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1. Introduction

De Leeuw introduced and studied an harmonic analysis for operators in
[2] and [3]. With each bounded linear operator T on a homogeneous Banach
space B on the circle group T, he associated a formal Fourier series,

(1.1) T r(T)

In [2], he established formal properties of the series (1.1) and remarked
that analogues of all the results of Sections 2-5 of [2] are valid for any
compact abelian group. In Section 6 of [2], De Leeuw obtained an extension
to operators of the first theorem of F. and M. Riesz. This classical theorem
asserts that a measure whose Fourier Stieltjes transform vanishes on the
negative integers must be absolutely continuous. In this paper we obtain
an extension of the above theorem to operators on certain homogeneous
Banach spaces on a compact abelian group with ordered dual.

In [3], De Leeuw restricted himself to the case where B is L2(T). He
extended the notions of support and analyticity to operators and established
an analogue for operators of the second theorem of F. and M. Riesz. This
theorem asserts that a function having all its negative Fourier coefficients
zero, cannot vanish on a subset of T having positive Lebesgue measure,
unless it is zero almost everywhere. In this paper we extend the notions
of support and analyticity to operators on B, where B is C(G) or one of
the LP(G), 1 < p ( oo, and G is a compact abelian group with ordered
dual. We use an example due to De Leeuw and Glicksberg [4] to show
that a natural generalization of the second F. and M. Riesz theorem for
operators on L2(G) fails, unless some condition is imposed on the ordering
of F, the dual group of G. The condition we impose is motivated by an
extension of the classical theorem of F. and M. Riesz to measures on a
compact abelian group with ordered dual due to De Leeuw and Glicksberg
in [4]. Our generalization of the second theorem of F. and M. Riesz for
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operators on B where B is C(G) or one of the L(G) appears to be new
even for G T, except for the case p 2 which was established by
De Leeuw in [3].

2. Operators on a Homogeneous Space and Their Fourier Series

In this section, we list the main definitions and results which are needed
in what follows. These definitions and results are the natural generalizations
of the corresponding concepts and results from [2]. The proofs are similar
to those in [2] and hence are omitted.
Let G be a compact abelian group and let F denote the dual group of

G. The translation operator R is defined by

(Rf)(y) f(y x), y G.

A homogeneous Banach space B is a dense linear subspace of LI(G)
such that B is a Banach space under a norm I1 and the following hold:

(i) Ilflll < Ilfll, f B.
(ii) Iff B, then Rf B for every x G and IIRflI Ilfll.
(iii) The functions in B translate continuously; i.e., iff B, then

limllRf- flln 0.
x---*0

We also assume that B is closed under multiplication by characters of
G, that is, iff B and , F, then the function Mf, defined by

(Mf)(x) (x, r)f(x), x G,

is also in B. It can be easily seen by using Closed Graph Theorem that
each M is a continuous operator on B.
Let .T denote the Banach algebra of bounded linear operators on B. By

an operator on B we shall always mean an element of .T. An operator T
on B is said to be invariant if TR RT for each x in G. It is well known
(see for example, [13]) that if T is an invariant operator on B then there is
a unique function X on F such that (Tf)"(/) X(y)f(y) for every f E B
and 3’ F. Here f denotes the Fourier transform off. The set of invariant
operators on B is denoted by .To. It is easily seen that .To is a closed
subalgebra of .T. An operator T in .T is said to be almost invariant if

limllTR RTII O.
x---*0

The set of almost invariant operators is denoted by .T,. This set of
operators has also been investigated by Loebl and Schochet in [14]. It is
easily seen that .T, is a closed subalgebra of .T.
For 3’ F, we denote by .Ty the subset of .T consisting of all the operators

T satisfying TR (x, y)RT, x G.
An operator T is said to be simple if T v for some 3’ F. If 0
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denotes the identity in F, then 0 is precisely the set of invariant operators,
and this agrees with our earlier notation.

LEMMA 2.1. Let T . Then the following are equivalent.

(i)
(ii)
(iii)

T ,.
There is U in o s.uch that T UM.
There is V in o such that T MV.

Let T . Since the functions in B translate continuously, it can be
easily seen that the map G ---) defined by (x) R_TRx is continuous
in the strong operator topology of . If T then the map is also
continuous in the norm topology of .

Following De Leeuw [2], we define the Fourier transform of an operator
T as an operator valued function on F, given by the Bochner integral

[Tr(T)](f) fo.(-x, T)[R_TR](f) dx, f B.

By the remarks in the previous paragraph, the integral on the right is well
defined. For T ., we have the representation

Try(T) f( x, T)R_ TRx dx.

Using the translation invariance of the Haar measure on G, it can be
easily seen that the map Try: - is a projection of onto . With
each T , we associate a formal series EyrTry(T), called the Fourier
series of T. It is easily seen that if T then zrv,(T) T if y’ y and
zr,(T) 0 ify’ y.
To study the summability properties of the Fourier series of an operator

T , we first define the convolution of a measure /z M(G) and an
operator T . We remark that this definition has also been considered
by Forelli [7] in a more general set up. For f B, we .define

(tz * T)(f) fRTg_fdlz(x).

It is easily seen that the operator/z T defined above belongs to . Also
/z, T , ifT ,.

PROPOSITION 2.2.

(i)
(ii)
(iii)

Let ’ M(G) and T Sf,. Then:

I1 * TII < Iltzll IITII.
zrv(/x T) (3,)zrv(T).
If g L(G) is such that Mg , where

(Mf)(x) g(x)f(x) a.e.,

then M,.g and Mg M,.g.
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For the circle group T, De Leeuw [2] proved the C summability of
the Fourier series of an operator T ,. For arbitrary G, we replace the
F6jer kernel by a bounded approximate identity {e}1 of LI(G) consisting
of trigonometric polynomials and define the notion of e-summability.

DEFINITION. The Fourier series Ever,r(T) of an operator T is said
to be e-summable to T in the strong operator (norm) topology of , if
given e > 0 and f B, there is an a0 I such that for all t > a0,

(y)Trv(T)(f) TfllyF B

Observe that XrTr(T) is e-summable to T in the strong operator (norm)
topology if and only if e T converges to T in the strong operator (norm)
topology.
The following proposition has been proved by several authors; see, for

example, [7] and [14], in varying degree of generality.

PROPOSITION 2.3. Let {ea}aI be an approximate identity ofLl(G) satisfying
e > 0 and Ile,lll 1 for all a I. Then e T converges to T in the strong
operator topology and if T L, then e T converges to T in the norm
topology.

Proposition 2.3 shows that is an essential Banach L(G)-module. This
has also been observed by Forelli [7] and Loebl and Schochet [14]. By
choosing an approximate identity ofL(G) as above, consisting of trigonometric
polynomials, it is easily seen that ’ is the norm closed subalgebra of
generated by the set 0 of invariant operators and the multiplication operators
{My F}. Furthermore, it follows that if T , then T belongs to the
closed linear subspace of generated by {rv(T) y F}. Finally we remark
that all the formal properties of the Fourier series of an operator T ,
proved in [2] have their valid analogues for arbitrary G. The proofs are
essentially the same and the reader should consult [2] for any such property
which might be used in the following sections but has not been mentioned
in this section.

3. The First F. and M. Riesz Theorem

As a generalization of the first F. and M. Riesz Theorem, De Leeuw [2]
proved the following theorem for almost invariant operators.

THEOREM D1. Let T be an almost invariant operator on C(T) such that

T(C(T) +)

_
C(T)_.

Then T must be a compact operator. Here, C(T) is the space ofcontinuous
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complex valued functions on the circle group and C(T)/ and C(T)_ are
defined by

C(T)+ {f C(T):f’(n) 0 ifn < 0},

C(T)_ 0c C(T) :j(n) 0 ifn >0}.

De Leeuw also observes that the above theorem remains true if C(T) is
replaced by L(T). We observe that the above theorem is not true, if C(T)
is replaced by an arbitrary homogeneous Banach space on T. For example,
consider L’(T), 1 < p < oo. It is well known (s..ee, for example [5], page
94) that the operator T defined by Tf(t) ’nof (n) e’ a.e. for T and
f LP(T), is an invariant operator on L’(T) such that T(LP(T)/) _C L’(T)_.
However, T is not a compact operator.

It can be easily seen that the theorem will remain true for operators on
any homogeneous Banach space B on T if all invariant operators on B are
given by convolution with measures on T. The invariant operators on C(T)
or L(T) are all given by convolution with measures on T. For our gen-
eralization of De Leeuw’s theorem for operators on a homogeneous Banach
space B on a compact abelian group G with ordered dual, we shall assume
that all the invariant operators on B are given by convolution with finite
Borel measures on G.
For the proof of our theorem we shall depend on the generalizations of

the classical theorems of F. and M. Riesz due to De Leeuw and Glicksberg
[4]. We recall the terminology necessary for us.
The order on F is given by a continuous homomorphism xt,. F R,

where R denotes the additive group of real numbers. This map induces a
unique continuous homomorphism b R G given by

(b(t), 2,) exp(i(y)t) for t R and y F.
and $ will have this meaning for the rest of this paper.
Let/z M(G).

()
(2)

xI, is said to be alp-analytic if (7) 0 for all 3’ such that *(T) < 0.
/z is said to translate continuously in the direction of dp, if
limt._.011/z, tzll 0, where /zt is the measure given by /z,(E)
/z(E + b(t)) for every Borel subset E of G.

We say that a measurable subset E of G is null in the direction of if
for all x E, the set{t R x + b(t) E} has Lebesgue measure zero.
E will be called thick in the direction of t if for each x E, the set
{t R :x + b(t) E} has positive Lebesgue measure.

(3)

(4)

tz is said to be absolutely continuous in the direction of if
I/zl(E) 0 for every Borel set E which is null in the direction of

/z is said to be non-vanishing in the direction of if I ,I(E) > 0 for
each Borel subset E of G which is thick in the direction of and
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for which I I(E + th(R)) > 0. De Leeuw and Glicksberg [4] proved
the following.

THEOREM DG-1. Let tx M(G) be a th-analytic measure on G. Then
is absolutely continuous and nonvanishing in the direction of .
We will need the following corollary of this theorem.

COROLLARY DG-1. Let tx M(G) be such that for some Yo F,
(),) 0 for all ), satisfying (’y) < (3’o) or 0’) 0 for all ), satisfying
(y) > 0’o). Then Iz is absolutely continuous in the direction of

For our formulation of the first F. and M. Riesz Theorem for almost
invariant operators on a homogeneous Banach space B on G, we introduce
the notion of b-compactness.
A subset F of B is said to be alp-compact if it satisfies the following

conditions:

(i) F is a norm bounded subset of B.
(ii) Given e > 0, there exists a neighbourhood U of 0 in R such that

[If, flls < e for all f F and all t U. Here ft is the function
in B given by

ft(x) f(x + 6(t)), x a.
We observe that a subset F of B is compact if F satisfies condition (i)

above, and
(ii’) Given e > 0, there exists a neighbourhood V of 0 in G such that

for all f F and x V, IIf fll < e (see [6]).
It is immediate from the definition of 6-compactness that every compact

subset ofB is also 6-compact for any order introduced by a homomorphism
of F into R. However, there may be orderings on F for which not every

41-compact subset of B is compact. For example, let G T x T and
Z x Z R be defined by (m, n) m. Then b(t) (eit, 0) for every
tR.

Let F {g C(G): g(e’, e) f(e"), f C(T) and IlY]I < 1.

It can be easily seen that F is a 6-compact but not a compact subset of
C(G). There is one situation, however, when every 6-compact subset of
B is also compact. This happens when the mapping 6 is an open map. In
this connection it is important to note that 6 is an open map if it is onto
(see (5.29), [8]). We also remark that for the circle group T and any nontrivial
homomorphism of Z into R, the mapping 6 is always onto. Thus for any
nontrivial ordering introduced by a homomorphism on Z, 6-compactness
is equivalent to compactness for any subset of a homogeneous Banach
space on T.
A linear operator T on a homogeneous Banach space B on G is said to
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be 4-compact if T maps norm bounded subsets ofB into tb-compact subsets
of B. It is obvious that a b-compact operator is necessarily continuous.
For a homogeneous Banach space B on G, we define B/ and B_ by

B+ {f B f^(y) 0 for all /such that (y) < 0}
and

B_ {f B f"(y) 0 for all 3’ such that (y) > 0}.

We are now ready to state our generalization of the first F. and M. Riesz
Theorem for operators on a homogeneous Banach space B on G.

THEOREM 3.1. Let B be a homogeneous Banach space on G such that
o is isometrically isomorphic to M(G). Let T be an almost invariant
operator on B such that T(B/) C_ B_. Then T is alp-compact.

The proof of Theorem 3.1 depends on the following three lemmas.

LEMMA 3.2. Let B be a homogeneous Banach space on G such that o
is isometrically isomorphic to M(G). The invariant operator on B defined
by a measure Ix M(G) is alp-compact ifand only if lz is absolutely continuous
in the direction of

Proof. Let/z be absolutely continuous in the direction of b. By Proposition
2.4 of [4],/z translates continuously in the direction of b. Let F be a norm
bounded subset of B bounded by K, say. Then/z F is also norm bounded.
Given e > 0, let U be a neighbourhood of 0 in R such that

Then

I1, 11 < elK for all U.

I1( * f)t * fll IIt *f -/x fll
II/t 11 Ilfll

< e for all U andf F.

Therefore,/z B is a b-compact subset of B and the operator on B defined
by/x is b-compact.

Conversely, suppose/z defines a b-compact operator on B. Let F be the
unit ball of B. Then, for any e > 0, we can find a neighbourhood U of 0
in R such that

II(tx * f)t /x J]IB < e for all f E F and t U.

Then

II/xt- /xil sup I1 *f-/z. flln < e for all t U.
fF
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Therefore,/z translates continuously in the direction of b. Again, Proposition
2.4 of [4] implies that/x is absolutely continuous in the direction of b.

LEMMA 3.3. The set of almost invariant alp-compact operators on a ho-
mogeneous Banach space B on G is a closed two sided ideal in .

Proof. Let T be an almost invariant b-compact operator on B and let
S .. Clearly TS is also a b-compact operator. We now prove that ST
is also a @compact operator. For this, let F be a norm bounded subset of
B, bounded by K. Given e > 0, let U be a neighbourhood of 0 in R such.
that

[[(Tf)t Tfl[s < for allf F and t U,

and

Then

I[R6(t)SR-6(t Sll < 2KIITII
for all t U.

II(SZf),- SZfll I[(STF)t- S((Tf)t)[[ + IIS((TT),) STTII
< IIR,(,S- SR_,(t[[ IlZfll + IISII II(Zf),-
<e forallt U.

This proves the b-compactness of ST. The fact that the set of almost
invariant b-compact operators is a closed linear subspace of L. is easily
seen.
The following lemma is an easy consequence of the definition of the

Fourier transform of an operator.

LEMMA 3.4. Let E and F be closed translation invariant subspaces of
a homogeneous Banach space B on G and let T 0 be such that T(E)
C_ F. Then 7rv(T)(E) C_ F for each 3/ F.

ProofofTheorem 3.1. Let T be such that T(B/) C_ B_. By Lemma
3.4 we get that .n’./(T)(B+) C_ B_ for every 3/ F. Since 0 is isometrically
isomorphic to M(G), Lemma 2.1 implies that there exists a measure/zv
M(G), for each /, such that zrv(T) MvC,, for each y, where C denotes
the operator of convolution by the measure/zr. Now for 3/’ F,

Therefore M,/C,,(T’) v(Y’)(Y + Y’).
For each 3/ F, let y0 0 if (y) > 0 and 3/0 -3’ if (y) < 0. Then,

if 3/’ F is such that (y’) > (y0) > 0, we have

zrv(T)(3,’) (3")(3’ + 7’) 0,
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because y + y’ B+. (If (y) > O, (y + 3/’) > 0 and if (y) < 0 then
again (y + y’) (y’) qt(y0) > 0.)

Therefore, y(y’) 0 for all y’ F such that (y’) > *(y0). By Corollary
DG-1, /xy is absolutely continuous in the direction of . By Lemmas 3.2
and 3.3, the operator MvC,, cry(T) is a -compact operator for each
y F. Since T lies in the closed linear span of the set {cry(T) y F}, it
follows from Lemma 3.3 that T is q-compact. This completes the proof of
the theorem.

4. The Second F. and M. Riesz Theorem

An operator T on a homogeneous Banach space B on G is said to be
-analytic if ry(T) 0 for all such that (y) < 0. We denote the set of
all @analytic operators by M. We state below some properties of @analytic
operators. The proofs of these facts for the case G T and B L2(T)
in [3] are easily generalized to our general situation and we omit the proofs.

1. Let f be an integrable function on G such that My . Then My is
@analytic if and only iff(y) 0 for all y such that (y) < 0.

2. M is a subalgebra of .Y closed in the strong operator topology of .Y.
3. The subalgebra M is the strongly closed subalgebra of M generated

by the operators in -Y0 and the set {My: (y) > 0}.

In the following proposition we give a characterization of b-analytic
operators. We remark that the proposition is a special case of Theorem 2.3
in [1]. De Leeuw [3] had proved it in the case G T and B = L2(T). We
give a simple proof independent of the arguments in [1].

PROPOSITION 4.1. Let B be a homogeneous Banach space on G and

B,, {fC B .(y) 0for W(’y) < W(y’)}

for each y’ F. An operator T on B is 6-analytic if and only if T(B) C_
B for all y F.

Proof. Let Y0 F be such that W(Y0) > 0 and let U 0. If Tis
My0 or U then it is clear that T(By) C_ By for all y F. It now follows from
property (3) above that if T is S-analytic operator on B then T(By) C_ By
for every 3’ F.

Conversely, suppose T is an operator on B such that T(Bv) C_ By for all
y F. Since each By is a closed translation invariant subspace of B, Lemma
3.4 implies that for every y’ F,

r(T)(B) C_ By for all y F.

Suppose W(y’) < 0. We shall prove that ry,(T) 0. Since trigonometric
polynomials are dense in B, it is enough to show that zr(T)(y) 0
for every y F. Since ry,(T) Ley,, Lemma 2.1(iii) implies
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C(3, + ") for a scalar C depending on 3’. Since w,(T)(,) By and
(Y + Y’) < (3), we conclude that C 0 and hence rv,(T)(y) 0. This
completes the proof of the proposition.
We now define the support and cosupport of an operator T on B where

B is C(G) or U’(G), 1 < p <
First, we consider operators on C(G). For any subset M of G, we denote

by M, the complement of M in G and by C(M) the subspaee of C(G)
defined by

C(M) {f C(G) Support f C_ M}.

Let T be an operator on B. The support of T is defined to be the smallest
closed subset K of G such that Tf 0 for every f C(KC).
The cosupport of T is defined to be the smallest closed subset K of G

such that Tf C(K) for every f C(G).
We now consider operators on L’(G), < p < oo. For a measurable

subset M of G, L’(M) denotes the subspace of L’(G) defined by

L’(M) {f LP(G) f 0 a.e. on M}.

A measurable subset M of G is said to be a supporting set for an operator
T on U’(G) if T(L’(MC)) 0. Let m be the Haar measure on G. We define
the constant sz by

sz inf {m(K) K a supporting set for T}.

We can show (cf. [3]) that there is a supporting set K for T such that re(K)
Sr and if M is any supporting set for T then m(K\M) 0. Such a

supporting set K is called a support for T.
Cosupport of T is similarly defined. A measurable subset K of G is said

to be a cosupporting set for T if T(LP(G)) C_ LP(K). We define.the constant
csr by

csr inf{m(K) K a cosupporting set for T}.

Once again, we can show that there is a cosupporting set K for T such
that m(K) csr and if M is any cosupporting set for T then m(K\M)
0. Such cosupporting set K is called a cosupport for T.
For the circle group T with the usual ordering on Z, De Leeuw [3]

established the following generalization of the second F. and M. Riesz
Theorem.

THEOREI D2. Let T be an analytic operator on L2(T). If T # 0, then
T is both a support and a cosupport for T.

In this form, this theorem can not be generalized to compact abelian
groups with ordered duals, unless some condition is imposed on the ordering.
We give below an example of a nonzero S-analytic operator T on L2(G)
such that G is not a support for T.
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Example. Let G T {0, 1}, where {0, 1} is the discrete group of
two elements under addition modulo 2. Then F Z {1, -1}. Consider
the order on F given by the continuous homomorphism Z (1, -1}
---> R defined by (n, j) n. Then the induced map b R ---> T {0, 1}
is given by b(t) (eit, 0). In this case b(R) T {0} To. Let
f C(T) be such thatf - 0 andf(n) 0 for n < 0. Define g: T
{0, 1} ---> C by = f(t) if,]=O,g(t, j) 0 ifj= 1.

Then g C(G), g 0 and support g C_ To. Also (m, k) f(m).
Hence (m, k) 0 if (m, k) < 0. Therefore Mg is a 4-analytic operator

on L2(G) but support Mg support g C_ To which implies that G is not a
support for Mg.
The condition which we impose on F for our generalization of the Theorem

D2 is motivated by the following theorem of De Leeuw and Glicksberg [4].

THEOREM DG-2. Suppose b(R) is dense in G. Let tx be a alp-analytic
measure on G such that either

(i)
(ii)

Ix vanishes identically on an open subset of G, or

Ix is absolutely continuous and vanishes identically on a Borel set
ofpositive Haar measure.

Then ix O.

We shall need the following corollary of this theorem.

COROLLARY DG-2. Suppose b(R) is dense in G. Let Ix be a measure on
such that () 0 whenever () < (Yo) or () 0 whenever ()
(Yo). If either

(i)
(ii)

Ix vanishes identically on an open subset of G, or
Ix is absolutely continuous and vanishes identically on a Borel set
of positive Haar measure

then Ix O.

We are now ready to state and prove our generalization of the second
F. and M. Riesz Theorem. We remark that our theorem has wider scope
than that of De Leeuw as it applies to operators on LP(G), < p < or
C(G) even for G T.

THEOREM 4.2. Suppose b(R) is dense in G. Let T be a nonzero alp-analytic
operator on LP(G) or C(G), < p < . Then G is both a support and a
cosupport for T.
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The proof of this theorem is similar to that of Theorem 5.1 in [3].
We start by proving the following:

LEMMA 4.3. (1) If K is a measurable subset of G of positive Haar
measure and 3/ F, then for < p < ,

(i)
(ii)

(2)

(i)
(ii)

pL(G) f U’(K) {0}, and
LP(G) + L’(K) is dense in LP(G).

If K is a closed subset of G with nonvoid interior, then

C(G) f’) C(K) {0}, and
C(G) + C(K) is dense in C(G).

Proof. (1) Part (i) follows from Corollary DG-2. We prove (ii) by con-
tradiction. Suppose L(G) + LP(K) is not dense in LV(G). Then there is
an f Lq(G) (q is the conjugate index of p) such that f 0 a.e. and

g(x)f(x) dx 0 for g . L(G)

or g LP(K). This implies that f(y’) 0 for (7’) > (Y) and f 0 a.e.
on K. It follows from Corollary DG-2 thatf 0 a.e., which is a contradiction.

(2) Part (i) again follows from Corollary DG-2 and we prove (ii) by
contradiction. Suppose Cv(G) + C(K) is not dense in C(G). Then there
exists a nonzero measure/ M(G) such that (y’) 0 for (y’) > (y)
and/x vanishes identically on the interior of K. It follows from Corollary
DG-2 that/x 0, which is a contradiction.

This completes the proof of Lemma 4.3.

Proof of Theorem 4.2. Let us begin by considering the case when T is
a b-analytic operator on LP(G), < p < .
We first show that G is a support for T. Suppose not, then there exists

a measurable subset K of G of positive Haar measure such that T(LP(K))
{0}. By the @analyticity of T and Proposition 4.1,

T(L(G) + LP(K)) C_ L(G) for all 3/ r.
By Lemma 4.3, T(LP(G)) C_ L(G) for every 3/ F. Since

L(G) {0},
,yF

it follows that T 0, which is a contradiction. Hence G is a support for
T.
Next, suppose that G is not a cosupport for T. Then there exists a

measurable subset K of G such that K has positive Haar measure and
T(LP(G)) C_ LP(K). By Proposition 4.1,

T(L(G)) C L(G) L’(K) for all 3/ F.
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Since K has positive Haar measure, Lemma 4.3 implies that

L(G) f L’(K) {0}
and hence T(L(G)) 0. Since this is true for all y F, it follows that
T 0, which is a contradiction.
Proceeding exactly as above, we obtain the proof for S-analytic operators

on C(G). We omit the details.
This completes the proof of Theorem 4.2.
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