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Introduction

The absolute tame Galois group G(K) of a local p-adic number field K
is well known: it is generated by two elements or, subject to the relation
try’or- -q, where q is the number of elements of the residue field of K.
One is also familiar with the finite-dimensional complex representation the-
ory of such metabelian profinite groups: possibly the best general infor-
mation is that each irreducible representation/ turns up as the induced
representation of an abelian character of some maximal abelian normal
subgroup H of G G(K)/ker/). The aim of our paper is to bring the two
things together in an explicit way, and we succeed in doing this very nicely
when restricting ourselves to the case of irreducible representations of small
degree. To be precise, we only consider irreducible representations of a
degree n that divide q l; equivalently we may say that gn (which is a
primitive n-th root of unity) belongs to K and that n is relatively prime to
the residue characteristic of K. This second formulation somehow reminds
of the assumption made in the so-called Kummer theory. And indeed, in
a way similar to it, one can here establish a correspondence between certain
tame Galois extensions N/K on one side and the irreducible representations
of degree n of G(K) on the other side. These N/K show up as the fixed
fields of the kernels of our representations; their Galois groups are of an
"n-symplectic" type, which means, firstly, that the centers are cyclic, and
secondly, that the groups are non-abelian extensions herefrom by a group
of type Z/nZ Z/nZ; especially’they are nilpotent groups. In Section II.2
of our paper we describe all tame normal extensions N/K having a Galois
group G of this n-symplectic type. Now, if/ is a faithful irreducible rep-
resentation of G of degree n, then it is induced by an abelian character
of a maximal abelian normal subgroup H, and we are interested in the
intermediate fields within N/K that belong to H and to the kernel of
Obviously, even if/ is fixed, there are several possibilities for H and ).

But we can show that, up to K-isomorphism, the fixed field of ker is fully
determined by p and by the order of . We also derive a special choice
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of H and }, implying that G is metacyclic. All this is done in Chapter II.
In the first chapter we put together some auxiliary results.

I. Vocabulary and Auxiliary Results

1.1. Symplectic modules. Our first section is concerned with free R-mod-
ules V of a finite rank rn, where R Z/nZ and n is some integer greater
than or equal to 2. We call V a symplectic module if it is equipped with
abilinearform( ): V2--->R such that(v, v) 0foreveryv V.
A system {ul, u2, Uk} of elements of V is said to be symplectic if k

is even, if (u2i-1, u2i) 1 for 1 < < k/2, and if (ui, uj) 0 for all other
pairs. Obviously {u, u2, u} is then linearly independent. If k rn,
{u l, Urn} is a free set of generators for V over R and we then speak of
a symplectic basis. We should also like to recall here the following two
common definitions"

(1) A submodule U of V is isotropic if (u, u’) 0 for all u, u’ U.
(2) V is non-degenerate if to each 0 v V one finds a v’ V with

(v, v’) 0.

There is no problem in proving the following fact:

LEMMA I. 1.1.
over R Z/nZ.

Let V be a non-degenerate symplectic module of rank m

(a) For every u V there exists v V such that the order of (u, v)
in R coincides with the order of u in V.

(b) Every symplectic system {ul, uk} in V can be extended to a
symplectic basis; in particular, V has a symplectic basis and m is even.

(c) uI= Ivl holds for every maximal isotropic submodule U.

1.2. Sympletic-type groups.

LEMMA AND DEFINITION 1.2.1. Let G be a finite non-abelian group and
let m, n be positive integers such that

(a)
(b)

the center Z Z(G) is cyclic and
the quotient group V G/Z is isomorphic to (Z/nZ)m.

We then call G a symplectic-type group with invariants m and n.
The following hold for G:

(1) The commutator subgroup G’ is contained in Z and has the order
n. In particular, G is nilpotent.

(2) Every generator z of G’ gives rise to a non-degenerate symplectic
Z/nZ-structure on V via

(*) [x,y] z’y), x,yG;

here is the image of x under the canonical map G --> V.
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(3) n > 2, m is even, and V has a symplectic basis over Z/nZ with
respect to (*).

(4) IfA is a maximal abelian subgroup in G, then Z C A, A <3 G, and
al IZl nm/2.

Proof. The assumption that V G/Z is abelian implies that G’ C Z.
It follows that G’ is cyclic and that [ab, c] [a, c][b, c]. Hence 1
[an, b] [a, b]n, and so the order of G’ divides n. On the other hand,
choose an element x G with ord n. If is a prime divisor of n, and if
# n, then x/l . Z and therefore there exists a y G such that [x, y]n/l

Ix/l, y] 1. We may conclude that IG’I n. For a generator z of G’ now
look at (*)..The map ( ): V2 Z/nZ defined in this way is bilinear,
symplectic and non-degenerate. By Lemma I. 1.1, B has a symplectic basis
and rn is even. Every maximal abelian subgroup A must contain Z and
therefore also G’. It follows that A is normal and that A A/Z is a maximal
isotropic submodule of V, so apply Lemma I. 1.1 (c).

Remark. From the nilpotency of G one easily deduces that G is the
direct product of a cyclic group Z0 which is contained in Z and has order
prime to n, and a symplectic-type group Go having the same invariants
m, n as G and the additional property that each prime dividing IG01 also
divides n.

1.3. Induced faithful irreducible representations. In this section we are
mainly concerned with complex irreducible representations of finite mo-
nomial groups G. These are groups every irreducible representation of
which is induced from an abelian character of a subgroup. Examples are
the meta-abelian and nilpotent groups, which show up in the next section
(cf. Huppert [4, Chapter V, Section 18]). We collect some known facts
from representation theory and refer for the proofs to [8, Sections 2 and
3] (the assumption made there, namely that G is a p-group, can be replaced
by G being monomial without changing the corresponding arguments).

1.3.1 (A). If the irreducible representation p index is induced from
an abelian character X of a normal subgroup H of G, then

Ker p (Ker h).
xG

In particular, p is faithful if and only if the trivial group 1 is the only
subgroup of Ker h which is normal in G.

1.3.1 (B). Let G be a finite monomial group having a faithful irreducible
representation p.

(a) If A is a maximal normal abelian subgroup of G that contains G’,
then (G :A) dim p and p is induced from an abelian character of A.
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(b) All the faithful irreducible representations of G have the same
dimension.

1.3.1 (C). A necessary and sufficient condition for a finite nilpotent
group G to possess a faithful irreducible representation is that Z(G) is
cyclic.

Combining Lemma 1.2.1 and 1.3.1 we have:

COROLLARY 1.3.2. A symplectic-type group G with invariants m, n has
a faithful irreducible representation of dimension n.

For the purpose of later applications we also state the following two
lemmas.

LEMMA 1.3.3. Let T < A < G be finite groups satisfying:

(a) The subgroup A is maximal normal abelian and G/A is abelian of
order n.

(b) The subgroup T is normal in A and A/T is cyclic.
(c) The only normal subgroup of G which is contained in T is 1.

If h is an abelian character of A such that Ker h T, then p
indaX is a faithful irreducible representation of dimension n.

Proof. We apply Mackey’s criterium and show that if an element x
G satisfies h h, then x A.
Indeed, if T, then X(t) X(t), hence T and x N(T). In

particular, T is a normal subgroup of A1 (A, x). The factor group A1/T
is abelian. Namely A is Abelian and for every a A we have h(ax)
h(a), hence [a, x] T. It follows that A < T. But, as G/A is abelian, A
is normal in G and thus also A <1 G, so A 1. Using the maximality of
A, we deduce that A1 A and x A.

LEMMA 1.3.4. Let A <3 G be finite groups and suppose that A has an
abelian character h such that p indAh is a faithful irreducible represen-
tation of G.

(a)
(b)
(c)

The group A is maximal abelian.
The index (A" Ker h) is equal to the exponent of A.
If h is a generator ofA modulo Ker h, then A (h) Ker X.

Proof. (a) The group A is abelian, since A’ is a normal subgroup of G
which is contained in T Ker h, and hence A’ 1.

If A1 is an abelian subgroup that contains A and if x A, then -’. By Mackey’s criterion x A and therefore A A.
(b) Let e (A" T) and let h be a generator of H modulo T. Then exp(A)
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> ord h > e. On the other hand A is a normal subgroup of G which is
contained in T hence A 1.

II. Tame Field Extensions and Representation Theory

Let K be a finite extension of Qp. We consider a finite Galois extension
N of K and suppose that G (N/K) is a symplectic-type group with
invariants m, n, where n is prime to p. If M is the fixed field of Z(G) in
N, then fg(M/K) (Z/nZ) and m > 2 is even. In particular, M contains
a cyclic totally ramified extension L of K of degree n. It follows that a
primitive n-th root, n, of unity belongs to K and moreover, that M is the
maximal abelian extension of K of exponent n. Hence m 2. By Lemma
1.2.1, G’ is a cyclic group and every generator z of G’ defines a non-
degenerate symplectic structure on (M/K) by the formula

[x,y] z(S), x,y G.

We say that N/K is an n-symplectic type extension.
On the other hand the n-th norm residue symbol defines a non-degenerate

bilinear form on K/K. If 2, K, then every element of K/Kn
is perpendicular to itself with respect to this form (cf. Serre [9, p. 217])
and therefore gx/gn becomes a non-degenerate symplectic module in
the sense of Section 1.1. The local reciprocity isomorphism K/K
g(M/K) transfers the symplectic structure from K/Kxn to Cg(M/K). The
fact that the rank of (M/K) is 2 implies that it is possible to choose the
generator of G’ such that the two symplectic structures on (M/K) coincide.

II.1. Tamely ramified extension. Look at our finite extension K of Qp
and fix a prime element rr of K. Let N be a finite tamely ramified extension
of K. Denote by f and e the residue degree and the ramification index of
N/K, respectively; denote also s qf where q is the order of the
residue field K of K. Then U K(,) is the maximal unramified extension
of K in N and there exists a unit u of U such that N U(Tru)/e (cf. Lang
[6, p. 52]). As every one-unit of N is an e-th power, the unit u can be taken
as u ’, where 0 < < e. Therefore

N-- U(("ll"U) l/e)
e
U K()

f$
K

where the symbol means totally ramified and , means unramified.

LEMMA II.1.1. Continue with the above assumptions.

(a) The extension N/U is normal (hence cyclic) if and only if e qy 1.
(b) The extension N/K is normal if and only if e qf and

eli(q 1).
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In this case C(N/K) is generated by two elements tr, " with the defining
relations tr

y zi, z 1 and trztr
-1 rq.

Moreover, Resvtr is the Frobenius automorphism of U/K and (z)
(N/U).

(c) The extension M/K is abelian if and only if e l(q 1).
In this case the exponent of C(N/K) is given by

(1) exp (N/K) lcm e,
gcd(i, e)

(d) The extension N/K is cyclic if and only if e q
gcd(i, e,f) 1.

and

Proof. In order to see (b) and (c) we assume the extension N/U to be
normal and prove first that N/K normal is equivalent to e li(q 1). So
suppose that N/K is normal. Let a (T]’is) lie and let o- be any extension
of the Frobenius automorphism of U/K to N. Then U(a) U(ra). Hence
there exists an integer k which is prime to e, and an element y U such
that o (trol)ek (cf. Birch [1, p. 90]). Thus

(2) 7r/i- "ffkqk’)le.

Taking the U-values of both sides of (2), we find that k 1 mod e. Hence,
by modifying y by a power of r, we may take k and arrive at q-l

ye. Since is a generator of the cyclic group of roots of unity in K
having order prime to p, and since e s, we get e i(q 1). Reversing
the arguments, one obtains the other direction of the implication.
The generators tr and - of C(N/K) are given by

trs sq tr(71")l/e’- (q-l)/e(7"l’is)l/e,

7"s-- s, ’7"(7’/") l/e sS/e/e
(cf. Hasse [2, Chapter 16] or Koch [5, Section 5]) and they obey the
generating relations mentioned above. From them we also get the first part
of (c). Moreover ord Restr f. Hence f lord tr, which together with tr

y

,./.i implies

ord tr ord -gcd(ord tr, f) gcd(ord -, i)

Thus ord tr ef. gcd(e, i)-1, and, if N/K is abelian, then

exp (N/K) lcm(ord -, ord tr) lcm(e, ef. gcd(e, i)-1).

For (d), first suppose that e lq and that gcd(i, e, f) 1. By (c) N/K
is abelian.

Claim. There exist integers x, y, z such that xe + yf + zi and
gcd(z,f) 1.

Indeed, let d gcd(e, f). Then gcd(i, d) 1 and hence there exists a



20 MOSHE JARDEN AND JRGEN RITTER

z such that zi 1 mod d. The number z is relatively prime to d. Hence,
by replacing z if necessary by a number of the form z + kd, we can assume
that gcd(z, f) 1 (e.g., use Exercise 4 on p. 36 of LeVeque [7]). There
exists now an x such that xe 1 zi mod f, since gcd(e, f) 1 zi.
Hence there exists a y such that xe zi yf, and our claim is true.

It follows from the choice of z that

ord ResvtrZ’ry ord(Resvr) ord Resvtr f.
Thus fiord o’Zy and, as (o’zT"Y)f ’i

"zi+yf
"/’, we have ord o’Zy ef

[N:K].
Conversely, suppose that N/K is a cyclic extension, so there exist z, y

such that ord (rZzy ef. Then

ord z+r, ord(trz,ry)f e.

As e lq 1, gcd(zi + yf, e) 1, and consequently gcd(i, f, e) 1.

We conclude this section by adding the following elementary divisibility
properties.

LEMMA 11.1.2. Let a 1 be an integer and let be a prime such that
a 1 mod I.

(a) If tn then vl(a 1) vl(a 1).
Here, for a natural number n, we take vl(n) if Ill n but i+ n.
(b) Assuming a 1 mod 4 if 2, we have, for every n N,

ol(a l) ol(a 1) + ot(n)

(c) If a 1 mod r and every prime divisor of n divides r, then a =-
mod 4r.

Proof. If l m, then (a 1)/(a 1) am-1 -b am-2 + + 1 =-
m 0 mod I. It follows from (a) and an easy induction argument that it
suffices to only prove (b) for n 1, and here it is a consequence of
Newton’s binomial formula (cf. [7, p. 50]). Assertion (c) can be proved by
induction on the number of the (not necessarily distinct) prime divisors
of n.

II.2. The classification of symplectic-type extensions. In addition to the
earlier notation we now introduce the abbreviation Nn,f,e,j for the tame
extension Uy((’a’n)/e) of K; here 3 e, j and n > 2 are integers, e and n
both prime to p, s qY 1, and Uy. K(s). Thus e is its ramification
index and f its residue degree.

THEOREM A. A finite tamely ramified extension N of K is of an n-sym-
plectic type if and only if N Nn,f,e,y and the following conditions are
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satisfied:
(1) nlq- 1;
(2) n Y;
(3)

(4)
e
-q- 1
n

(5) gcd(n’q-e/nl)

Proof. Suppose first that N/K is an n-symplectic type Galois extension.
By what we have said at the beginning of this chapter, N contains the
maximal abelian extension M Un(zrn) of K of exponent n, where 71"

zr/". Also n 1 K, and thus n lq 1. Now n f(M/K) dividesf f(N/K)
and Uy is the maximal unramified extension of K in N. It follows from
Section II.1 that N Ur((Tr(,)/e), where s qf 1.
We observe now that K(rn) and Ur are linearly disjoint over K. Hence

[Ur(rn)" UZ] n, which means that e nr, where r [N" Uf(zr,)] di-
vides the order of the center Z Cg(N/M) of G 3(N/K).
The extension N/K(Trn) is abelian, since its Galois group has the center

Z as a subgroup with a cyclic factor (M/K(Tr,)). The ramification degree
of N/K(Tr,) is r, thus r q 1.
By Lemma 1.2.1, C(N/K(Trn)) is maximal abelian. Hence, if is a prime

divisor of n, then N/g(Trn/l) is a non-abelian extension with lr as its ram-
ification index. It follows that lr q 1, so gcd(n, (q 1)/r) 1.
From the fact that N/K is normal we deduce that el i(q 1). Therefore
njforsomejN.

Finally we observe that the ramification index and the residue degree of
the cyclic extension N/M are e/n and f/n, respectively. Writing N in the
form N M(s, (Trn)l/r), we deduce that gcd(j, e/n, f/n) 1.

Conversely, suppose that the positive integers n, f, e, j satisfy conditions
(1)-(6). We prove that N Nn,y,e,j is a Galois extension of K of an
n-symplectic type.

First note that if a prime divides n, then it also divides r e/n. Also,
q 1 mod r. Hence qn mod e, by Lemma II. 1.2, which implies that
e qY 1. In addition e n(q 1), thus N/K is a Galois extension. Its
Galois group G is non-abelian, since e q 1. Condition (6) implies that
N/M is a cyclic extension. We still have to prove that q3(N/M) Z(G)"
The group G has two generators with the defining relations

(7) 0"f Tjn, "e 1, O’TO"-1 Tq.

Claim. q3(N/M) (trn, zn}. Indeed, both cr and z belong to (N/M),
since Cg(M/K) is an abelian extension of exponent n. Also, .n generates



22 MOSHE JARDEN AND JIRGEN RITTER

(N/Uf(rr,)) and Resve(=.)cr" generates (Of(Tr’n)/M). Thus o"n and .n generate
Ca(N/M). Because of qn _= mod e and (4), we now get cr’no"-I znq=
r" and o-%o--" ’q" ’, and so both r and C, and therefore also
(N/M), are contained in Z(G).
Next we observe that both extensions N/K(rrn) and N/U, are abelian,

as r lq and e lq 1. The maximal intermediate fields of K(rrn)/K
and U,/K have the form K(Tr,z) and U,/, respectively, where is a prime
divisor of n. Condition (5) implies that lr q 1. Also e qn/l 1. Indeed,

q"/-
by(5),ifelq"/t 1, thenn .Ifl-#- 2orl 2andq-= mod4,

q-1

we get a contradiction to Lemma II. 1.2. Otherwise 2 and o2(q 1)
1. But in this case also o2(n) 1, hence n/2 is odd and we have again reached a
contradiction to Lemma II.1.2. It follows that N/K(ztn/) and N/Un/ are not
abelian extensions.
Combining the results of the last paragraph we have that Ud(N/K(rrn)) and

(N/Un) both are maximal abelian subgroups ofG. Therefore

Z(G) < (N/K(rr,,)) V C(N/U,,)= (N/M),

as desired.

H.3. Irreducible tame representations. Denote by Ktr the maximal tamely
ramified extension of K. Our intention is to study irreducible representations
p of Cg(Ktr/K) of a "small" dimension n, where by "small" we mean that
n q 1 or, equivalently, that n K. It is well known that Ker p is an
open subgroup of (Ktr/K). The fixed field N of Ker p is therefore a finite
normal tamely ramified extension of K, and p defines a faithful irreducible
representation of fg(N/K).

THEOREM B. Let N be a finite normal tamely ramified extension of K.
Assume that every prime divisor of e e(N/K) divides q 1. If G
C(N/K) has a faithful irreducible representation p of dimension n and
n lq (and 41q ifn is even), then N/K is an n-symplectic type
extension; in particular N/K is a nilpotent extension.

Proof. We again write N in the form N Uf((’w)l/e) and show that N
has the form Nn,y,e,j with n, f, e, j satisfying the conditions of Theorem A.
The subgroup 3(N/Uf) is normal and cyclic, and (Ur/K) is cyclic, so

G is meta-cyclic and therefore monomial. Also G’ < (N/Uy) and thus,
by 1.3.1 (b), O is induced from an abelian character of a maximal abelian
group A containing (N/Uf); also (G:A) n. In particular n lf and the
fixed field of A in N is Un. This implies that e qn but e qn/l
for every prime divisor of n. Thus for every prime divisor of n there
exists a prime l’ such that

Vr(e) > Ol,(qnil 1).
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However, if l’ :p l, then Ol,(e) < Ol,(q 1) Ol,(qn/l 1), by 11.1.2. Hence
l’ and

v(e) > vl(qn/l 1) + 1 > v(q 1) + vt(n).

On the other hand, again from II. 1.2 we get

v(e) < vl(qn- 1) v(q- 1) + v(n),

and so together, for every prime divisor of n, ol(e) ol(q 1) + vt(n).
In particular, n divides e; so let r e/n. If r but n, then q 1,
by assumption, and

v(r) v(e) < vl(q 1) v(q 1).

Therefore r lq 1 and gcd(n, (q 1)/r) 1. From N/K being normal
we get e i(q 1). Consequently n i, and we write j i/n. Now
zr,, (,r)/n -J(Tr)r/e belongs to N and M Un(r,) is contained in
N. The group G (N/K) is generated by two elements o-, with the
defining relations (7) of section II.2. As in the proof of Theorem A, one
shows that (N/M) is generated by o-n and rn, and that both of them belong
to Z(G). Thus (N/M) is a subgroup of Z(G), which is cyclic, as G admits
a faithful irreducible representation. It follows that N/M is a cyclic exten-
sion, which implies that gcd(j, r, f/n) 1. Thus, all the conditions of
Theorem A are satisfied.

It should be mentioned that in the theorem one cannot give up either of
the assumptions "n[q 1", "2In implies 4]q 1", or "every prime
divisor of e divides q 1".

II.4. Induced structures. Consider a fixed extension N Nn,f,e,j of K
of an n-symplectic type. In particular, the relations (1) to (6) of Theorem
A are satisfied. They also imply"

(7) e implies q 1;
(8) elqn- 1;
(9) e lqf 1;

(10) 11 n implies r, and vl(r) vl(q 1);
(11) e ln(q 1).

The group G (N/K) admits, by Corollary 1.3.2, a faithful irreducible
representation. In this section we consider intermediate fields K C_ L C_
F C_ N and call the pair (L, F) an induced structure for N/K of dimension
n if the subgroups T (N/F) and A (N/L) satisfy the conditions
of Lemma 1.3.3. In field theoretic terms this means"

(a) The extension L/K is abelian of order n; the extension NIL is
abelian; and if K C_ L0 C_ L, then N/Lo is not abelian.

(b) The extension F/L is cyclic.
(c) The Galois hull of F/K is N.
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By that lemma the group A has an abelian character h with Ker h T
such that the induced representation to G is faithful and irreducible of
dimension n.
Our aim is to give a description of all the induced structures (L, F) for

N/K. Meanwhile, we start with the following clear result.

LEMMA 11.4.1. Every extension of K of degree n is abelian and is con-
tained in N. There are tr(n) (the sum of the divisors of N) of them and
they are explicitly given as

Ld,k Ud(7"i’d,k) for d n and k O, n/d
)dinwhere 7rd, k (Trqa_ is a prime element of Ld, k.

LEMMA 11.4.2. The subgroups (N/Ld,k) ofG are maximal abelian, and
for each of them there exists a field F such that (Ld,k, F) is an induced
structure of dimension n for N/K.

Proof. The ramification index of N/Ld,k is

e(N/Ld,) e(N/K), e(Ld,k/K)- dr,

and qd _= mod dr, as q -= 1 mod r. Hence A (N/Ld,k) is an abelian
normal subgroup of G of index n.
We know that G admits a faithful irreducible representation of dimension

n. Also G’ < (N/M) < (N/Ld,k). Hence by 1.3.1 (B), A is a maximal
abelian subgroup, p is induced from an abelian character h of A. Denote
by F the fixed field of Ker h in N. Then (Ld,k, F) is an induced structure
of dimension n for N/K.

THEOREM C. Let (L, F) be an induced structure of dimension n for
N/K. Then N/F is an unramified extension and [N’F] divides n. Precisely,
if L Ld,k, then

[N’F] gcd(jd- kd" qY
qd 1’

dr, )
Proof. Let E Us N F be the maximal unramified extension of K

which is contained in F. Then F is linearly disjoint from U over E. The
extension U,/K is normal, N/U, is cyclic and U, C_ U,F C_ N. So U,F is
a normal extension of K. It follows that UF N and N/F is an unramified
extension.

In order to prove the degree formula we write N in the form

rcl/drxN Ld.k(s, (Trd,ksj with c =jd- __kd.qY-
n qd_ 1"

By (3) and Lemmas II.1.1 and 11.4.2, q3(N/Ld.k) is abelian and has the
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exponent

lcm dr,
gcd(c, dr)

Using the abbreviation b gcd(c, dr), Lemma 1.3.4, and the rules

lcm(x, y)

we now deduce that

xy
gcd (x, y)’ z" gcd(x, y) gcd(zx, zy),

[N’F] fr gcd(b, -)= gcd(c, dr,).
lcm(dr, -)

Finally, we prove that [N’F]In, namely that every prime satisfies the
inequality

< vt(n). We can therefore suppose
/\

This is clear if Vl(dr)< v,(n)or Vl[)
that

Vl(d) -+" vl(r) > vl(n) and Vl(f) > vl(n) + v/(d)

But then Vl(r) > vl(n/d) > 0 and vl(f/n) > Vl(d) > 0, and so, by (4) and
(6), Vl(q 1) > 0 and Vl(j) 0. Thus

Vl --" qd > Vl(d) vl(n) + vl(f/d) > vl(jd) and

Vl(C) vl(jd) < vl(n).

LEMMA 11.4.4. Let K C_ F, F’ C_ N be two intermediate fields such that
N/F and N/F’ are unramified extensions of the same degree m, where m

F’divides n. Suppose that 41q if n is even Then F i

Proof. Suppose first that [N:K] is divisible only by primes that divide n,
so that in particular the n, e and f all have the same prime factors.
Let E Us fq F. The FIE is a totally ramified extension and therefore

it is linearly disjoint from U,/E. Also UF is the maximal unramified ex-
tension of F in N. It follows that UsF N and [F:E] e and
[Us:E] [N:F] [N:F’]. Thus F’ is a totally ramified extension of E of
degree e as well.

Let b [E:K]. Then there exist x, x’ and a c such that

)l/e F’F E(71"qb_ and E(. (7]’-1) l/e)
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Of course F’ is isomorphic over E to E((TrgXq’b_l) l/e) and we can therefore
assume that 0. We decompose now qb in the form qb 1 dd’,
where d’ is relatively prime to e and d is divisible only by primes that
divide e. Then gq_ gdgd’ and gd’ is an e-th power, hence F
E((TrgXd) l/e) and F’ E((TrgXd’)l/e). Similarly we write q 1 tt’, where
t’ is relatively prime to e and get N U(rg)/e. Note that b lf implies
qO qz 1 and hence sit.

__N, US((’gf__ 1) l/e) Us((TFgn)l/e)

K(/#_,) q_ )l/e) E((TrgXd)l/e)

The relation UF N implies

Us((Tl.)l/e) Us((7Xd)l/e) Us((TrTt/d)l/e).
Consequently there exists a 3’ U such that gjn t/d’ye. This 7 satisfies
,yet 1, SO ,y g, as et is divisible only by primes which divide e. It
follows that jn =- xt/d + eu rood t. However, el t, by (9) and by the
definition of t. Hence

(a) xt/d jn mode.

Consider now a prime that divides either d or t. Then e and therefore
11 q 1. Thus

Vl(t) Vl(qf- 1) vl(q- 1) + Vl(f)

vt(d) vt(q’- 1) vl(q 1) + Vl(b)

(b)

(c)

and therefore

(d) Vl(t/d) Vl(f/b) vI[N:F] < vl(n) < vl(e)

(Note that we have used here the assumption "nlq 1 if 2 n".) In
particular t/d divides both n and e. It follows from (a) that there exists a
z such that

d zed
(e) x in.- + ---.

The number of integers x modulo d of the form (e) is tie. This is the number
of elements in the set

Y= Ya y-d=jn mod e

The elements g and g’ obviously belong to Y. Note that the relation
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e n(q 1) implies that if Y, then q Y. It follows that in order
to prove that

(f) Y--(xdqa a 0’ 1’2’’" t"-e 1}
it suffices to prove that all the elements on the right hand side of (f) are
distinct. This means that we have to show that

(g) xdqm-- xd
implies (t/e) m.

Indeed, let be a prime factor of tie. In particular n and therefore we
have, by (b), (10) and (3) that o(r) > 0 and that

(h) Vl(t/e) vl(q- 1) + vl(f)- vl(e)
vl(r) + Vl(f)- Vl(e)= vl(f/n).

Hence ol(f/n) > O. It follows that Ol(j) 0, by (6), and from this,

v(jn) < Vl(Ze)
So, by (e) and (d),

VI(X) ol(n) + Vl() ol(n) + Ol(b ll(f).

On the other hand, by (g), d lx(q 1). Hence

Ol(m) > Ol(d) Ul(X) ol(q 1) IJl(b) Ul(X

vl(f)- v(n)= Vl(t/e),

by (c) and (h).
Thus tie divides rn and (f) is proved. We have therefore shown that

there exists an integer a such that }’ is equal to }q and thus is conjugate
to x over K through the a-th power of the Frobenius automorphism of
ElK. It follows that F’ is isomorphic to F over K.

In the general case we can use the remark at the end of section 1.2 and
represent N as N NON1, where N/K is a cyclic extension of degree
prime to n, and No/K is an n-symplectic type extension such that all the
prime factors of [N0"K] divide n. In particular No and N1 are linearly
disjoint over K. The assumption [N’F]In implies that N C_ F. Also, N/F
is an unramified extension and for F0 No fq F we have gcd([N0"F0],
IF:F0]) 1. Thus No/Fo is an unramified extension and [N0"F0] IN’F].
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Similarly we obtain for F No F’ that F’ FN and that No/F is
an unramified extension whose degree is equal to [N:F’], hence also to
[No:Fo].
By the first part of the proof there exists a K-isomorphism o’F0

F. Any extension of o to an automorphism k of N/K leaves N invariant
and hence maps F onto F’.

Combining Theorem C and Lemma 11.4.4 we have:

THEOREM D. /f (L, F) and (L’, F’) are two induced structures of
dimension n for N/K such that [N:F] [N:F’], and assuming that
41q if n is even, then F -ic F’.

Also here, the extra assumption made in the theorem cannot be removed.
Having proved a uniqueness theorem for the induced structures of a

given co-degree, we proceed now to prove an existence theorem for them.

THEOREM E. Provided 4 q 1 ifn is even, there exists for every divisor
m of n an induced structure (L, F) of dimension n for L/K such that
[N:F] m.

Proof. Because of Theorem B, for every divisor d of n and for every
integer k > 0 there is an induced structure (Ld,k, F) of dimension n for
N/K. From Theorem C we have

[N’F] gcd(jd kd
qd
f ll dr )

It therefore suffices to find a pair (d, k) such that d n and such that the
right hand side of (22) is equal to m; this is merely a technical matter.

II.5. Splitting of the Galois group. We retain the notation and the as-
sumption of the previous sections and draw some consequences about the
structure of the group G and about its representations.

THEOREM F. Assume again that 41q if n is even. Then N SL,
where L is a cyclic totally ramified extension of degree n over K, N/L is
a cyclic extension, O3(L/K) operates faithfully on C(N/L) through conju-
gation and S N L K. In particular, G C(N/L) C(N/S) is a semi-
direct product.

Proof. Apply Theorem E with rn 1, k 0, and d IIl ’:), where
runs through all prime divisors of gcd(j, r, f). Because of (10), L Ld,k
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is a cyclic totally ramified extension of K of degree n, the extension N/L
is cyclic, and A (N/L) is a maximal abelian subgroup (by Lemma
II.4.2), which implies that (L/K) operates faithfully on (N/L) through
conjugation.
We have still to show that the group G splits over A. Indeed, G is a

niltpotent group (by Lemma 1.2.1), and therefore it decomposes into the
direct product of its/-Sylow subgroup. We can therefore assume, without
loss of generality that G is an/-group.

If # 2, then the splitting of G follows from Satz 5 of Gaschiitz [3]. If
2, then the splitting follows from [8, Hilfsatz 5.1] unless G is a gen-

eralized quaternion group. In order to complete the proof we have therefore
to show that the last case cannot happen.

Indeed, assume that G is a generalized quaternion group of order 2m+l.
Then it is generated by two elements x, y with the defining relations- y2 xyX

2m X
2m

X

(cf. Huppert [4, p. 91]). The center of G is generated by y2 and is of order
2 and G/Z(G) contains an element of order 2m-l, namely xZ(G). On the
other hand, G/Z(G) is a 2-elementary group, since G is of a 2-sym-
plectic type. Hence m 2 and IGI 8. Now we use the assumption
that 4 q 1 and conclude by (10) of section 11.4, that n 2 and 4 r,
hence 16 divides nrf IGI, a contradiction.

Finally we add, without a proof, the following information about the
irreducible representations of G.

THEOREM G. Assume that IGI is divisible only by primes that divide

(a) Every irreducible representation of G of dimension n is faithful.
(b) The group G has (e/n2) d(f) irreducible representations of di-

mension n, where d is the Euler function.
(c) If z is a generator of Z(G) and X is a character of an irreducible

representation la of G of dimension n, then X vanishes on G Z(G) and
X(z) n, where is a primitive n2ef-th root of unity.
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