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RESIDUAL NILPOTENCY OF FUCHSIAN GROUPS
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A. M. MACBEATH

0. Introduction

If we have a group with a relatively complicated structure, but with many
homomorphisms into groups of a simpler nature, the study of these homo-
morphisms may enable us to obtain information not easily available otherwise
about the original group. If the ,family of groups which are targets of the
homomorphisms is characterized by a property P, the information we obtain
is in theory complete if the original group is "residually P" in Philip Hall’s
terminology; that is to say, if there are enough homomorphisms to groups
with the property P to distinguish any one element of the group from any
other, so that homomorphisms to groups with property P provide a sort
of "coordinate system".

In the case of Fuchsian groups, there is an additional motivation for
studying homomorphisms to different classes of group--the homomorphic
images can always be realized as groups of automorphisms of Riemann
surfaces. Homomorphisms of Fuchsian groups into finite groups, finite cyclic
groups, finite abelian groups and finite soluble groups have been studied,
with perhaps a disproportionate amount of attention, for which I must admit
some personal responsibility, being paid to the very special and certainly
fascinating class of Riemann surfaces for which Hurwitz’s maximum of
84(g 1) automorphisms is attained (see [1], [3], [4], [5], [8], [10], [16],
[18], [19], [20], [21], [22], [24]).

All Fuchsian groups are residually finite, and many are residually finite-
and-soluble (see [24]).

In his study of residual solubility, Sah was led to introduce the "p-
periods" of a Fuchsian group, which can be regarded as the first step in
the direction of the p-localization introduced in the present paper. Our
object here is to close the obvious gap in the list of target groups for
homomorphisms by studying maps into finite nilpotent groups. We restrict
attention to co-compact Fuchsian groups, so that we can use the technique
of Gruenberg [9] based on Hirsch’s theorem [12] that a finitely generated
nilpotent group is residually finite. Therefore a finitely generated group is
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residually nilpotent if and only if it is residually finite-of-prime-power-order.
By considering the primes individually, we find easy access to the structure
of the family of homomorphisms with nilpotent target.
We find that, while the existence of homomorphisms to nilpotent groups

is the rule rather than the exception for Fuchsian groups, yet residual
nilpotency is the exception rather than the rule. By localizing, we are able
to prove that a Fuchsian group is residually niIpotent if all its periods are
powers of a single prime, and only then. We are also able to characterize
the intersection of all kernels of homomorphisms into nilpotent groups as
a finite intersection of kernels of "p-local" homomorphisms. Essential to
our argument is Baumslag’s theorem that the fundamental group of a closed
orientable surface is residually free [2].

Since the process of localization may change a perfectly respectable
presentation of a Fuchsian group into a presentation which is in some way
peculiar, it has seemed necessary to introduce some extra technical apparatus
in order to express our results effectively. For this we apologize.
My thanks to Peter Neumann for drawing attention to Baumslag’s theorem

mentioned above.
Since writing the above, I have learned that R. S. Kulkarni has inde-

pendently proved the equivalence of 8.1(i) and 8.1(ii) below, though he
formulates 8. l(ii) slightly differently.

1. Signatures

A signature S is an ordered (r + 1)-tuple of integers

(1.1) S (g; m, m,.)

such that r > 0, g > 0, mi > (i 1, r).
The number g is called the genus, and those of the mi which are not less

than 2 are called the periods. If none of the m is equal to 1, S is said to
be reduced. The signature S obtained from S by removing all those of the
mi which are equal to is called the reduced signature or reduced form
of S. With the signature S is associated a group presentation

(1.2) (X1, Xr, al, bl, ag, bg Ix’ mr

X1X2 xralbla lb-I agbga lb-
The group defined by (1.2) is called the group ofthe signature and is denoted
by F(S). If m 1, then x will denote the unit element and may be dropped
from the generating system. Thus F(S) F(), and for many purposes
only reduced signatures need be considered. However, the operation of
p-localization, which plays a key role in this paper, may lead from a reduced
to a non-reduced signature, so non-reduced signatures must be considered.
Unless the context makes it necessary, we shall not distinguish pedantically
between a signature and its reduced form regarding two signatures S, T as
equal if S T.
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The Euler characteristic of S is the rational number

(1.3) X(S) 2- 2g + 1= 1

The signature S is degenerate if the associated reduced form satisfies one
of the following:

(a)
(b)

g =,O,r 1,
g O,r 2, m m2.

The group defined by a degenerate signature is cyclic of order 1 and can
be defined by another signature which is non-degenerate. Like signatures
which are not reduced, degenerate signatures may be ignored for many
purposes, but in this context they must be considered because they too
can arise as a result of p-localization.

2. Automorphisms of Simply Connected Riemann Surfaces
[6], [8], [11], [15], [26]

Let S be a non-degenerate signature. Then F(S) is a cocompact discrete
group of biholomorphic mappings of a simply connected Riemann surface
’. There are three simply connected Riemann surfaces, yielding three classes
of group. If S is the signature (1.1), then there are r distinct orbits of points
with nontrivial stabilizer, the orders of the stabilizers being ml, mr.

(a) If X(S) > 0, F(S) is finite of order 2/X(S) and acts on the Riemann
sphere. The only reduced non-degenerate signatures with X(S) > 0 are
(0;re,m), (0;2,2,m), (0;2,3,3), (0;2,3,4), (0;2,3,5) and those obtained from
them by permuting the periods.

(b) If X(S) 0, then F(S) is infinite and soluble, being either free abelian
of rank 2 or having a free abelian group of rank 2 as a normal subgroup
of finite index, the factor group being cyclic. The signatures S of Euler
characteristic zero are (1;), (0;2,2,2,2), (0;2,4,4), (0;2,3,6), (0;3,3,3) and

those obtained from them by permuting the periods. In this case F(S)
acts on the complex plane C.

(c) If X(S) < 0, F(S) can be realized as a Fuchsian group, that is a
group of linear fractional transformations of the complex upper half-plane,
{z C" 2i(z 2) < 0}.

If F1 is a subgroup of finite index in the group F(S), where S is non-
degenerate, then there is a signature $1 such that l"l r’(s), and we have

(2.1) X(S1) (r" F)X(S).

In fact, if X(S) < O, then X(S) coincides with the Euler characteristic of
F(S) in the sense recently introduced into group theory. However, if
X(S) > 0, it is twice the group-theoretic Euler characteristic. This unfortunate
fact is related to the topological properties of the spaces on which the
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groups act. The sphere is not contractible, while the other two spaces are.
The equation (2.1) is classical, and is known as the Riemann-Hurwitz relation.

3. Smooth Homomorphisms

Let G, G2 be groups, a family of subgroups of G. A homomorphism
j2 G ---> G2 is defined to be E-injective (or, injective on X) if, for every H

X, the restriction fin is injective. If fin is injective and K C H, then fix
is also injective; and, since Ker f tq H t(Ker f tq t-Ht)t-, flt-nt is
also injective. Thus"

(3.1) If X is a family of groups and X is a subfamily such that every
element of is a subgroup of a conjugate of an element of X, then f is
X-injective if and only iff is X-injective.

In particular, if X denotes the family of all finite subgroups of G, we
shall use the term finite-injective instead of X-injective. If p is a prime
number, we shall use the term p-injective for a homomorphism which is
injective on the family of all subgroups which are finite p-groups. Clearly:

(3.2) The homomorphism f is finite-injective if and only iff is p-injective
for every prime number p.

When Gl F(S) is the group of the signature (1.1), a homomorphism
f: G ---> G2 is called smooth if the order of f(x) is precisely mi for each

1, r. If p is a prime number, then f is called p-smooth if the order
off(xi) is divisible by the highest power p’of p which divides m,.. Clearly
again:

(3.3) f is smooth if and only iff is p-smooth for every prime factor p of
the product mm2 mr.
We require the following well-known property of groups defined by sig-

natures. It is straightforward if X(S) > 0, since only the groups listed in
2(a), (b) need be considered. If X(S) < O, it was initially proved by studying
the geometry of the group action, but in the past ten years or so elegant
algebraic proofs have appeared. See [13], [14],[17]. For classical proofs,
see [7], [15], [26].

(3.4) THEOREM. IfS is a non-degenerate signature, then every element
offinite order in F(S) is conjugate to a power of some x. Moreover, the
order of xi is precisely m. If X(S) < O, every finite subgroup of F(S) is
cyclic.

(3.5) COROLLARY. The identity id: F(S) -- F(S) is smooth if and only
if S is non-degenerate.

Proof. If S is non-degenerate, this is simply the second assertion of
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Theorem 3.4. If S is degenerate of the form (0;m), then the order of x is
1 m. If S is of the form (0;m,n), then F(S) is cyclic of order d (m,n),

so the order of both x and x2 is d. This is equal to both rn and n if and
only if rn n, i.e., if S is non-degenerate.

(3.6) THEOREM. Let S be non-degenerate. Then f: F(S) -- G is smooth
if and only iff is finite-injective.

Proof. Let be the family of groups {(x), (x,)}. By Theorem 3.4,
fis smooth if and only iffis E-injective. Again by (3.4), every finite subgroup
of F(S) is conjugate to a subgroup of an element of 5; if X(S) < O. This
proves the theorem if (S) < 0 using (3.1). If X(S) > 0, the groups can be
dealt with individually, and it can eagily be checked that the only smooth
homomorphisms are isomorphisms. Essentially the same argument shows

(3.7) THEOREM. IfS is non-degenerate, f’. F(S) -- G is p-smooth ifand
only iff is p-injective.

4. Automorphisms of Compact Riemann Surfaces

IfX is a compact Riemann surface and G is a finite group of automorphisms,
i.e., biholomorphic self-mappings, of X, then there is a group G of auto-
morphisms of the universal covering space X of X obtained by taking all
liftings of all elements of G. See [8], [15], [18], [23], [24].
We shall say that covers the Riemann surface automorphism group G.

In that case there is a homomorphism 4i of the covering group G onto G
such that the kernel of b is the fundamental group of the surface X, and
such that, if p denotes the covering map and the horizontal arrows denote
the group actions, the diagram below commutes:

(4.1)
GxX-X

GxXX

In this case " will be one of the three simply connected Riemann surfaces
(2) and will be the .group of a signature S. The kernel r(X) will be a
group of signature (g;), where g is the genus of X, and, by (2.1),

(4.2) x(s)l l 2- 2g.

Thus O is a Fuchsian group if and only if g > 2. Since r(X) has no
elements of finite order, 4 is smooth. Conversely, it can easily be shown
that every smooth homomorphism : F(S) G induces a group action of
G as a group of automorphisms of the Riemann surface ,’/ker 4i. Therefore:

(4.3) We obtain all Riemann surface automorphism groups (G, X) with
G finite and X compact by finding all smooth homomorphisms of groups
F(S) onto finite groups G.
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5. Localization

Suppose that p is a prime number and that S is the signature (1.1). For
1, r, let ci be the largest number such that pa, is a divisor of mi.

The signature

(5.1) Sp (g; pa, par)

is called the p-localization of S. If every period of S is already a power of
p, so that S So, then the signature S is said to be p-local.
Now the group F(S,) has the presentation

a b b, .,,.,pr(5.2) <x1, Xr, ag, xp

xx x’aba[-lb- agbgag’ ’-bg’-l}.
Since P’I m, we have (x;)m’ 1, SO the function defined on the generating
set by

bk-->b (i= 1 ..,r;j,k= 1, g)X "’> X, a - a,
can be extended to a homomorphism lp: F(S) --> F(Sp). We shall call lp the
p-localization homomorphism.

(5.3) THEOREM. If Gp is a finite p-group and 4: F(S) --> Gp is a homo-
morphism, then there is a unique homomorphism dpp: F(Sp) -- Gp such that
k dppolp.

Proof. Use the presentations (1.2), (5.2), for F(S), F(Sp) respectively.
If tkp exists as claimed, it must satisfy

(5.4) dpp(X;) dpp(lp(x,)) (x,), p(aj) (a./), kp(b’)

and, since the x’, a’, b’ generate F(Sp), this will determine bp uniquely.
To show that this does define a homomorphism, we must check that it is
compatible with the defining relators of (5.2). Now it is certainly compatible
with the long relator, because there is an exact match of the long relators
in (1.2), (5.2). We only need check that

dpp(x; )P’ 1,

i.e., that b(x)’ 1. Since 4(x7’") and the order of tk(x), being an
element of a p-group, is a power of p, it follows that 4(xi)’ 1. Thus
extends to a homomorphism as claimed. The usefulness of Theorem 5.3 in
studying Riemann surface automorphism groups is clear from the following
theorem.

(5.4) THEOREM. Let G be a finite nilpotent group and, for each prime
p, let Gp be its p-Sylow subgroup. For formal simplicity, let Gp {1} ifp
is not a factor of the order of G. Let 4): F(S) --> G be a homomorphism
and let hp: G --> Gp be the projection of G (as a product of its Sylow
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subgroups) onto Gp. Then dp is smooth if and only if (X,
for each p lmm2 m.

o ) is smooth

Proof. Using (3.3) we need only show that (hp b)p is smooth if and
only if $ is p-smooth.

1. If (hp b) is smooth, then hp($(x)) has order precisely p’, so, since
hp is a homomorphism, b(x) has order divisible by p,’and $ is p-smooth.

2. If the order of b(x) is divisible by p’, then so is the order of hp($(x)),
since the order of the kernel of hp is relatively prime to p. BUt

so (hp )p is smooth.
Theorem 5.4 reduces the study of nilpotent Riemann surface automorphism

groups to the study of smooth homomorphisms of p-local groups onto finite
p-groups. The set, which we shall denote by II(S), of prime factors of
mm2 m, plays a critical role, because, if p q II(S), then S has no
periods and every homomorphism from F(Sp) to a finite group is smooth.
Let Pl, Pk be any set of prime numbers including II(S). By Theorem
5.4, each smooth homomorphism b from F(S) to the finite nilpotent group

x x

determines a set of smooth homomorphisms

$p,: F(Sp,) --. Gp, (i 1, k)

such that, if y F(S) and g $p,(l,(y)),

then b(7) gig2 gk.

Thus one may obtain all smooth homomorphisms from F(S) to G by taking
all possible smooth homomorphisms from F(Sp) to the Sylow p-subgroups
of G.

6. The p-Frattini Series

Let G be any group, p a prime number. Let Gp be the subgroup generated
by all commutators and all pth powers of elements of G. Clearly Gp is a
characteristic subgroup and, if G is finitely generated, G/G is an elementary
abelian p-group. It is also the intersection of all normal subgroups of index
p, and is a generalization of the Frattini subgroup of a finite p-group. If G
has a presentation

(a, am R,(a), Rk(a))

then the presentation of G/Gp is obtained by adding the extra relators

-landaf (i,j= m).aiajai laj
We write (GP)p G, and inductively define G+ (GrP)". Then
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is characteristic in G and G/G is a finite p-group. Conversely, if N is any
normal subgroup of G such that G/N is a finite p-group, then N G’ for
some i, because a non-trivial finite p-group always has a normal subgroup
of index p, so that the series

must reach the unit element after a finite number of steps, Hence we have:

(6.1) THEOREM. G is residually a finite p-group if and only if
n. {1).

It is known that a free group is residually a finite p-group, and G. Baumslag
has shown that the fundamental group of an orientable surface is residually
free (see [2]). We deduce:

(6.2) THEOREM. A surface group (that is, a group isomorphic to F(g;)
for some g) is residually a finite p-group, for every prime p.

Let us now consider the p-Frattini series of F F(S,), where

(g;

is a reduced p-local signature. Let N max(al, a,) and assume that
X(S) < 0, so that, if g 0, r > 2.

(6.3) LEMlViA. If r > 2, the maximum period of F(S)

Proof. It is easily verified that F/F is elementary abelian .of rank
2g + r 1, and that none of the elements x or their conjugates belong
to F. Thus the maximum period of F is pV-.

(6.4) LEMMA. /f r 1, the number ofperiods of F is > 2.

Proof. If S (g; pU), then the long relation shows that x is in the
derived group, therefore in F. In this case, since we are assuming that
(S) < O, we must have g > 1, F/F has order p2. By Singerman’s Theorem
[25] the number of periods of F is p2 > 2.

F.

Combining 6.3 and 6.4 we deduce:

The maximum period ofF is strictly less than the maximum period of

We immediately have:

(6.5) TnOIEM. If S is a p-local signature with X(S) < O, then
has no periods if i is sufficiently large.
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Since the natural homomorphism of F on F/F’ is smooth if and only if
F’ has no periods, we deduce"

(6.6) COROLLARY. IfX(p) < O, then F(S,) covers infinitely many Riemann
surface automorphism groups which are finite p-groups.

(The number is infinite because each F’ has finite index in the one before,
and F(S,) is an infinite group. Thus all the terms ofthe series Ff are distinct).

(6.7) COROLLARY.
a finite p-group.

If S, is a p-local signature, then F(Sp) is residually

Proof. Suppose k is such that F is a surface group. Then F is residually
a finite p-group by (6.2), so, by (6.1) the intersection tqT= (F)’ is trivial,
and F is residually a finite p-group, again by (6.1). This proves the result
if X(S) < O. If X(Sp) > 0, then F(S) is a finite p-gro.up, being either a
cyclic group of prime power order or a dihedral 2-group.

7. Relationship Between the Lower Central Series and Localization

Let S be the signature (1) and let II(S) denote, as before, the set of prime
divisors of the periods of S. Let F(S) denote the characteristic subgroup
of F generated by all the elements of F(S) of finite order, so that, by (3.4)

I’r(S) normal closure (x, x).

7.1 LEMMA. For all primes p, ker lp C F:(S), and ker l F(S) ifand
only ifp q I-I(S).

Proof. F(S) is obtained from F(S) by adjoining the relators
pal pr

X Xr

(7.2) LEMMA. T(F) consists of those elements of F that are mapped
on the unit element by all homomorphisms of F onto nilpotent groups. In
particular, F is residually nilpotent if and only if 3,(F) {1}.

SO

ker l normal closure (x*, xf’) C F:(S).
If, in particular, p is not a divisor of any of the periods, then al a2

tXr 0 and ker l F:(S). Now consider the lower central chain

F 3/1(F) 3/2(F) where ’)ti+l(F) IF, ’)/i(F)].

Let 3(R)(F) fq= 3,n(F). The group 7(R)(F) is referred to as the nilpotent
residual.
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Proof. If x y=(F) then x yk(F) for some k. The canonical homo-
morphism of F onto the nilpotent group F/y(F) does not map x on 1.
Conversely, if b: F G, b(x) 1, G nilpotent-of class k, then 1
’k+ (G) (’k+ l(r)), so x q +(r).

(7.3) THEOREM. If lp is the p-local&ation map and H(S) denotes the
set ofprime factors of mlm2 m, then ,/(F(S)) pen(s ker lp.

Proof. We prove that yoo(F(S)) fqp ker lp, where p ranges over all
primes. This will. do, since, by (7.1), ker l, C ker lq if q II(S).

1. Suppose that x T=(F(S)). Then there is a nilpotent group G1 and
a homomorphism b F G such that b(x) 1, by (7.2). Since F is
finitely generated, so is b(F), so by a theorem of Gruenberg [9], there is a
further homomorphism k: b(F) G2, where G2 is a finite nilpotent group,
such that (b(x)) 1. Since G2 is a product of p-groups, there is a homo-
morphism to: G2 Gp of G2 onto one of its Sylow subgroups G, such
that to((t(x))) 1. By Theorem 5.3, x ker lp.

Conversely, suppose that x ker lp, for some p. Then l,(x) F(S,) and
lp(x) 1. Since F(Sp) is residually a finite p-group, by (6.7), there is a
homomorphism : F(Sp) G,, where Gp is a finite p-group, such that
k(l,(x)) 1. Since Gp is nilpotent it follows from (7.2) that x

(7.4) THEOREM. The group F(S) is residually nilpotent if and only if S
is p-local for some p.

Proof. If F(S) contains elements u of order p and v of order q, where
p and q are distinct primes, then, on replacing v by a conjugate if necessary,
we may assume that u and v do not commute. (In F(S) the centralizer of
an element of finite order is finite cyclic, so there are plenty of conjugates
of v which do not commute with u). If maps F(S) onto a finite nilpotent
group G, then, since G is the product of its Sylow groups, b(u) commutes
with b(v). This being true of all homomorphisms of F(S) onto nilpotent
groups, we conclude that uvu-v- does not belong to y(F(S)), so F(S) is
not residually nilpotent.

Conversely, if S is p-local, then F(S) is residually a finite p-group by
(6.7), so F(S) is residually nilpotent.

8. Covering Groups of Nilpotent Riemann Surface Automorphism Groups

In this section we characterize precisely those signatures S for which
F(S) can cover a nilpotent group of automorphisms of Riemann surface.
Since the finite groups F(S) with X(S) > 0 cover only themselves, we shall
assume that X(S) < O.
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(8.1)

(i)

(ii)
(iii)

THEOREM. The following are equivalent.

F(S) covers at least one nilpotent Riemann surface automorphism
group.
Sp is non-degenerate for all p II(S).
The intersection yoo(F(S)) of the lower central series is torsion-free.

Proof. (ii) implies (i). If X(S,) < 0, there exists a finite p-group Gp and
a smooth homomorphism top: F(Sp) -- Gp by (6.6). If X(Sp) > 0 and Sp is
non-degenerate, then F(S) Gp is itself a finite p-group and the identity
map Sp is a smooth homomorphism, by (3.5). Thus for all p II(S) we
have smooth homomorphisms q: F(Sp) - Gp and we can combine these
as at the end of 5 into a smooth homomorphism onto the product of the
groups Gp.

(i) implies (iii). If F(S) covers the nilpotent automorphism group G, then
there is a smooth homomorphism $: F(S) --> G. If G is nilpotent of class
k, then

$(’Yk+,(I"(S))) ’Yk+ (G) {1}

SO )%(l"(S)) C ’Yk+ l(1-’(S)) C ker $. Since ker $ is torsion-free, y=(F(S)) is
torsion-free.

(iii) implies (ii). Suppose Sp is degenerate. Thenthe order of one of the
xi is less than p’ by (3.5). Then x’[’’/p ker Ip. Also if q is a prime different
from p, then mi/p is divisible by any power of q that divides m, so
x’[’’/p ker lq. Thus x’]’’/p is an element of order p which belongs to all the
kernels of localization homomorphisms, therefore to 3,oo(F(S)) by (7.3). Thus
y=(F(S)) is not torsion-free.

In view of Theorem 8.1 we call S nilpotent-admissible if every Sp is non-
degenerate. If S is nilpotent-admissible, it may happen that F(S) covers
only one nilpotent Riemann surface automorphism group. For instance, the
only group covered by the signature

(0; 2, 2g + 1, 2(2g / 1))

is the cyclic group of order 2(2g + 1), discovered by Wiman and Harvey
[10] to be the largest cyclic group of automorphisms of a surface of genus
g > 2. Our next result shows that the number of nilpotent automorphism
groups covered by a nilpotent-admissible signature is either or countably
infinite.

(8.2) THEOREM. Suppose that S is a nilpotent-admissible signature.
Then one of the following holds.

(i) X(Sp) > 0 for all p, and there is only one nilpotent Riemann surface
automorphism group covered by F(S). In this case the lower central series
becomes constant after a finite number of steps. All the terms of the series
have finite index, only the constant one being torsion-free.
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(ii) X(Sp) < 0for at least one p, there are infinitely many distinct Riemann
surface automorphism groups covered by F(S) and all the terms of the
lower central series are distinct.

Proof. If X(S,) > 0, then either Sp (0;p,p) orp 2 and S,
(0;2,2,2"). The only smooth homomorphisms in these cases are the identity
maps. Therefore if S is such that X(Sp) > 0 for all p II(S), there is only
one smooth homomorphism q,: F(Sp) --> Gp for each p, therefore only one
smooth homomorphism b of F(S) to a finite nilpotent group, which must
be the product of the F(Sp).

All the localizations being finite, and only finitely many of them non-
trivial (since g must be 0), it follows that ker l, yoo(F(S)) has finite index.
Therefore there are only finitely many terms in the lower central series.
Only the last one is torsion-free, otherwise we should have more than one
finite nilpotent group covered by F(S).

If, on the other hand, X(S) < 0 for some p, then there are infinitely
many smooth homomorphisms from F(S,) to different finite nilpotent p-
groups (Corollary 6.6). Combining these as at the end of 5 with at .least
one homomorphism qq: r’(Sq) --> Gq for q p, q E F(S), we find infinitely
many nilpotent Riemann surface automorphism groups covered by F(S).

In this case the lower central series of F(S,) does not become constant,
for if it did, the group, being residually nilpotent, would be actually nilpotent.
This cannot be, because it is known to have trivial centre. It follows
that the lower central chain of F(S) does not become constant. For if
yi(F(S)) yi+(F(S)), then, applying the localizaton homomorphism,
we should have )ti(r’(Sp)) yi+(’(Sp), which we have just seen is not so.
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