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H. LARCHER

1. Introduction

The homogeneous modular group 1I’ SL(2, Z). If A 1F and

then A induces the linear fractional substitution z A(z), where

A(z) (az + b)/(cz + d), z x + iy,

where x and y are real numbers. The group of all substitutions is known
as the inhomogeneous modular group. A matrix A # __+I, where

and the substitution A(z) are called parabolic if for a rational number or
c, A(O . We call the fixed point of A(z) and of A. For a parabolic

matrix P with fixed point there exist B F and a rational integer n
0 such that

(1 1) and=B-l().P +B-1U"B whereU=
0

The modulus Inl of n is called the amplitude of P. If F is a subgroup of 1F
and P F then is also referred to as a fixed point or a cusp of F. The
cusp amplitude of in F is the smallest positive rational integer k such that

+--B-1U*B F.

Two cusps and are said to be eqivalent under F, for which we write
"r , if there is a A F such that r/ A(O. Equivalent cusps in F have

the same amplitudes. For F C F we denote by C(F) the subset of the set
of all positive rational integers containing all different cusp amplitudes of
F.
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For a positive rational integer m,

r(m) {A ,rlA -+I (mod m)}

is known as the (homogeneous) principal congruence subgroup of F of
level m. A congruence group F of level rn is a subgroup of 1F such that
F :3 F(m), but F 7 F(k) for k < m. As a congruence group F is of finite
index in F the number of equivalence classes of cusps in F is finite, and
hence C(F) is a finite set. All this is found in [2], which represents the
principal source of reference.

Notation. If not otherwise stated, all letters are rational integers, and
it is understood that fractions of rational integers are in their lowest terms.
We use g.c.d, and 1.c.m. as the customary abbreviations for greatest common
divisor and least common multiple, respectively. Furthermore,

(a, b) g.c.d.{a, b} and [a, b] l.c.m.{a, b}.

By alb we mean that a divides b and a > 0. We let

and P(a; b) stands for either of the two parabolic matrices with fixed point
a/b and of amplitude 1; i.e.,

( l+-ab a2 )-+" b2 ab

By amp(a, b, F) r we mean that the cusp a/b has amplitude r in F. For
dim,

r(m; m/d) {r(m, U),
and for F’ c F, [F:F’] is the index of F’ in F. The determinant and the
trace of a matrix A are denoted by det A and tr(A), respectively.

In [3] we obtained new results .for the cusp amplitudes of congruence
groups and with their aid we were able to determine C(F) for any congruence
group of level rn in the case that rn is square-free; i.e., rn has no square
factor greater than one. The scope of this paper is to extend those results
to any congruence group of level rn when rn has square factors greater than
one. Actually, the results of this paper comprise the square-free m’s as
special cases. The principal results obtained are summarized in the following
three theorems.

THEOREM A. Let dim, mid h2dnd with square-free nd, e lha,

x l(de, m/de2)
and R, where all letters are positive rational integers andR is a reduced
residue system mod X. Then the groups
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F.(m; m/d, , X) {A 1F A

+ k(rn/e,X)
--* k3(m/x)

k2d
+ k,(m/,x)/’

with the exceptions Ft(4; 2, 1, 2) and F1(8; 8, 2, 2), are congruence subgroups
of I" of level m such that

(i)
(ii)

d is the least cusp amplitude, and
d and m are the respective cusp amplitudes of and O.

THEOREM B. If (e, 2e+l) 2 and (m/d, 2’/ 1) = 2f where the rational
integers e and f are non-negative, then

C(F(m; m/d, e, X))

{d/9 > 1 I(e2, m/do)
t2, t) and rational integers and la ((e, X, 2) 1)2f-28/9 with odd la’},

save C(F(4; 4)) C(F(8; 8, 2, 2)) {1, 4} and C(F(4; 2, 1, 2)) {2).

THEOREM C. /f F is a congruence subgroup of 1F of level m then

(i) C(F) C(F,(m; m/d, e, X)) for suitable d, e, X and z, and
(ii) C(F) is closed under the operations g.c.d, and l.c.m.

We mention that Theorem A comprises congruence groups which we
believe to be new, although it also contains well known groups (e.g., what
usually is denoted by Fm Fl(m; m, 1, 1)). The importance of Theorem
A lies in the fact that, subject to our normalization as stated in part (ii),
there are no other congruence groups of level m which can be obtained
from F(m) by lowering the amplitudes of cusps. Thus, we are able to
determine the set of cusp amplitudes for any congruence group as follows
from Theorem B and part (i) of Theorem C. Part (ii) of Theorem C, rather
interesting in itself, will often prove to be useful in showing that a subgroup
of F is not a congruence group.
Next we give a summary of a few results with proofs or references which

are repeatedly used in the paper. It is understood that rn > and d m.
(1) (i) If (b, m/d) m/dtr, or equivalently o- m/(db, m), and b
bm/dtr then (b, o-) 1.

(ii) For any a with (a, b) 1, amp(a, b, F(m; m/d)) dm/(db, m),
except when m 4, d 1 and (b, 4) 2 in which case the amplitude is
instead of 2.
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(iii)
(iv)
(v)

c(r(m; m/d)) {dcr:rlm/d}, except C(I’(4; 4)) {1, 4}.
[F(m; m/d):F(m)] mid.
If m > 4, p a prime and p2lm then

[F(m/p):F(m)] p3; [F(2):F(4)] 4.

Proofs or references.
(i) m/do" (b, m/d) (blm/dr, re (m/dcr)(bl, r), implying

(b, 09 1.
(ii) See [4] or Lemma 4 of [3]. There it is shown that if

(b, m/d) m/dcr
then amp(a, b, F(m; m/d)) dr dm/(db, m). The exception is dealt
with in Lemma 4 of [3].

(iii) By (ii), for any o- m/d, amp(l, m/dcr, F(m; m/d)) dcr, except
for F(4; 4) when C(F(4; 4)) {1, 4}.

(iv) F(m) is normal in F(m; m/d) {F(m), Ua}.
(v) It follows from the well known formula for the index of F(m) in F

(see 1]):

[F:F(m)] /z(m) (m3/2)l-I(1 lipz) for m > 2, and tz(2) 6.

2. The Congruence Groups F(m; m/d, e, X)

We investigate the existence of congruence groups of level m with least
cusp amplitude d, which can be obtained from F(m; m/d) by lowering the
amplitudes of cusps. Ignoring F(4; 4), if a/b is a cusp with r m/(db,
m) then, by (1)(ii), amp(a, b, F(m; m/d)) dcr. As we want d to be the
least cusp amplitude of the groups to be studied, by Theorem 2 of [3], all
cusp amplitudes must be multiples of d. Hence we are going to investigate
for which h’s with h o-,

F {F(m; m/d), pd/x}, where P P(a; b),

are congruence groups of level m. From Theorem 5 of [3] it follows that
h > 1 can exist only if m has square factors greater than one. For by this
theorem, if p is a prime, p cr and p2 m then F {F(m; m/d), pd,/p} is
not a congruence group of level m. This result appears as Lemma below.
Throughout this paper P P(a; b), and we write down for future reference

pd (1 + abds a2ds
(2)

\ bZds abds]"

LEMMA 1. If r m/(db, m), P P(a; b) and p is a prime such that
P o" and p2 m then F {F(m; m/d), pd/p} is not a congruence group
of level m.
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Proof. By (1)(ii), amp(a, b, F(m; m/d)) dtr. If v is the greatest divisor
of mid with (b, v) then p v, since by the hypotheses (b, m/d)
m/dtr, p r and p2 m. Hence [d, v] dtr/p, and, by Theorem 5 of [3], F
is not a congruence group of level m.

THEOREM 1. /f
tr m/(db, m), X l(o-, db2)

then

(i) F {F(m; m/d), ea/x}

]A F

and P P(a; b)

A (1 + kl(a, h)m/h k2d+-- k3(b, h)m/h + k4(a,

a(b, h)k3 b(a, h)k (mod

and

(ii) [F:F(m; m/d)] X.

Proof. It is straightforward to check that the set of all matrices A under
matrix multiplication is a group F’. We only point out that (a) since
det A 1 we have the congruence

(k + k4)b(a, X) =- 0 (mod X),

showing that A -1 F’, (b) X (o-, db2) impltes X (tr, m2/&r2) by (1)(i),
and (c) (a, h) d, since (a, b) 1. Next, it is easily checked that pd/x,
using (2) with s tr/h, Ud and each matrix in F(m) are of the form A.
Thus F’ D F. We complete the proof of part (i) by showing that also F D
F’. The latter will hold, if we can find j, k and B F(m) such that A
Bpjd/Xud. This implies that for suitable j,

A(oo) -r(m) Pjdr/x()

Using the fact that if(u, v) (u’, v’) landu’ -= uandv’ v(mod
m) then u’/v’ "r(m) u/v, if we let b bm/dr then the equivalence holds
if the following congruences have a solution j:

(a/(a, h))b(m/h)(a, h)j =- k(a, h)m/h (rood m)

b(b/(b, h))(m/h)(b, h)j =- k3(b, h)m/h (rood m)

OF

(a/(a, X))blj =-- k (mod X/(a, X)),

b,(b/(b, h))j =- ka (mod h/(b, h))
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By (1) (i), (bl, tr) 1, and, by hypotheses, X r, (bl, X) 1. Hence a
solution of the congruences exists if

(a/(a, X))k3 (b/(b, X))kl (mod(X/(a, X), X/(b, X)),

or, since (a, b) 1 implies (X/(a, h),h/(b, h)) h/((a, X)(b, h)),

a(b, X)k3 b(a, X)k (mod X).

Thus, for suitable j and B F(m), A(o) Bpjd/X(o), or

A-1Bpjd/X u-kd
for suitable k, since all matrices on the left are elements of F(d). Hence
A Bpjd/Xukd, implying that F F’ and that [F:F(m; m/d)] h.
Theorem defines a class of congruence groups the elements of whose

matrices depend on the fixed point and the amplitude of the parabolic matrix
used to generate F. It is to be expected that certain other parabolic elements
would generate one and the same group. Thus we are going to characterize
the class of groups, defined in Theorem 1, by matrices whose elements
depend on rn and d only. As a first step we determine the h’s for all different
parabolic matrices which may be used to generate a F.

LEMMA 2. Let m h2n with square-free n and

toni(m, dh) u3v

with cube-free v. Then el(told) and ea (mE/d) if and only if
el(told, h)u.

Proof. One easily verifies that

m2/d [(hn, d)h/d]3(hn2/(hn, d))d2/(hn, d)2.

As hn2/(hn, d) mn/(m, dh), and, by hypotheses, mn/(m, dh) uav,
where v is cube-free, we obtain

(3) m2/d [(hn, d)hu/d]3vd2/(hn, d)2

The expression (3) suggests we put

m/d ((hn, d)h/d)(hn/(hn, d)).

Since u o mn/(m, dh) hn2/(hn, d) and n is square-free by hypotheses,
we deduce that u]hn/(hn, d). Thus,

(4) mid [(hn, d)hu/d]hn/((hn, d)u).

Since (hn/(hn, d), d/(hn, d)) 1, and, by hypotheses, v is cube-free, from
(3) and (4) we conclude that e mid and e m2/d if and only if e (hn,
d)hu/d. Since (hn, d)hu/d (m/d, h)u, the proof is complete.
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THEOREM 2. If m h2n with square-free n and

mn/(m, dh) uv
with cube-free v then

(i)
(ii)

and

(iii)

(or, db2) (tr, m2/dtr2) for cr m/(db, m),
(r, m2/&r2) (m/d, h)u for r m/d,

maxl,/d(O-, m2/dtr2) (m/d, h)u.

Proof. (i) Putting b bm/dr and observing that (b, tr) 1 by (1)(i),
we have (or, db2) (or, b2m2/dtr2) (tr, m2/&r2).

(ii) We set (tr, m2/d2) e and observe that elm/d and e3[m2/d. The
conclusion follows from Lemma 2.

(iii) With cr e and e (m/d, h)u., by Lemma 2, trl mid and tr3l
m2/d. Thus (tr, m2/dtr2) ty (m/d, h)u.
We define S(b) {h:hl(m/(db, m), db-)} and S t-Jbez S(b), where Z

denotes the set of rational integers; i.e., S is the set of all h’s which may
appear in the matrices of the congruence groups defined in Theorem 1.

COROLLARY 2. If m h2n with square-free n and

mn/(m, dh) u3v
with cube-free v then S {h:hl(m/d, h)u}.

Proof. If h S(b) then

X l(ml(db, m), dbZ).
By Theorem 2, if o- m/(db, m), h (or, m2/dtr2) and hi(m/d, h)u.
Conversely, if X (m/d, h)u then, by Lemma 2, h mid and hal m2/d, and
thus (X, m2/dh2) X. We put b’ m/dh and obtain X m/(db’, m).
Hence

h (h, m2/dh2) (m/(db’, m), db’2),
showing that h lies in S(b’) and in S.
An immediate consequence of Lemma 2 and Theorem 2 is:

COROLLARY 22. /f tr m/(db, m) and h (tr, db2) then h m2/d.
To make further progress, Theorem would suggest determining the

possible (a, X) and (b, X) with X I(m/d, h)u. Although this could be done,
we find it more advantageous to proceed differently.

First we are going to study the groups of Theorem for which (b, h)
X. From b bm/dtr where (b, tr) 1, by (1) (i), and X r, it follows
that h (b, X) (bm/dcr, h) (m/dtr, h), and thus h l(tr, m/dcr).
We put h and denote this class of groups by F(m; m/d, e). Clearly
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(a, h) 1, and the congruence condition for the elements of the matrices
in Theorem 1 is trivially satisfied. Hence we obtain

km + k4m/e]

Evidently another parabolic element with fixed point a’/b’ such that tr’
m/(db’, m) and e (tr’, b’) generates together with F(m; re the same
group. The question as to the class of all groups of type (5) is answered
by the following lemma.

LEMMA 3. /f m h2n with square-free n then

(i) (x, m/x) h ifxlm, and
(ii) maxlm(X, m/x) h.

Proof. Using the fact that for square-free s, (r2, $) (r, $) We have

x(x, re (x, hn)
(x2, h2)(x2/(x2, h2), n)

(x, h)E(x/(x, h), n)

(x(x, h), n(x, h)2)
(x2, xh, m)
x(x, h, m/x).

Thus (x, m/x) (x, h, m/x), proving part (i). Part (ii) follows from (h,
m/h) h.

In the introductory remarks to (5) we have seen that

(r, m/do’).

Clearly, for each trl mid there exists a cusp a/b such that

(b, m/d) m/dtr.

Putting m/d h2dnd with square-free rid, by Lemma 3, the e’s in F(m; re
e) are the divisors of hd. Observing that

(tr, m/dtr) (tr, b)

by (1) (i), we have"

TrlEOgEM 3. If mid h2dnd with square-free nd and e ha then

(i)
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and

(ii)

F(m; m/d, e) {F(m; m/d), ea/8}

for any parabolic matrix P P(a; b)for which o" m/(db, m) and e
(o’, b).

COROLLARY 3. F(m; m/d, e) is a congruence group of level m.

Proof. If

W=
1

then the smallest r > 0 for which W F(m; m/d, ) is r m.

(1)(ii) gives the amplitude of any cusp in F(m; re Among the latter
groups F(4; 4) shows an exceptional behavior as noted in (1)(ii) and in
(1)(iii). Thus we take a closer look at F(4; 4, 2) and obtain a result which
we need for later reference.

COROLLARY 32. F(4; 4, 2) F(4; 4).

Proof. F(4;4,2) is Theorem 3 with rn 4, d 1, h 2, nl land
e 2. By Theorem 3, e[ ((r, b), so we have to choose a cusp a/b for
which (b, 4) 2. From Theorem 3 with P P(a; b) it follows that
F(4; 4, 2) {F(4; 4), P} F(4; 4), since by (1)(ii) e F(4; 4).
Next we investigate the groups in Theorem for which (b, h) :/: h. We

put X e, where (b, h) e, and we note that (b/e, X) 1. As
db2) by Theorem 1, X l(tr/e, db2/e). Since

(b/e, X) 1 and (o’/e, dbE/e) ((r/e, de(b/e)2)
we conclude that the divisors X of (o’/e, db2/e) and of ((r/e, de) satisfying
(X, b/e) are the same. Letting (a, X) X, from Theorem 1, we have:

LEMMA 4.

then

If tr m/(db, m), el(o’, b), x l(tr/e, de) such that

(X, b/e) 1, (a, X) X and P P(a; b)

r (r(m; m/d),

{A IF A +(l + kl(m/X)Xl kd )kam/x + k4(m/ex)X

aek3 =- bxlk (mod eX).
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Using Lemma 4 we determine all possible X’s for e lhd. We define

T(b) {X:Xl(r/*, d,), r m/(db, m),, (r, b) and (X, b/e) 1}

and T t3z T(b), where the symbol * indicates that b runs through
those rational integers in Z for which e (o’, b).

LEMMA 5. If e ha, T {X:XI(de, m/de2)},

Proof. Let T {X:XI (de, m/de2)}. We consider a T(b) and show that
T,(b) C T. Since e (or, b) and

(o’, b) (tr, blm/do’) (tr, m/dtr),

and, by (1)(i), (b, o-) 1, it follows that e lm/dtr, or trim Thus

(r/e, de) (m/de2, de),

implying T,(b) C T. Conversely, let X T. Now we are going to show that
for suitable b’, X T(b’). We choose b’ e. Then, since e lha, (b’, m/d)

e, and tr’ m/(db’, m) m/de. Thus,

(tr’, b’) (m/de

i.e., el (o-’, b’). Since (o-’/e, de) (m/de2, de) and X T, we conclude
that X[ (tr’/e, de). Also (X, b’/e) (X, 1) 1, showing that X T,(b’).
Hence T C T,, which together with T C T proves the lemma.

LEMMA 6. For e ha and X (de, m/de2) the possible Xs in Lemma 4
are the divisors X’ of X for which (X’, e) 1.

Proof. Let a/b be a cusp, as in Lemma 4, for which

e l(tr, b), eX[(tr, db2) and (X, b/e) 1,

where tr m/(db, m). Since e lb and (a, b) l, (a, e) 1. Thus, if
(a, X) X’ then (X’, e) 1. Conversely, if X’lX and (X’, e) then
(X’, b) l, since (X, b/e) 1. Hence there exists a such that (a b)
and (a, X)
What remains to be looked at is the congruence satisfied by the elements

of the matrices in Lemma 4. By the hypotheses of Lemma 4, aek3
(rood eX) if and only if

(a/x1)k3 (b/e)kl (mod X/Xl).

Since (a/x, X/X) (b/e, X) 1, k3 =- (a/x1)-(b/e)k (mod X/X), where
(a/Xl)- is an inverse unit of a/Xl mod X/X, showing that (a/x)-b/e is
a reduced residue mod X/X1. Conversely, if - is a reduced residue mod
/X then

(b/e)rl (mod X/X)

for a suitable reduced residue - mod X/X, since (b/e, X) 1. If ’- is
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an inverse unit of , mod X/ then

0"? , X/x) 1,

and thus, by Dirichlet’s Theorem on the number of primes in an arithmetic
progression, for a suitable j,

(z? + JX/X, b) 1.

Putting 0-i- + JX/X)X a’, we have a cusp a’/b such that

(a’,x) X and k--zk(mod

or

(a’/)k (b/e)k (mod /).
We have shown that in Lemma 4, for a fixed b and distinct a’s with
(a, b) 1 and (a, ) X, the congruence condition for the elements of
the matrices is of the form k zk (mod /X), and assumes all values
of a reduced residue system mod
From the last paragraph, together with Theorem 1 and Lemmas 4, 5 and

6, we have:

THEORE 4. Let d m, mid h2dnd with square-free rid,

x l(d, m/d2),

X X such that (X1, e) 1, and r R, a reduced residue system mod
X/X. Then

F= (A ,F A= +(1 + k,(m/ex)X, k2d
km/x + k4(m/eX)Xl/

is generated by F(m), Ud and one other suitably chosen parabolic matrix.

The groups F,(m; re s, X) are the groups of Theorem 4 for which
X 1. Now, for any F of Theorem 4 there exists an r such that

UFU F,(m; m/d, s, X)

for a suitable z R’, where R’ is a reduced residue system mod X. For if

F {F(m;m/d),pdo} whereP P(a;b) and(a,x) X > 1,

then UF(m; m/d)U F(m; m/d) and

Updou-= Qd, with Q Q(a + rb; b).

Since (a, b) 1, by Dirichlet’s Theorem on the number of primes in an
arithmetic progression, for a suitable r, (a + rb, X) 1. As the main thrust
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of the paper is to find C(F) for any congruence group and C(B’B-1)
C(F) for any B I, we work with the F,(m; re e, X) from here on.
Thus we have

A +(1 + k,m/,x kzd
\ k3m/x 1 +F,(m; re e, X) (A F

(6)

We point out that we have chosen the notation in such a way that

(i) F(m; m/d, e, 1) F(m; m/d, e),
(ii) F(m; re 1, 1) F(m; re 1) F(m; re and

(iii) F(m; 1) r(m).

In order to show that, with two exceptions, the groups

r,(m; m/d, e, X)

are congruence groups of level m we determine the amplitudes of their
cusps. The exceptions arise when m/ex 2 and X > 1, as we shall see
below. But first we give an example to present the idea used in the proof
of the next lemma. For this we use F(4; 4) whose cusp amplitudes show
an irregular behavior as noted in (1)(ii) and (1)(iii):

F(4;4)= {AIF A +( +4kl k2 )}4k 1 + 4k4
Using the plus sign and the matrices A with tr(A) 2,

p2= (1+2"242
where P P(1; 2). Also

B’ (1 -4-4
and tr(B) 2. Since

B= -(1 +2"14.1
amp(l, 2, F(4; 4)) 1.

_2)2"2 F(4;4),

1 F(4; 4)

LEMMA 7. /ftr m/(db, m) and

amp(a, b, F,(m; m/d, e, X)) do
then p tr/(tr, eX, b zae), except for F(4; 4) and possibly when
m/ex 2 with ex > 1.



324 H. LARCHER

Proof. (i) We work with only those matrices A in (6) which have a plus
sign and for which tr(A) 2. For P P(a; b),

pdp (1 + abdp a2dp
bEdp abdp]’

and we determine the smallest p > 0 such that pdp A. For this to hold,
by (6), p must be the smallest positive integer such that (abdoex)/m k
and (bEdpx)/m k3 are integers satisfying

(bEdpx)/m =- ’(abdpex)/m (mod X),

or, after putting b blm/dtr,

(blbpX)/tr =- 7"(abpex)/o" (mod X).

This implies that tr (bbpx, abpex). Since

(blbpx, ablpeX) bpx(b, ae) bpx(b, e) bpe’x(b, e)/e’,

where e’ (e, tr, b), and since (b, tr) by (1)(i), it follows that
trlpe’x. We multiply the last congruence by e’ and obtain

(b zae)b(pe’x)/tr =- 0 (mod e’x).

First, dividing e’x on top and tr on bottom of the fraction by (tr, e’X) and
then dividing the congruence by e’X/(tr, e’X) yields

p/(tr/(tr, e’X))(b ’ae)b =- 0 (mod(tr, e’X)).

As (tr, b) 1 by (1)(i), the smallest p > 0 satisfying the last congruence
is p tr/(tr, e’X, b zae). Since e’ (e, tr, b), the expression for p in
the lemma follows from

(tr, eX, b ’ae) e’(tr/e’, Xe/e’, (b/e’) ’ae/e’)

e’(tr/e’, X, (b/e’) ’ae/e’)

(tr, e’X, b ’ae).

(ii) We work with the matrices A in (6) which have a plus sign and for
which tr(A) -2. Again we consider the cusp a/b and we determine the
smallest p’ > 0 such that with P P(a; b),

pd’ F(m; m/d, e, X).

For a p’ to exist such that/9’ < p, where p has been found in part (i), we
must have

pdt,’ (1 + abdp a2dp )b2dp abdp’

{1 + k,m/ex k2d
-\ k3m/x + k4m/ex]
-A
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for suitable ki (i 1, 2, 3, 4) and k3 ’kl (mod X). Clearly/9’ 0/2,
since tr(A2) 2, and thus A2 has been considered in part (i). Since
tr(Pd’) tr(-A), it follows that

(k + k4)m/e,X -4.

It is easily checked that det A implies de l(kl + k4), and thus de(m/ex)
14. We distinguish three cases.

(a) de 1. Since x l(de, m/deE) by Theorem 4, this implies X 1.
This case has been dealt with in Lemma 4 of [3]. It is the exceptional
behavior of F(4; 4) as noted in (1)(ii) and (1)(iii).

(b) de, 4. This implies that m/ex 1. From X (de, m/de2), by
Theorem 4 it follows that de, (dEe’E/x, m/ex), eliminating this case.

(c) de 2. By the same argument as in (b) one sees that m/eX 2.
Here again, eX is excluded by Lemma 4 of [3]. Thus m/ex 2, and
e,X > 1 is a necessary condition for the conclusion of the lemma not to
hold.

This completes the proof of Lemma 7.

For the possible exceptions to Lemma 7 we have:

LEMMA 8. The groups F,(m; m/d, e,, X) with ex > and m/ex 2 are
F(4; 4, 2), Fl(4; 2, 1, 2) and F(8; 8, 2, 2).

Proof. By Theorem 4 with Xl 1,

F,(m; m/d, e,, X) {F(m; m/d), pd/X}

for a suitable P P(a; b), where cr m/(db, m) and h e,X. By Theorem
1, X i(tr, db2) and by Corollary 22, Xa m2/d. The hypothesis m/ex 2
implies X m/2, and thus (m/2)3lm2/d, or dml8. In the proof of Lemma
7, part (ii)(c), we have seen that m/e,X 2 is possible only provided
de 2, so the solutions are

(i) d 1, e, 2, rn 4, X 1, i.e., F(4; 4, 2),
(ii) d 2, e, 1, rn 4, X 2, i.e., F(4; 2, 1,2),and

(iii) d 1, e, 2, rn 8, X 2, i.e., F(8; 8, 2, 2).

Of the three groups in Lemma 8 only the last two show an irregular
behavior with regard to the cusp amplitudes among the groups F,(m; m/d,
e, X). We list the cusp amplitudes of all three groups in the next theorem,
since in the remainder of the paper we frequently adopt the restriction m/ex
> 2, in order not to have to consider the exceptional cases separately. In
the next theorem, F0(4) is the well known congruence group of level 4.

THEOREM 5. (i) F(4; 4, 2) F(4; 4) and C(F(4; 4, 2)) {1, 4}.

(ii) r,(4; 2, 1, 2) r(2) and c(r(4; 2, 1, 2)) {2}..
(iii) F(8; 8, 2, 2) r’(4; 4, 2) 1"0(4) and c(r’,(8; 8, 2, 2)) {1,.4}.
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Proof. (i) See Corollary 32 and (1)(iii).
(ii) Asd 2, F(4;2, 1,2) C r(2). By(1)(v),

[F(2):F(4)] 4 and [r(4; 2, 1, 2):F(4)] 4,

so the conclusion follows.
(iii) By (6),

Fl(8; 8, 2, 2) A F A +(1 +2kl k2 )4k + 2k4 k3 --- kl (mod 2)}.
The congruence condition says that k and k3 are both either even or odd.
Let us assume that in the following matrix, k and k3 are even. Then

4k + 2k4 4k 2(k4 + 1)

(1 + 2k k
4k; 1 + 2k]’

where k is odd and k is even. Hence

F,(8"8 2,2)=(A,F A= +( +2k’ k )}.4k3 + 2k4
i.e., by Theorem 3, F(8; 8, 2, 2) F(4; 4, 2) F0(4). The last equality
holds, since one may drop the negative sign with the matrices.
Combining Lemmas 7 and 8 and Theorem 5 we obtain:

THEOREM 6. /ftr m/(db, m) and

amp(a, b, F,(m; m/d, e, X)) do
then

19 tr/(tr, eX, b za,) m/(m, db(ex, b zae)),

except for F(4; 4), Fl(4; 2, 1, 2) and F(8; 8, 2, 2).

COROLLARY 61 The congruence groups F,(m; re e, X) are of level m,
except F(4; 2, 1, 2) and F(8; 8, 2, 2).

Proof. We apply Theorem 6 to the cusp 0 0/1, i.e., a 0 and b
1. Since tr m/(db, m) m/(d, m) mid and

I (mid)/(mid, eX, 1) m/d,

amp(0, l, F,(m; re , X) m, implying that the level is m. The exceptions
follow from Theorem 5.

COROLLARY 62. /ftr m/(db, m) and (a, b) then, excepting F(4;
4), F(4; 2, l, 2) and F(8; 8, 2, 2),
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(i) amp(a, b, F(m; re )) dtr/,’

with e’ (, tr, b) (, tr, m/dtr), and

(ii) amp(a, b, F,(m; m/d, , X)) dtr/’ X’
with ’ (, tr, b) (*X’, tr, b) and X’ (cr/,’, X, (b/,’) a,/e’).

Proof. (i) Using Theorem 6 with X 1 and 1 we obtain

(tr, e, b ae) (tr, e, b) e’.

Also (tr, e, b) (o’, e, m/do’), since, by (1)(i), if b bm/do’, (b, o9 1.
(ii) Applying Theorem 6 again and using the fact that (e, tr, b) e’,

we have
(o’, eX, b "rae) e’(cr/e’, Xe/e’, (b/e’) "rae/e’)

e’(r/e’, X, (b/e’) "rae/e’)

e’X’.
From the last equality, it follows that (X’, b/’) 1, showing that ’(eX’, tr, b).

COROLLARY 63. Let P P(a; b) and cr m/(db, m). Then

r,(m; m/d, e, X) {r(m; m/d), pd,/,}

if and only if

327

amp(a, b, F,(m; m/d, e, X)) dr/eX.

Proof. If amp(a, b, F,(m; m/d, e, X)) dg/eX then, by Theorem 6,

F {F(m; m/d), pd,/,} C F,(m; m/d, e, X),

and, by Theorem with h eX,

[F,(m; m/d, e, x):F(m; m/d)] eX.

By hypotheses and (1)(ii),

amp(a, b, F(m; m/d)) dtr, [F:F(m; m/d)]

implying equality of the two groups. The converse is trivial.
From Theorem 4 with Xl and (6) it follows that

F F,(m; m/d, e, X) C F(d).

Since Ud F, d is the least cusp amplitude and is the amplitude of oo in
F. By the proof of Corollary 61, with the two exceptions noted, the amplitude
of 0 in F is m. Thus, from Theorem 4 with Xl 1, and (6), we obtain
Theorem A in the introduction.
Next we are going to show that the groups F(m; m/d, e, X) are the only

congruence groups of level m which, subject to the normalization as contained
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in part (ii) of Theorem A, may be obtained from F(m) by lowering the
amplitudes of cusps.

THEOREM 7. If (eX, e’X’) then

F,,,(m; m/d, ee’, ,XX’) F,(m; m/d, e, X) U F,,(m; m/d, e’, X’)

for suitable reduced residue’s r mod X and " mod X’.

Proof. We denote the three respective groups by F", F and F’. By
Theorem 4, for suitable P P(a; b) with tr m/(db, m),

r" {r(m; m/d), pa,/’x’},

and (r, ee’XX’, b ’aee’) ee’xx’ by Corollary 63. Since

(’, x) (’, xx’) 1,- z"e’ is a reduced residue mod X, implying that

(or, eX, b zae) ex;

i.e., {F(m; m/d), pd/} F by Corollary 63. Correspondingly, with r’
’e, {F(m; m/d), pd/’’} F’. The hypothesis (eX, e’X’) 1 implies

ed/’xx’ [, U

showing that F U F’ F".
In Theorem we introduced for X db2 the groups

r {r(m; m/d), pa/x},

and in the succeeding work we have put h eX. From Corollary 61 we
know that almost all these groups are congruence groups of level m. Now
we are going to show that if h o- and h db then F is not of level m. In
fact, we shall immediately prove a more general result by investigating what
happens to F(m; m/d, e, X) when lowering the amplitude of any of its
cusps by a prime p, provided, of course, its amplitude is divisible by dp.
Because of Theorem 7, it suffices to work with the groups

F(m; m/d, pi, pk),

where p is a prime and i, k > 0. We can smoothe the presentation by
disregarding the exceptional cases and F(4; 4, 2), and thus in the following
we assume m/ex > 2.

LEMMA 9. If, for a prime p,

F F,(m;m/d, pi, pk) withi + k> andm/p+> 2,

and F’ {F, F(m/p)} then

(i) F’ F(m/p; (m/p)/d, pi, p-l) or F(m/p; (m/p)/d, p-l) depending
whether k > 1 or k O, and
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(ii) [F’:F] p.

Proof. (i) By Theorem 4, F {F(m; re pdr/pJ for suitable P P(a;
b), where o- m/(db, m) andj / k. Thus

r’ {r(mlp; (mlp)ld),

since j > 1 in the hypotheses implies p mid. Since j > 1, it also follows
that (b, (m/p)/d) (m/p)/(d/p); i.e.,

amp(a, b, F(m/p; (m/p)/d) dtr/p

by (1)(ii). By Theorem 1, P2I (r, db2), and hence p2-[ (r/p, db2), showing
that

[F’ F(m/p; (m/p)/d)] p-
by Theorem 1. Since (or, p2, b rap) p2 by Corollary 63,

(trip, p;-1, b zapi) pJ-
(we point out that the last still holds when k 0) implying, by Corollary
63, the conclusion of part (i).

(ii) The hypotheses m/p > 2 and j > 1 imply rn > 4 by Lemma 8. We
use the following schema in the proof, where necessarily pZ rn by Lemma
1:

mid pJ

F(m) C F(m; m/d) C F

(7) p3 p2 (-) p
F(m/p) C F(m/p; (m/p)/d) C F’.

m/dp pj-I

The expressions with the symbol "C" are the respective indices. While
the first four indices from the left follow from (1)(iv) and (1)(v), the remaining
three are consequences of the proof of part (i) and Theorem 1.

LEMMA 10. Let F and F’ be defined as in Lemma 9, j + k > 1,
m/p > 2, tr m/(db, m), amp(a, b, F) dp, p o’/p’ and PIP. If
j’ < j then amp(a, b, F’) dp/p,

Proof. By the hypotheses, and Theorem 6 applied to F, we have

(tr, pJ, b rapi) pJ’.
The hypothesis p[p implies (b, (m/p)/d) (m/p)/(dtr/p) and, by (1)(ii),

amp(a, b, F(m/p; (m/p)/d)) dcr/p.

Theorem 6 applied to F’, and the hypotheses p]p and j’ < j imply, by
part (i) of Lemma 9, that

(g/p, pJ- , b capi) pJ’

i.e., amp(a, b, F’) dtr/p’+ dp/p.
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LEMMA 11. Let m > 4, o- m/(db, m), PJ+ (r, where p is a prime
and j > O, (pJ/ , (r, db2) pJ and P P(a; b). If

and

then

(i)
(ii)

F {F(m; m/d), pa,/pJ}, F, {F,

r (r,, r(mD) 

r’ (r, r(m/p)}

and
when j > 1, and [r.F’] when j O.

Proof. (i) From (2) with s o’/p"+ it follows that

pa,/,/ Uap-a,/,/ Qa,
where Q Q(a’; b’) with

a’ 1 + abdo-/p+ and b’ b2do’/p+ !;
i.e., amp(a’, b’, Ft) d. Now we are going to show that

amp(a’, b’, F) dp.

Letting b bm/do’, where (b, or) 1 by (1)(i), we obtain

(b2do./p+ l, m/d) (m/dp+ 1)(db, p+ l)
and, by (1)(i) and (1)(ii),

(8) amp(a’, b’, F(m; m/d)) dpy+ /(db, pY+ ).
We let (p’, b) p and j + k. Since by hypotheses pJ[ (o-, dbZ), from
Theorem 1 and Corollaries 6z and 63 it follows that, for suitable z with
(, p) 1, F F,(m; m/d, p, pk), where

(9) (r, pJ, b cap) pJ.
We use Theorem 6 to find amp(a’, b’, F). We have

(pY+ /(db, pJ+ ), pY, b’ ea’pi)
(pJ+ /(db, p J+ ), pJ, bd((r/pj+ )(b ’api)
(pJ+ /(db, p+ ), pi(pk, bd(cr/p2+ )(b/pi ra) z))

(p2+ /(db, p2+ ), pi),

since (p, ) and (9) imply that PI (b/P za). The hypotheses and
(p:, b) p imply

pj (p+ , db) pi(pl+ , db).

Thus, (pY+, db) p and (pY+/(db, p+), p) pi. This shows that the
fight side of (8) is dp+ , and hence

amp(a’, b’, F) dp.



CUSP AMPLITUDES II 331

The latter result together with amp(a’, b’, F) d, shown above, can be
used to prove that [F’F] > p. We assume that. [F:F] p. Then F
__

QdF, and for a suitable A F and r with < r < p 1, QdA
pd,/lJ+l. This would imply

Qd"A oo) a /b

and, since Q Q(a’; b’), A() a’/b’, or a’/b’ too. The last equivalence
would imply that amp(a’, b’, F) d, a contradiction.

(ii) By hypothesis,

r {r(m/p; (m/p)/d),

The hypotheses p o- and (r m/(db, m) imply that

(b, (m/p)/d) (m/p)/(dtr/p),

and thus, by (1)(ii), amp(a, b, F(m/p; (m/p)/d)) do’/p. From the hypotheses
pJ+ o" and (pJ+, or, db2) pJ, it follows that

p- (o’/p, db2).
Hence, by Theorem 1,

[ri.r(m/p; (m/p)/d)] pJ and [r’:r(m/p; (m/p)/d)] p-’,
proving part (ii) when j > 1. For j 0,

amp(a, b, F’) amp(a, b, F i) do’/p,

implying F’ F .
The last three lemmas enable us to prove the principal result which we

set out to show and which is contained in:

THEOREM 8. If, for a prime p,

F F,(m; m/d, pi, pk),

(a, b) 1, amp(a, b, F) do, p P, P P(a;b) andF {F, pd/’},
then either

(i) F1 F,,(m; m/d, pr, pk’) for suitable z’ and i’, k’ > O, or
(ii) F is not a congruence group of level m.

Proof. The theorem holds for F(4; 2, 1, 2) and F(8; 8, 2, 2), since, by
Theorem 5, their respective levels are 2 and 4. Since

[F(2; 2):F(4; 4)] [F(2; 1):F(4; 2)] 2

it follows that the theorem also holds for F(4; 4) and F(4; 2). Thus, in the
following we may assume m > 4. Because of Lemma we may also assume
p2lm. If o" m/(db, m) and j + k,

(o’, Fi, b "rap) pJ’ with0<j’ <j,

and thus, by Theorem 6, O o’/P"’. We distinguish the cases j’ < j and
f--jo
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(i) Suppose j’ < j. Now we are going to show that F is a group of level
m/p. Since m > 4 and p2[m, [F(m/p):F(m)] p3 by (1) (v). Observing
that j’ < j implies j > 1, we use schema (7):

F F

where F’ {F, F(m/p)}. By Lemma 10, the hypothesis p IP implies that

amp(a, b, r’) do/p.

F" i.e. F is a congruence group of level m/p.Since x > p F
(ii) Suppose j’ j. By Corollary 63, F {F(m; re Pe/} and p

o-/p. If P+I db then, by Theorem and Theorem 4,

F F,,(m; m/d, p’, p’)

for suitable -’ and i’, k’ > 0. If p/ db we use again schema (7):
pJ

r(m; m/d) C r F1
,p2N pn yn
r(m/p; (m/p)/d) C r’ C r,

pj- p

where

r’ {r, r(m/p)} and F[ (F,, r(m/p)},

and, by Lemma 11, [rl:r] x > p and [F’F’] p for j > 1. If j 0,
F F(m; re and, by Lemma 11, F[ F’ F(m/p; (m/p)/d). In both
cases xy p2, and, since x > p, y 1, showing that rl is a group of level
m/p.
The next two results are immediate consequences of Theorems 7 and 8.

In particular, the first corollary follows from Theorem and the proof of
Theorem 8.

COROLLARY 81. Let r m/(db, m), h r, P P(a; b) and m/h > 2.
Then F {F(m; m/d), pd/X} is a congruence group of level m if and only
if X Jdb2.

COROLLARY 82. The groups F,(m; m/d, e, X)for all admissible d, e, X
and z, comprise all congruence groups of level m which, subject to our
normalization, may be obtained from F(m) by lowering the amplitudes of
cusps.

In the following final section we are going to determine the set of cusp
amplitudes for any congruence group.
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3. The Cusp Amplitudes of a Congruence Group

Let F be a congruence group of level m, d the least cusp amplitude in
F, and a/fl a cusp with amp(a,/3, F) d. As (a, fl) I, there is a matrix

such that Ue F’ A-FA. By Corollary 3 of [3], there is a rational
integer k with amp(k, 1, F’) m. Thus F" U-F’U is a congruence
group of level m hving the properties:

(i) its least cusp amplitude is d,
(ii) amp(, F") d, and

(iii) amp(0, 1, F") m.

By Corollary 82, for suitable e, X and z, F,(m; m/d, e, X) is a congruence
group having the properties"

(i) F" D F(m; m/d, e, X) and
(ii) amp(a, b, F") amp(a, b, F(m; re e, X)) for any cusp a/b

It is easily seen that for a parabolic matrix P of amplitude one and A
1F, A-1pA Q, where s is any rational integer and Q a suitable parabolic
matrix of amplitude one. Thus, if C(F) is the set of cusp amplitudes of F
as defined in the introduction then C(A-FA) C(F) for any A 1F. We
have proved the following theorem which appears also as part (i) of Theorem
C in the introduction.

THEOREM 9. For a congruence subgroup F of IF of level m,

C(F) C(F,(m; m/d, e, X))

for suitable dim, e [ha, x l(de, m/de2) and R, where m/d hnd
with square-free nd and R is a reduced residue system mod X.

The remainder of the paper deals with finding

C(F,(m; m/d, e, X))

and with proving the properties of the cusp amplitudes as stated
in part (ii) of Theorem C. To save in writing, we shall frequently use the
abbreviations F(e) and F(e, X) for the respective groups F(m; m/d, e) and
F,(m; m/d, e, X). The next theorem characterizes the cusp amplitudes of
F(e) and is in the case e 1 a restatement of (1)(iii).

THEOREM 10. With the exception ofF(4; 4), dp > is a cusp amplitude
of F(m; m/d, e) if and only if (e2, m/dp) is a perfect square.

Proof. Save F(4; 4) F(4; 4, 1), for tr m/(db, m) and a with
(a, b) 1,
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amp(a, b, F(m; m/d)) do"

by (1)(ii). Thus, by (1)(iii), the theorem holds for e 1. By Corollary 62,
amp(a, b, r(e)) dp, where p o"/e’ and e’ (e, o", b). Now we are
going to show that (e2, m/dD) is a perfect square. Since for (r, s) 1,
(rs, t) (r, t)(s, t), it suffices to prove it for e pk, where p is a prime
and k > 1. If

(pk, o", b) (pk, o", m/do") pl,

where b bm/do" and we use the fact that (b, o") 1 by (1)(i), and
tr ppl, then (p,-l, p, m/(dppEl)) 1. Thus, for some u > 0,

(pk-l, m/dpp2l) pU.

We distinguish the two cases u 0 and u > 0.

(i) Suppose u 0. Then (p,+l, m/dp) pEl, and, since < k,

(p2k, m/dp) p21,

a perfect square.
(ii) Suppose u > 0. Then (p, p) 1. From m/d h2dnd and el hd, by

Theorem 3 it follows that p2[ mid. Thus p2[ m/dp, and

(p2k, m/dp) p2k,

a perfect square.
Conversely, if p mid and (e2, mid/a) e ’2 then do" dpe’ is the

amplitude of some cusp a/b in F(m; m/d) whose amplitude in F() is dp.
For, from (e2, m/dp) e ’2 we obtain

(ee’, mid/a) e’2 (e, p’ m/dpe’) e’ and (e, o", m/do") e’

The conclusion follows from Corollary 62 and the observation that, by
(1)(iii) (F(4; 4) excepting), for any o"I m/d, do" is a cusp amplitude in.
F(m; m/d).
The following lemmas serve to characterize the cusp amplitudes of

F(e, X). First we take a closer look at X’ in Corollary 62.

LEMMA 12. /f o" m/(db, m), (a, b) 1, e’ (e, o", b) and

(o"/e’, X, (b/e’) "rae/e’) X’
then (X’, b/e’) (X’, zae/e’) 1.

Proof. Since (X, z) 1, (X’, z) 1. Suppose (X’, ae/e’) X > 1.
This implies X[ b/e’, since Xl(b/e’ zae/e’). From (a, b) in the
hypotheses we deduce X /’. This contradicts (e, tr, b) e’, since by
hypotheses X tr/’. Similarly, if one assumes (X’, b/e’) X2 > 1.

In the following we put down again the restriction m/ex > 2, in order
not to have to consider the exceptional cases separately.
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LEMMA 13. For m/ex > 2, C(F,(m; m/d, e, X)) C C(F(m; m/d, e)).

Proof. We consider the cusp a/b, which satisfies the hypotheses of
Lemma 12. Suppose do and dp’, where by Corollary 62, p tr/e’ and
P’ P/X’, are the respective amplitudes of a/b in F(,) and in F(e, X). We
are going to show that do’ C(F(e)). By Theorem 10, for a suitable t,

(2, m/dp) t2.

As ’ (e, tr, m/dtr) by Corollary 62 and m/dtr m/dpe’,

(ee’, p,,2, m/dp) e’2,

implying that e’[t. Hence

((e:/e’)2, m/dpe,’2) (t/e’)2.

Since (X’, e/e’) 1 by Lemma 12, ((e/’)2, m/dp’e. ’2) (t/e’)2, and thus
(e2, m/dp’) t2, showing that dp’ C(F(e)) by Theorem 10.

LEMMA 14. Let
F F,(m; m/d, e, X),

m/ex > 2, tr m/d, (e, tr, m/dtr) e’, p tr/e’ and let Xl be the greatest
divisor of (p, X) such that (X1, e/e’) (X, m/dtre’) 1. If (e’, X1, 2)
1 then dp lies in C(F(m; m/d, e)) and in C(F).

Proof. By (1)(iii), for any tr[ m/d, dtr C(F(m; m/d)), so

d C(r(m; m/d, e))

by Corollary 62. Using Corollary 62 once more, the proof will be completed
by showing that for suitable b and a such that (b, tr) 1, b bm/dtr
and (a, b) 1, (p, X, (b/e’) zae/e’) 1. We put r m/dpe’2 and
s ze/e’ and observe that, by hypotheses, (r, Xz) (s, X1) 1. The
solutions of

xr/(r, s) -= (mod X)

are xj x0 + Jx, where x0 is a solution and j any integer. As (x0, X) 1,
by Dirichlet’s Theorem on the number of primes in an arithmetic pro-
gression, for a suitable j, Xo + Jx P, P a prime satisfying (p, tr)= 1.
Correspondingly, Yo + kx are the solutions of ys/(r, s) -= -1 (mod Xl).
Hence, for a suitable k, Yo + kx q, q a prime satisfying (q, p)
(q, m/dtr) 1. Now (e’, X, 2) in the hypotheses may be broken
down into the two cases 2 Xl, and 2 X and 2 e’, which we treat
separately.

(i) Suppose 2 X. Then pr qs 2(r, s) (mod X). The hypotheses
2X, (r, Xl) (s, X) and Lemma 12 imply (p, X, P(m/dpe’2)
zqe/e’) 1; i.e., the cusp q/(pm/dtr) has amplitude do in F(e) and in
r(, x).
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(ii) Suppose 21X and 2 e’. Then pr + 2qs =- -(r, s) (mod 1). The
hypotheses 2 X, 2 e’ and (Xl, m/dpe ’2) imply 2 (m/dpe’), and
thus (2, re 1. Hence, as in case (i), the cusp -2q/(pm/dcr) has
amplitude dp in F(e) and in F(e,

Lemma 14 does not hold when (e’, Xl, 2) 2. For then m/dtre’ and
e/e’ are odd. Since 21 e’ implies 21tr and (bl, tr) by (1)(i), bl is odd.
Thus blm/dtre’ b/e’ is odd. From 2[ e’ and (a, b) 1 we deduce
that a is odd. It follows from X X and (X, z) that zis odd. Thus
2[ (b/e’ zae/e’), the difference of two odd integers, and hence,

2[(p, X, (b/e’) rae/e’),

since 2 IX1 and X (P, X) by the hypotheses of Lemma 14; i.e., while
amp(a, b, F(e)) dp, amp(a, b, F(e, X)) dp, where 2p[p. This is part
of the proof of:

LEMA 15. If
F F,(m; m/d, e, ),

m/ex > 2, tr m/d, (e, (r, m/dtr) e’, p tr/e’, X1 is the greatest divisor
of (p, X) such that

(X, e/e’) (X, m/dtre’) 1,

and (e’, X, 2) 2 then

(i) p 2f-Eep ’, where p’ is odd, (re 2y+I) 2f and (e, 2e+) 2
with e, f > 1, and

(ii) dp C(F(m; m/d, e)) and dp C(F).

Proof O) The hypotheses (e’, X1, 2) 2, (X, e/e’) and (e, 2e+)
2 imply 2el e’. From the hypotheses (e’, Xl, 2) 2, (X1, m/dre’)
and (m/d, 2y+) 2y it follows that 2Y o’e ’, or 2f[pe’2. Thus 2f-Ee[p
and p 2Y-2p for suitable odd p’. Note that necessarily f- 2e > 0.

(ii) By Corollary 62, dp C(F(e)). By the introductory remarks to
Lemma 15, all cusp amplitudes dp with p 2f-2ep and odd p’ are lowered
under X to dp, where 2p p. Thus the proof of part (ii) will be completed
by showing that no cusp amplitude in F(e) is lowered under X to d2"r-2ep
for some odd p’. Suppose that d2gp with g > f- 2e and odd p" has the
latter property. Although for p 2gp the corresponding e’ and X are
different from those defined in the hypotheses, we still use the same notation.
Since p is not of the form 2Y-2p ’, by part (i) (e’, X1, 2) 1. If

(2gP’’, X, (b/e’) rae/e’) X’,
where a/b is a cusp with amp(a, b, F(e)) d2gp", the proof will be
completed by showing that 2 X’. We break (e’, Xl, 2) down into two
cases.

(a) If 2 X then, by Lemma 12, 2 X’.
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(b) It is impossible to have 21X and 2 e’ since 21 e and e > by
hypotheses imply 21 e/e’, contradicting (X, e/e’) 1.

Combining Theorem 10 and Lemmas 13, 14 and 15 we obtain:

THEOREM 11. If (m/d, 2f+) 2z and (e, 2e+) 2 with e, f > 0 then

C(F,(m; m/d, e, X)) {dp > 1 I(e2, m/dp) 2 and
p 4 ((e, X, 2) 1)2f-2ela’ with odd p’},

except for F(4; 4), F(4; 2, 1, 2) and FI(8; 8, 2, 2).

From Theorem 11 together with Theorem 5 we have Theorem B in the
introduction.
Example. We determine C(F(48; 24, 2)) and C(F1(48; 24, 2, 2)). For the

meanings of the letters used, see Theorems 4 and 11. We have mid 48/2
24 22 6, imp’lying h2 2 and n2 6. Thus el2, and we have to
choose e 2. Since

(de, m/de2) (4, 48/2. 22) (4, 6) 2,

12 and we have to choose X 1 and 2 for the respective groups

F(48; 24, 2) and F(48; 24, 2, 2),

where necessarily - 1. Since (e2, m/dla) (4, 24/t9) it follows, by
Theorem 11, that the solutions of (4, 24/t9) 12 are t9 8, 24, and the
solutions of (4, 24/t9) 22 are t9 1, 2, 3, 6. Hence

C(F(48; 24, 2)) {2, 4, 6, 12, 16, 48}.

From mid 48/2 24 2 3 and e 2, it follows that f 3 and
e 1, and thusf- 2e 1. Since (e, , 2) (2, 2, 2) 2, we obtain

C(F1(48; 24, 2, 2))

by removing from C(F(48; 24, 2)) those cusp amplitudes 2t9 for which t9
2t9’ with odd tg’; namely p 2 and t9 6. Thus,

C(F(48; 24, 2, 2)) {2, 6, 16, 48}.

Finally, we prove a result which, we presume, anyone sufficiently familiar
with congruence groups suspected of being true and which, as far as the
g.c.d, is concerned, also was raised as a question by K. Wohlfahrt in a
letter to the author. The theorem appears also as part (ii) of Theorem C
in the introduction.

THEOREM 12. C(F(m; m/d, e, )) is closed under the operations g.c.d.
and l.c.m.

Proof. It certainly holds for the three exceptional cases whose
cusp amplitudes are listed in Theorem 5. Else, let dr9 and dt9’ be two
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elements of C(F(e, X)). By Theorem 10 and Lemma 13, (2, m/do) t2 and
(2, m/do’) t’2 for suitable t, t’ 1. Thus,

[t, t’]2 [t2, /,2]

[(2, m/dp), (2, m/dla’)]

(2, [m/dp, m/dp’])

(2, m/d(la, p’))

and

(t, t’)2 (t2, t’2)
((e2, m/do), (2, m/do’))
(2, (m/dp, m/do’))

(e2, mid[l), p’]).

By Theorem 11,

d(p, p’) (do, do’) and d[p, 9’] [do, do’]

are in C(F(e, X)), since, in the case (e, X, 2) 2, if p and p’ are not of
the form 2f-2ep with odd p", the same holds for (9, P’) and [p,

With the results of this paper, the principal problem remaining is to find
for F,(m; re , X) all congruence groups F of level m such that

(i) F(m; m/d, , X) C F C F and
(ii) C(F) C(F,(m; m/d,e, X)).
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