt_l<n

pt l<n (--
’-’ )j=l

t--1 ) ptOpt-- l,O Z PJ oOpj- m(n-Ptl)pt-j_ 1, 1,0 + 1)/p
j=l

where m is zero when k is not an integer. Thus define
t-1

Olp, Opt-- l,O Z PJ oOpj-)pt-j_ 1, 1,0
j=l

Observe that , is nonzero because a, reduces modulo p and decom-
posables to -:, when p is odd and to : when p 2.

4. The Hopf Algebras H*MU and H*(MU;Q)

We begin in Theorem 4.1 by showing that H*MU is isomorphic as a
Hopf algebra to the Landweber-Novikov algebra. We then give a novel
explicit computation of the Landweber-Novikov.algebra H*MU in Theorem
4.2. The usual description of H*MU in terms of Landweber-Novikov op-
erations is analogous to describing the Steenrod algebra in terms of the
Milnor basis. (See [1; Part I, 6].) The description of H*MU in Theorem
4.2 is analogous to describing the Steenrod algebra in terms of admissable
monomials and Adem relations. As a corollary of our computation, we
determine H*(MU;Q) in Corollary 4.3.

Recall from [1] that MU,MU MU,[BI B,, ...] with coproduct
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induced by

k+A(B) (1 + BI + + Bt + ""12n-2k @ Bk.
k=0

Bn MUznMU is determined by B, (wn+l)* Mu2n+2cp where
MU*CP MU*[[w]]. The Landweber-Novikov algebra S is the Hopf
algebra which is generated as an abelian group by all dual basis elements
of monomials in the B.. The canonical map

f: MU--, H
induces

f,: MU,MU --, H,MU
with f, [MU, the augmentation and f,(Bn) b.. The map f,: MU*MU- H*MU restricts to a coalgebra isomorphism on S.

THEOREM 4.1. (a) f," MU,MU H,MU and f," MU*MU H*MU
are maps of Hopf algebras.

(b) f, S" S H*MU is an isomorphism of Hopf algebras.

Proof. Observe that (f, ()f,)o A(Bn)

k+(f, ()f,) (1 + O -[-"’" "+" O -[- ""12n-2k@ Ok

,k+(1 + b + + b + ’"n-@ b

kO

f,(.

Since A and f, are algebra homomorphisms it follows that (f, (R) f,)
A A f, which proves (a). Now (b) follows from the remarks preceding
the theorem.

Warning. Do not be misled by the following commutative diagram"
1AA1MUAMU "-> MUASAMU , MUAMUAMU

SfA1 SfA1A1 SfA1A1
IAA1HAMU ---> HASAMU HAMUAMU

The top row induces the coproduct on MU,MU while the bottom row
induces a coproduct A’ on H,MU. However, f," MU,MU ---> [H,MU, A’]
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is not a map of Hopf algebras because the following diagram does not
commute:

MU,(MU/MU) MU,MU @MU, MU,MU

H,(MU/MU) H,MU @z H,MU.

In fact A’ is the trivial coproduct A’(Y) 1 @ Y for all Y H,MU.
Since H,MU is commutative and highly noncocommutative it follows

that H*MU is cocommutative and highly noncommutative. We take ad-
vantage of the noncommutativity in the following description of H*MU.
We use the notation

ad(x)(y) [x, y] xy 1)degxdegYyx
and

adn(x)(y) [x, adn-(x)(y)] for n > 2.

THEOREM 4.2. Let a b{ H2MU and let fl b H4MU. Define
n HEnMU by 1 Ol, 2 and

n adn- 2(a)(fl) forn>3.(n 2)!

Then the Hopf algebra structure of H*MU is determined by the following
results.

n-2

(a) n-" E(-1)k+n

k=0 k!(n k 2)!
olk[:oln-k-2 for n > 2.

(b) PH*MU @
n=l

(c)

(d)

) ) n rn )) + for m, n > O

H*MU is a free abelian group with basis

(1e! e! ’ ; O < n < < n, and O < efor all

Proof. Observe that we can use induction on n to prove that a is
divisible by n!. We have

(an, b) (a @ on-l, A(b)) n(c, bl}(Oln-l, bn- 1}

which by the induction hypothesis is divisible by n (n 1)! n!. If
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bl brbr with deg br a > 0 and deg br n a > 0 then

(c", b,) {A(t3tn), br () b,,,)

()(Otk, br)(Otn-k, bl")
k=0

(an)(oa, bI,)(Oln-a, b,,,)

which by the induction hypothesis is divisible by

(’)a!(n a)! n!.

Thus is defined in H2nMU by the formula in (a).
We prove that all the are primitive. Let n > 3. Then

A(n) Z (-- 1)k+n A(otkflOtn-k-2)
k=o kl(n k- 2)!

Z Z 2 (-1)k+"
1 n-k-2

k=o=o t=o k!(n- k- 2)

[, an-,-t- + an-,-t-
n-2 n-s-2

=Z Z -l)’+n

=o t=o st(n s- t- 2)

((_ 1)_ n-s-t-2
k-s

Ifs + t < n 2then

(_l)k_ n-s- t-2 (_l)h n-s- t-2

k= k S h=0 h

(1 1)n-s-t-2 O.

Thus the nonzero terms in m(n) have n s 2 and m(in)
.(R) + (R)n.
Next we use induction on n to prove that (n, bn) 1. Observe that

Pascal’s formula implies that

Thus,

(n, bn)

(n- 2)!n -(n- 3)!n-la + (n- 3)!Ctn-1.

n-2 -- n_ Ol + Ol Q )n-1, m(bn))
1
(-2 + n) 1.
n-2

This proves (b) because QH,MU = Zb,,. Observe that n b n*.
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To prove (c) observe that m m is primitive and hence must
be em,nm+n for some em,n Z. Moreover,

gm,n ()mSn nm, bm+n} (m n n m,
(n + 1)- (m + 1) n- m.

To prove (d) we show by induction on degree that

N’, ; e e, b b; + Xb where

Xt Z, b (b f’ *"" bm,)

and the sum is taken over all b withf + + < e + + et. Let

N en + + etnt.

We have

(’, ;, bN) e, (’, ;-’ @ ,,, a(bu))

e, (’, ;-, (1 + b, + + b, + ...),)

e" et e,_t(e,

el etch.

Letf + + 2andlet0< ml < < m.Then
( ;, b fs e e, fs-1b ms) (a(n nt), b bms bms

e(e)(et)(,_ ,tt--e b bf’-l)(’ "’t bm)
i= i=0 1 t ms

e e, [(e- l)"" (e,- ,)X, ,1["", ,1
i=l i=0 Nl Nt

i= i=0

whereby, ,,/z ,Z

If/x, , : 0 then e + + et > 1. Hence by the induction hypothesis
if

then
brm’ br,, b, ben; and h ,/x , 0

Thus

e + + et > e el + + et- et > fl + + fs- 1.

e + + et> fl + k-fs.
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If

then

m, , 0 for (el, e,) :# (0, 1) and/Zo o,1 0 0,1 l.

Since we defined the by the formula in (a), we must prove that

1.= adn- 2(a)(fl) for n > 3.
(n- 2)!

We use induction on n. We have 3 -[3a + a[3 ad(a)(fl). Inductively,

.=1 [n 2[, ._] cz
n 2 (n 3)!

ad"- 3(c0()]
(n 2)!

ad"-Z(a)(fl).

COROLLARY 4.3. Let Yl ol, 72 [ and l adn-2(cz)(fl) (n 2)!
for n > 3. Then H*(MU;Q) has the following Hopf algebra structure.

(a) H*(MU;Q) is a primitively generated Hopf algebra which is gen-
erated as an algebra by a and ft.

(b) PH*(MU;Q) has {Yn In > 1} as a Q-basis.
(c) For m, n > 1,

n m
mitn- ")ln’)lm (m- 1)(n- 1)(m- 1, n- 1)

(d) *(MU;Q) has a Q-basis {yn, ln 0 < nl < < ns}.

5. Polynomial Subalgebras of PH,MU
We can not apply [3, Theorem 2.1] to H.MU using the bn or the mn

because all the Op,_ 1,0 and Otp,t are nonzero, However pOp,_ 1,0 pap,, O.
We will therefore modify the argument of [3, Theorem 2.1] as follows.
Instead of converting

{bn n > 1} and {mn In > 1}

into primitive elements we will convert

{bn In p’ 1} U {pbp,-,} and {mn In p’ 1} LI {pmp,-l}

into primitive elements. We will thus obtain two polynomial subalgebras
of PH,MU.

THEOREM 5.1. Choose integers h(e, p)for all positive integers e and
primes p with p < e such that:
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(i) If q is prime, q p and q < e then q divides h(e, p).
(ii) h(e,p) 1 modp.

The following recursive formula defines Vn[e] H2nMU for e > n + 1"
n-1

Vn[e] bn Z 6n,k Vk[e] + X(e, p)b Vpk_l[e].
k =pk 1)-

Define

pVn[n + 1]
V,

V,[n + 11
Then Z[V1, Vn, ...] C PH,MU.

ifn pt 1, p prime

otherwise.

Proof. We can choose the h(e, p) as follows. Let m be the product of
all the primes q with q < e and q p. Then (p, m) 1 so we can find
integers s, t with sm + tp 1. Choose h(e, p) to be sm.

Since q is an algebra homomorphism, PH,MU is a subalgebra of H,MU.
Thus it suffices to show that the Vn are primitive. By Lemma 2.3, it suffices
to show that

q(V,[e]) On,0 Q 1 + 1 ( Vn[e]

by induction onn. Ifn pk(s + 1) then

pkq(h(e, p)b V,_ ,[e])

because

h(e, p) 0,, ) b, (1 @ Vp,,_ lie] + Opt_ ,o ( 1)
i=0

(because ph(e, p)O, 0 for 0 < a </3 < s)

X(e,p)(i=00n’pk(i+l)-I ( b’k) (1 () Vp_,[e]+ Opk-,,o ( 1)

"i + pk0, [(1 + 01,0 + .J2s-2i] (1 + 01,0 + pr(2s 2i)

Opk(s + 1)- l,pk(i + 1) On,pk(i + 1)-

Thus,

q(X(e, p)bP Vp_ l[el)

(e, p)On,pk(i+ 1)@ br Vp_ l[e] + On,pk(i+ 1)Opk--1,0 @ +(,+ ,)pk_ 1,pk_l
i=0 i=0
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Now,
n-1

(Vn[e]) On,k ( bk k Z On,i Q 6i,k Vk[e]
k=0 i=k

E
O<kn i= k
k=p

+ X(e, p)O,,,,o+)( b V,_, [e]
=pk 1)- =0

+ E On, pk(i+ 1)Opk- l,O Q )(i+ 1)pk- l,pk-
=pk(s + 1) 0

1 ( Vn[e] + On,o ) 1

q- On,k ( bk- Vk[e]- k,hVh[e]
k=l h=l

+ X(e, p)bP Vp_, [el)
k=pr(u + 1)-

because 0n,0o,-1,0 @ 4,k with k p is zero by Lemmas 2.2 (c) and
2.3 (b) unless =- -1 mod p’. Thus q(V,,[e]) 1 @ V[e] + 0n,O @ 1, as
asserted.
We now perform the analogous construction with the mn replacing the

THEOREM 5.2. There are elements u.[e] HE.MU for n > 1 which are
defined by the following recursive formula:

Define

Detne

where

u,,[e] mn h(e, p)mp,_, u[e]’’.
=pt(s + 1)-

pUn[n + 1]
Un [Un[n + 1]

ifn pt 1, p prime

otherwise.

pt,,[e] m,, + k(e, p)p,tm
=pt(s + 1)

Define

p,t bp,_ + lp,_ l,kbk
k<p l,kp

,k+and vs,, (1 + mp-l + mp2-1 + + mpr-I + ""/2s-2k.

Un
ifn pt 1, p prime

otherwise.
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Then
(a)
(b)
(c)

u,,[e] =-- ,[f] mod p for all primes p < min(e, f)"
Z[u, u,,, ...] C PH,MU;
Z[ul, u,, ...] C PH,MU.

Proof. By induction on n > 1, we show that q(u,[e]) ql(Un[e])
1 ( Un[e] is p-torsion when n pt 1 and $(Un[e]) 1 ) u,[e] otherwise.
We have u[e] m, so q(u[e]) is 2-torsion. Assume this assertion is true
in degrees less than 2n. If n # p 1 then

pt pi ptq(u,te]) E ap,t ( ms Z Z ap,, ( mp,-,_,uste]
=pt(s + 1)- =pt(s + 1)-

(because s + 1 cannot be a power of p)

1 () u.[e] + Olp,
=pt(s + 1)

( ms us[el . mpj_ ,uk[e]pj
=p(k+ 1)-

(because the Olp. are p-torsion)

1 ( u,[e].

When n p 1 then q(u,[e]) contains the above terms and in addition
contains

where

j pr-J_2

j= i=0 h=0
Otp,iflpr-J-1,h[e]p’ ( mp-,- [e]p’

p

q(Ups_, [e]) 1 () ups_, [e] + tips_,,a [e] () za[e],
h=0

/3,,_ .h [e] H2p,-h-1) H, "rh[e] H2hMU and p/3,,_ .h [e] 0.

These additional terms are clearly p-torsion. Hence q(Upr_ [e]) is p-torsion.
Thus all the u, are primitive which proves (b). To prove (a) we consider
the following set of simultaneous linear equations in H,(MU; Zp) when
n pt(s + 1) 1 and p does not divide s + 1"

k
pt-k + mpJ_lUpk-J(s+l)_ [e]pJ+t-k 0 k t.mpk(s + 1)-- Upk(s+ 1)-- [e]p’-k Pt-k

j=l

Consider these equations as t + 1 linear equations in the + 1 unknowns

up+ )_ [e]’-, 0 k t.

The coefficient matrix (ai) is lower triangular with ones on the diagonal
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pt--iand aj mp,-J-1. Give H,(MU; Z,) the coproduct A’ of [3, 3]. Recall
that there are

n nx(p.-1)(MU; Z,)
which have A’-coproduct corresponding to the coproduct of (p odd) or
:2 (p 2) in the dual of the Steenrod algebra. In addition x(mp-l) n
using the A’-coproduct. Then

A’(aij) A’X(i_j)p’-’

(X ( X) T A’(i_j)pt-i
i-j )pt-i(X ( X) T ,--r ( ,

i-j
pt-i pr+t-iE mpr-I @ mpi-j-r-1

r=O

i-j

Z ai, i-r ( ai-r,j
r=0

J

E ai, h ( ah,j
h=i

where h r. Thus [3, Lemma 2.2] applies to this system of linear
equations to give

Taking t k,

k
pt-k pt-k oj+t-k

mp{ + )_ + {j mp-,+ )_ .
j=l

Upt(s+l)+pt_l "--mpt(s+l)+pt_ + j rrlp-i(s+l)-l.
j=l

By [3, Theorem 2.1],

j bpJ_ + Z Vpj_ l,k bk where
k<pJ- 1,k=p

tk+l)g,k (1 + mp-i + + mp.-i + ""12g-Ek.

Thus p,t reduces to t mod p which proves (a).

To prove (c) observe that

.[e] u.[e] pl PN(e)Wn,e
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where

{PIP prime, p

The element of lowest degree whose 0-coproduct has a p-torsion summand
is b_. Thus, if e > n + 1 then p pN)W,, is primitive and hence
is primitive by (b).

6. The Primitive Elements of H,MU
In Section 5 we determined various polynomial subalgebras of PH,MU.

However, PH,MU is larger than a polynomial algebra. The underlying
reason is that H,H has no p2-torsion. For example, (Vp_ [p]) is p-torsion,
so V_I pV,_[p] is primitive. However (Vp_[p]2) is p-torsion, not p2=
torsion, so

pv _,[pl
1
p

is primitive.
The following theorems require elements V HMU. These elements

can be chosen in any one of the following ways:

(1)
(2)
(3)
(4)

V’n Vn[e] from Theorem 5.1;
V’n Un[e] from Theorem 5.2;
V/, [e] from TheQrem 5.2;
Vn h(yn) where zr.MU Z[yl, y, ...].

THEOREM 6.1. Let V’ HMUfor n > 1. Define
pV’ ifn + 1 is a power ofa prime p

V V’ otherwise.

Assume that Vn PH,MU and V’ =- bn modulo decomposables for all n.
l,at

r" H.MU --* H.(MU;

be the mod p reduction. Then under the A.-coaction,

PH,(MU; Zp) Zpbr(V’.) ln pt 1].

Proof. The following commutative diagram shows that r(PH,MU) C

PH,(MU; Zp).

zr,(HAMU) ---> zr,(HASAMU) ---> zr,(HAHAMU)

7r,(HZpAMU) --> zr,(HZpASAMU) --> r,(HZpAHZpAMU).
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If n + 1 # qS, q prime, then V’n PH,MU while (V,_ 1) is q-torsion.
Thus,

Z,[zr(V) n p’ 11 c ,r(PH,MU) C PH,(MU; Zp).

By [5], PH,(MU; Zp) is a polynomial algebra with one generator in each
degree rn with rn pt 1. Since Vn’ bn modulo decomposables, the
,r(V;,) are algebraically independent. Thus

Zp[zr(V’) n pt 11 PH,(MU; Zp).

THEOREM 6.2.
define

Let V’n and Vn be as in Theorem 6.1. For I (el, et)

1,7 el etVI ve V’ and V’ ,1 V

Let r(I, p) 1 eps_l, and let P(I) be the set of primes p with
or(I, p) > O. Define

pP(1) pP(I)

Then:
(a)
(b)

The set of all dl is a basis for the free abelian group PH,MU;
The Vx generate PH,MU as an .algebra with the relations

pP(1)cP(J)

Proof. Clearly all the f’x are in PH,MU. Any Y H,MU can be written
as a polynomial in the V,: Y aV with at Z. If p P(I) and p c
then

7r(Y) q PH,(MU; Z,)

by Theorem 6.1. Thus if Y PH,MU then each cz is divisible by
IIpm) p with quotient . Hence Y X V,. This completes the proof
of (a). Now (b) follows easily.
Observe that when we localize at a prime p, i(_H,(MU; Zp)and i(H,BP)

are contained in direct sums of copies of H,H ( Zp). However,
H,H ( Zp)is a Zp-vector space. We thus deduce the following two results.

COROLLARY 6.3. Let V’n and Vn be as in Theorem 6.1. Then

PH,(MU; Zp))

is the free abelian group with basis the set of all monomials:

(a) Vel V;e, where ep,_ O for all s > 1, and
(b) pVet V[e, where ep,_ 0 for some s > 1.
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COROLLARY 6.4. PH,BP pH,BP.

7. The Image of the Hurewicz Homomorphism

Write r.(MU) Z[yl, Yn, ...]. Then the image of the Hurewicz
homomorphism h is

Z[h(yl), h(y,), ...] C PH,MU.

From the description ofPH,MU in Section 6 we see that PH,MU is strictly
larger than Image h. In particular we have the following theorem.

THEOREM 7.1. (a)

Image h C PH,MU and rank Image h rank PH,MU.

(b) In the notation of Section 6,

PH,MU/Image h @ ZN(I)VI where N(I) I] p,(l,p)-l.
pP(1)

Proof. Image h c PH,MU follows from the definition of h and the
naturality of t/,. Consider Theorem 6.2 with V h(y,,). Then V
h(yl)’ h(yt)e‘ is a basis element for Image h. If we divide V by N(I)
then we obtain the corresponding basis element of PH,MU. This is a
restatement of (b).
We show next that none of the families of primitive elements of Section

5 give a set of polynomial generators for Image h.

Example 7.2. Consider the V of Theorem 5.1"

V[e] b and V1 2blImageh,

VE[e] bE-- 2b2 and V2 3b2-6b2Imageh,

Va[e] b3 5blb2 / [5 / )(e, 2)]b with ,(e, 2)odd

and

V 2b3- 10bib2 + [10 + 2X(e, 2)]b].

By [1, p. 63], V3 2VIV2 / h(a3) h(aE2) [-12 / 2h(e, 2)]b] which
is not in Image h because -12 / 2h(e, 2) is not divisible by 8. Thus
V3 q Image h.

Example 7.3. Consider the u, of Theorem 5.2"

u[e] m -bl and u -2brImageh,

uE[e] mE --bE + 2bl and u -3b2 / 6bElImageh,

u3[e] m3- h(e, 2)m] -b3 / 5blb2 + [-5 / h(e, 2)]b]
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and

u -2b3 + 10bb2 + [-10 + 2X(e, 2)]b with X(e, 2) odd.

As in Example 7.2, u; Image h.

Example 7.4. Consider the U of Theorem 5.2:

[e] ml and u uiImageh,

2[e] m2 and U2 u Image h,

3[e] m3 + h(e, 2):2,1m ma + X(e, 2)blm2 u3[e]

and u3 u; Image h.

Observe that the generators u, ofPH,MUand the Hazewinkel generators
Hn of Image h are defined recursively from similar formulas:

U’n v(n + 1)mn-
v(n + 1)X(n + 1,p)

tP
V(S + 1)pt mp’-lUs

where the summation is taken so that p’l(n + 1), pt 1, n + 1; p prime;
n + 1 pt(s + 1);

nn v(n + 1)mn

v(n + 1)/x(n + 1, d + 1)Z
d+lln+l" dl,n+l v(d + 1) m[(n+l)/(d+l)-l] H(dn+l)/(d+l)

(See [2] for the derivation of the second formula and for an explanation
of the notation.) The formulas for the Un and H, differ in two ways. First,
to define Hn we sum over all divisors d + of n + while to define u,
we only sum over those divisors with d a prime power. Second, if p, q
are primes (not necessarily distinct) then

v(ptq)h(ptqr, p)
tP

v(qr)p, mp,_ qr_

is not divisible by q2 while

v(ptq’)p,(ptq, q") pt

v(qr) mpt_ 1Hqr_
ptis divisible by q

If we project the u,_ to fin in H,BP then they satisfy a recursion formula
similar to that of the Hazewinkel generators Hn of Image h’

n-1

n pmp,,_ p- p’ -P’mpt_ Un-t
t=l

n-I

n pmp._ mp,_ Pnt_t (see [2].)
t=l
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These formulas differ in that p
m,_ g’_, is divisible by p’.

_pt ...pt
mp,_l Un-t is not divisible by p2 while
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