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ON GRAPHS WITH EDGE-TRANSITIVE
AUTOMORPHISM GROUPS

BY
BERND STELLMACHER

In [4], Goldschmidt considered groups G with finite subgroups M, and M,
and the following three properties:

() G= <M, ,M,>.
(ii) No non-trivial normal subgroup of G is contained in M, N M,.
(i) |M/M,N M, =3fori=1,2.

He was able to give the exact structure (the isomorphism classes) of all possi-
ble pairs of subgroups M, and M,. In his proof he used a graph theoretical ap-
proach:

Any group G with properties (i) and (ii) operates as an edge-transitive group
of automorphisms on a graph I' whose vertex set is

(Mix/x € G} U {Myx { x € G}

and where two vertices are adjacent iff they have non-empty intersection. G
operates on I' by right multiplication, the vertex-stabilizers in G are conjugate
to M, or M,, and the edge-stabilizers are conjugate to M, N M, (see [4, (2.6)]).

Since G is a homomorphic image of the amalgamated product of M, and M,
with respect to M, N M,, one can study this amalgamated product and the
corresponding graph I'. Serre [9] has shown in this case that I is a tree. Hence
the above problem leads to the investigation of edge-transitive groups of auto-
morphisms of the trivalent tree with finite vertex-stabilizers.

We use this method to investigate a more general situation. We make the
following hypotheses.

Hypothesis A. Let G be a group and M, and M, be finite subgroups of G
such that:
1) G=<M,M,>.
(2) No non-trivial normal subgroup of G is contained in M, N M,.
3 M/M, NM| =2+ 1,n=1,i=1,2and max{n,, n,} > 1.
(4) There exists a normal subgroup A, in M, such that
N/R = L,2")' forR = N.ew, M, N M7) and {i,j} = {1,2}.
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212 BERND STELLMACHER

Hypothesis B. Let I" be a connected graph and G be an edge-transitive
group of automorphisms of I" such that for o € I':

(@) G, is finite.
() |A(@]| = 2" + 1, n, = 1 and max{n.,ns > 1 for B € A(w).

(¢) There exists a normal subgroup N, in G, such that N2t = L[,(2"9’,

Here G. denotes the stabilizer of o in G, A(«) the set of vertices adjacent to
o, and N5 the permutation group on A(w) induced by N,. Any graph in this
paper is undirected and without loops and multiple edges.

The condition max{n,,n,} > 1 (resp. max{n,, nsg} > 1) only excludes cases
treated in [4], and condition (b) and (c) imply that N, is transitive on A(a).

Let g, g, and g, be powers of 2, and let Aut(L.(q,)) | Aut(Lx(g2)) be the
wreath product of Aut(L,(q,)) with Aut(L,(g.)) with respect to the natural
permutation representation of L,(g,). We define:

¥ = {LAq1) X LAq2), Aut(LAq,)) | Aut(L(q2)), max{g:,q.} > 1; Ls(q),
SpAq), Gq), @ > 2; U«q), *DAq), J}.

Let X be a group in.%. If X is not the wreath product, then X contains exact-
ly two conjugacy clases of maximal 2-local subgroups which contain Sylow
2-subgroups of X. Let X, and X, be representatives for these two classes in X,
If X is the wreath product, then there exist exactly two classes of 2-local sub-
groups which contain Sylow 2-subgroups of X and fulfil (3) and (4) of
Hypothesis A. In this case let X; and X, be representatives for these classes.

DEFINITION. A pair of groups {M;, M.} is parabolic of type X for X € ¥,
iffori = 1,2,

(*) X is not the wreath product, and M, is isomorphic to a subgroup of
Nauxy(X,) which contains X, or

(»*) X is the wreath product, and M, is isomorphic to a subgoup of X,
which contains X; N Ly(q,)’ | LAq.)’.

A pair of groups <M,, M,> is parabolic of type J, if fori = 1,2 there ex-
ists a normal subgroup X; in M, such that:

i |M/X.| =<2

(i) X1/0.(X:) = Li4), OAX:) = Qs*Ds and Cp,(0:(X1)) < 0:x(X,).

(iii) X, = BOy(X>),B = C; X X3, Oy(X,) is special of order 2¢, and the
3-elements in O*'(X,) operate fixed point freely on O,(X)).

Note that all groups in . fulfil Hypothesis A with respect to X; and X,. But
these are not all the known examples.
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The simple group J; has (up to notation and conjugation) two pairs of sub-
groups M, and M, for which Hypothesis A holds, in one case they are
parabloic of type J, in the other case parabolic of type L,(4).

But as the following theorems show, the examples in .# give the pattern for
all possible examples.

THEOREM 1. Assume Hypothesis A. Then one of the following holds
(possibly after interchanging 1 and 2):

(a) M, = H = Aut(L.(2")),i = 1,2.
(b) {M,, M.} is parabolic of type X for some X in &.
(©) {M,, M.} is parabolic of type J.

(d n,>1, 0,(M,) is elmentary abelian, M,/0,(M,) = H <
Aut(L(2")), and O,(M,) is isomorphic to a submodule of the natural per-
mutation GF(2)-module for M,/O,(M,); n, = 1, M, = Ny ,(S)W for
S € Syl,(M, N M) and a normal subgroup W of M, which is isomorphic to
Ls.

As a special case we get from Theorem 1 and [3]:

CorOLLARY 1. Assume Hypothesis A, and suppose that G is finite and that
M, = No(O,(M,)) fori = 1,2.

Then {M,, M} is parabolic of type X for some X € ¥, or G = M,0(G) for
some j € {1,2}.

A graph I is locally (G, s)-transitive with respect to a group G of automor-
phisms of T, if for every « € T, G. is transitive on the arcs of length k starting
at o for k¥ < s and s is maximal with this property.

THEOREM 2. Assume Hypothesis B. Then T is locally (G, s)-transitive, and
one of the following holds for A = {G., Gs}:

(@ s =2,and G, = H < Aut(L,(2")) for 6 = «,B.

(b) s = 3, and A is parabolic of type L,(2"%) X L,(2").

(¢) s = 3, and A is parabolic of type Aut(L,(2*)) | Aut(L,(2")).

(d) (possibly after interchanging o and B) s = 3, ns = 1, OG,) is
elementary abelian, G,/ 0(G.) = H < Aut(L.(2"*)), and O,(G,) is isomor-
phic to a submodule of the natural permutation G(2)-module for G../ O,(G.);
Gs = Ne (S)W for S € Syly(G.s) and a normal subgroup W of Gs isomorphic
to Ea.

(¢) s = 4, and A is parabolic of type Li(2").
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5, and A is parabolic of type Ui(2"), Sp.(2"), or J.
7, and A is parabolic of type G(2"%), or *D,(2"*).

I would like to thank R. Weiss for his helpful conversations on Chapter 9. I
also wish to thank G. Stroth for pointing out an error in Lemma 1.3.

1. Group theoretical results

Hpypothesis 1. Let G be a finite group such that

(@) Cs(0:(G)) = 0,(G) and

() G/0,G) = L,(2"),n = 1.

DerinNiTION. Let V be a faithful GF(2)-module for L,(2*) and T be a Sylow
2-subgroup of L,(2").

V is a natural module for L,(2") iff |Cv(T)|? = |V| = 2.

V is an orthogonal module for L,(2") iff |Cv(T)|* = |V| = 2%,

Note that this definition is compatible with the usual definition of a natural
(resp. orthogonal) L.(2") GF(2)-module. If X = L,(2") and V is a natural
(resp. orthogonal) L,(2*)-module for X, we simply write V is a natural (or-

thogonal) module for X.
We assume Hypothesis I for the lemmata (1.1)-(1.7).

(1.1) Let O,(G) be elementary abelian of order 2*". Then O,(G) is a natural
or orthogonal module for G/0:(G), and Oy(G) is a natural module, if and on-
ly if all elements in O,(G) # are conjugate in G.

Proof. See[l1, 4.3].

(1.2) |0:(G)| = 2*.

Proof. See [2, Hilfssatz].

(1.3) Let T be a Sylow 2-subgroup of G, and suppose that O,(G) is elemen-
tary abelian, Z(G) = 1 and

() [G,0:(G)] = 0:(G), or

(i) 0:G) = <Coya(T)°>.
Then the following statements are equivalent:

(@) O:(G) is direct sum of natural modules for G/0O,(G).

) [0:.(G),T.T] = 1.

© [Coua(T)|* = |0:G)].
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(d) All non-trivial elements of odd order in G operate fixed-point-freely on
0:(G).

Proof. Note that G = <T,¢> for any element t € G \ No(T) (see
(3.1)); thus
Coy)(T) N Coyr(t) = 1 and |Co(T) |2 = |0x(G)|.

Set V = [G, 0,(G)]. It follows from [S, Theorem 8.2] that the three
statements are equivalent for V in place of O,(G). If V # O,(G), then

04(G) = VCoye(T),
and from |Cv(T)|* = | V|, weget |Coy)(T) |2 > |O:(G)| and Z(G) + 1, a
contradiction.

(1.4) Suppose that an element of order three in G operates fixed-point-
freely on Oy(G). Then O,(G) is elementary abelian and direct sum of natural
modules for G/Oy(G), or n = 1.

Proof. See [5, Theorem 8.2].

(1.5) Let Z(G) be elementary abelian and O,(G)/Z(G) be a natural module
Jor G/ Ox(G). Then OyG) is elementary abelian, or n = 1.

Proof. We may assume that Z(G) has order 2. If Z(G) contains all involu-
tions of O,(G), then O,(G) = Qsand n = 1.

If Z(G) does not contain all involutions of O,(G), then by (1.1) all elements
in xZ(G) for x € 0:(G) \ Z(G) are involutions. But this implies that all
elements in O,(G) # are involutions, and 0,(G) is elementary abelian.

(1.6) [2]. Let T be a Sylow 2-subgroup of G, and suppose that no non-
trivial characteristic subgroup of T is normal in G. Then the following hold:

(@) T has class 2.

(b) Z(0AG))/Z(G) is a natural module, and [G, O,(G)] = Z(0O,(G)).

(©) There exists o € Aut(T) such that T = Z(0(G))*OAG).

(1.7) Assume the hypothesis of (1.6). Then
<Z(0:«G))* / a € Aul(T), o(a) odd>
is a normal subgroup of G.
Proof. Define Q = O,G), Z = Z(Q) and A = {Z°/a € Auy(T),
Z* < @), and let B be an automorphism of T of odd order. From (1.6) we get
[<A>,G] = Z = <A>.
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So it suffices to show Z? € A.

Assume Z? € A. Let vy be any automorphism of 7 such that Z* £ Q. Then
Z"' £ Q,and |Z/CAZ7)]| = |Z7/C,(Z)| = 2", since Z/Z(G) is a natural
module for G/0,(G) by (1.6). In particular we have Z*Q = T and
1Q/Ca(Z7)| = |2/C2(27)].

Let d be a p-element in G \ Ng(T), p an odd prime. Then d is fixed-point-
free on Z/Z(G) (see (1.3)(d)) and G = <Z8,Z%> Q. Set

Qo = Co(Z°) N Co(Z%).

Then Q = Q.Z and Qo NZ = Z(G), in particular Q, is normal in G.
Therefore we have [Z%, T] = [Z2°,Z] = [Z, T)® = [Z, Z°)?, which implies

() (25, 2) = [2°, Z].

From (*) we get [Z°”, Z°] # 1. Assume that [Z°*,Z] # 1. Then T = Z°’Q
and

z#¢ Z U 02,

but in 7/ Q, the only maximal elementary abelian subgroups are the images of
Z and Z°.

So we have Z#* € A. Since 8 has odd order, we may assume that A®*> # A.
Pick BE A¢*\ A, then T = BQ and

[Z2°*,BQoZ] = [Z*,Qu] = Qo N Z = Z(G).

On the other hand (*) implies [Z%%, T] = [29, Z°] = [2°, Z] < Z(G). This
contradiction shows the assertion.
Hypothesis I1. Let G be a group and M, and M, finite subgroups of G such
that fori = 1,2:

(@) O*M,/0,(M)) = L,(2", n, = 1.

(b) M, N M, = Ny (S) = Ny,(S) for S € SyL(M, N M,).

(¢ No non-trivial normal subgroup of O*'(M)) is normal in O*' (M),
Jj#i

We assume Hypothesis II for the lemmata (1.8)-(1.11).

Notation. Qg = Oz(Mi),Zl = Z(Qi)a Li = 02,(Mi): Zf_l = Ll/Qn
S € Syl(M, N M), K, is a complement for S in N, (S). In addition we
choose K, and K, such that K = K,K; is a subgroup of odd order.

1.8)@ JS) £ O N Q..
(b) S = Qle, or Q1 = Qz =1

__Proof. Part (a) is obvious. The structure of L,(2") (see (3.1)) implies that
K. is transitive on 8 # (i = 1,2). This yields (b).
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(1.9) Suppose that C (Q:1) £ Q.. Then O(L,) = L,(2"")’, and one of the
Sollowing holds:

(@ O%L,) = Li(2"?)’, S is elementary abelian, and |S| = 2" or 2"""2,

(b) n, = 1, and Q, is elementary abelian and non-central in O*L,)Q..

Proof. If Q, = 1 or Q, = 1, then S has order 2", and S is elementary
abelian, since Sylow 2-subgroups of L,(2") are elementary abelian. Thus we
may assume Q; # 1 # Q,.

Suppose first that O,(O*(L,)) # 1. Then from [6, V 25.7] we get

SN OYL) = Q; and D(Z;) < Q..

Hence 2,(Z.) is normal in M, and M, and therefore Q,(Z,) = 1, but this con-
tradicts Q, # 1.

Assume now O*L,) = L,(2"")’. Then ¢(Q,) = Q,, and ¢(Q-) is normal in
L, and L,. This implies ¢(Q:) = 1.

Assume n, > 1. Then K, # 1 and Cs(K,) = Q,. From (1.8)(b) we get
[S,K:] < Q., and the structure of Aut(L,(2")) implies [L,,K;] < Q,. Hence
Cz,(K,) is normal in L, and L, and must be trivial. But then

Z,NZS) N Q, =1,

and Q, = 1 or Z(S) £ Q,. The first case contradicts the assumption. In the
second case we get as above O*(L,) = L,(2"?)’ and [Q,,0*L,)] = 1. Thus
Q. N Q;isnormal in L, and L, and must be trivial. This proves assertion (a).

Now assume n, = 1. Then (b) holds, or Q, is central in O*L,)Q,, and with
the above argument (a) holds.

(1.10) Suppose that M, and M, are conjugate in G. Then one of the follow-
ing holds fori = 1,2:

(@) OXL) = L,(2")', and S is elementary abelian of order 2™"* or 2™.

(b) Q. is elementary abelian of order 2" or 2", and Q./Z(L) is a natural
module for L,.

Proof. Pick g€ G such that M4 = M,. Then <8§,8*> < M, and

S = S#~ for some m € M,, since S is a Sylow 2-subgroup of M,. Hence we may
choose g € Ng(S).

IfC.(Q) £ Q. fori€ (1,2}, then(1.9) yields assertion (a). Thus we assume
C.(Q) = Q. and can apply (1.6).

Set{i,j} = {1,2}.1fZ, = Q,,then[Z,Z,,L,) < Z,and [Z,Z,,L)) = Z,, and
ZZ,isnormal inL, and L,, a contradiction. Hence Z, £ Q,, and the operation
of K on S (see (3.1)) yields

S =2Q0,0 = Co(Z)Z, and |Q,/Co(Z)| = |Z,/Z(S)| = 2".
Let d be an element of odd order in L, \ N¢,(S) and
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Qo = Co(Z) N Co(Z)).
Then
Lj = <Z¢, Z‘d> Q,, Q] = Qoz_/ and Qo N Zj = Z(Lj).

In particular L, = C(Q0)Qo, and Z,/Z(L)) is a natural module for L,.
Now set j = 1 and i = 2. Assume that [Q%,Z,] # 1. Then

(2:,2] = Q5,20 = Z, N QF = Z() N QF = Z, N QF = Z(L,).

This contradicts the operation of Z, on Z,/Z(L,).

We have shown that Q% < Cy,(Z;). Since Qo N Q% is normal in L, and L,,
we get Qo N Q% = 1, and the operation of K, yields Co,(Z;) = QoQ% or
Qo = 1. In particular |Q,| = 1 or 2™, and Q, is elementary abelian. This im-
plies assertion (b).

(1.11) Suppose that C.(Q)) <= Q. fori = 1,2, Then one of the following
holds:

(@ J©) _¢_Q. U Q,, ZJ(S) = Z(S), Z(L) + l,and Z/Z(L))is a natural
module for L, (i = 1,2).

(b) Z, = Z(Ll)'
© Z,= Z(L,).

(d) S has class 2, and Z,/Z(L)) is a natural module for L, (i = 1,2).
Moreover, if Z(L,) = 1 or Z(L,) = 1, then Q, = Z,, and Q, is a natural
module forL, (i = 1,2).

Proof. Assume Z, # Z(L,) and Z, # Z(L,). If the hypothesis of (1.6)
holds in M, we get (d) fori = 1 and Z(S) = Z(J(S)). This showsJ(S) £ Q,
and (d) fori = 2, too.

Thus we may assume additionally that M, and M, do not fulfil the
hypothesis of (1.6) and that (without loss) J(S) £ Q.. We apply the tech-
niques in [2]. Define B = C,(Z(J(S))) and L, = <B"*>. Then Baumann’s
argument [2, (6)] shows that Z(J(S)) = XZ(S), where X is a normal subgroup
of L,. This yields B = Cs(X) and B € SyL(L,).

If J(S) = Q,, then C,,(Z(J(S))) = B is normal in L,, and no non-trivial
characteristic subgroup of B is normal in L,. Now (1.7) applied to L, and
L, = N.,(B) yields a contradiction.

So we may assume J(S) £ Q,. As above B € Syl,(<B**>), and [2, (6)] im-
plies that [S, Z(J(S))] is normal in L, and L,. Hence we get Z(J(S)) = Z(S).

An application of Baumann’s techniques in [2, (1), (10)] yields assertion (a).

For the next two lemmata suppose that X = L,(2™). Let V be a natural
GF(2")-module for X, and denote by V° the conjugate of V by
6 € Gal(GF(2™)). If o # 1, then V and V° are non-isomorphic
GF(2™)-modules.
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For S < X and an X-module W we define
w,S) = [W,S,1]1 and [W,S,n] = [[W,S,n—-1],8]
forn = 2.
(1.12) Let W be a non-trivial irreducible GF(2™)-module for X. Then there
exist n€N and o,,...,0, € Gal(GF(2™)) such that W = ®7. V", where

V°,...,V° are pairwise non-isomorphic GF(2™)-modules. Moreover, the
Sollowing two statements for S € Syl,(X) are equivalent:

(@ W= e,V

(b) [W,S,n] + 0and [W,S,n + 1] = 0.

Proof. The first part of the assertion follows from [5, Theorem 8.2].
Lete, = (1,0) and e, = (0,1) be a basis of V°' (1 < i < n) and

s={ 10 /1ssz"',[q.,...,qz,,,}=GF(2"')}.
q 1

1 0
o (1 9).

Then d, operates on V° in the following way:

Set

ed, = e, and ed, = e, + qjle,.

If n = 1, then W is a natural module, and (a) and (b) are equivalent. Hence
we may assume n > 1.

Define W, = @7.iV"and w = w, ® e, for w, € W,. Then
[wd;,di] = [w,d\ld,
and
[w’dj] = W, ® (2% + (Wl ® ez)dj = [Wl’dj] e e, + q;"(wl ® el)dj.
Hence
(*) [W,d;,...,dr] = [Wl,dl,...,d,] ® e, +
E q:”([wl) dl, .. ~)dl-l, d#l) .. .,d,] ® el)dg.
i=1
Applying induction on n we get, from (*),
w,dy,...,dsss] =0 and [W,S,n + 1] = 0.

It remains to show that [W,S,n] # 0. Let W be the natural permutation
GF(2m)-module for X. Then X operates on a basis {ao, ..., a,.} of W, and
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m
Ws= W/<Ea(>

=0

is an irreducible GF(2™)-module, the Steinberg-module. Hence W5 = @ 7., V°.

We first argue that [Ws, S, m] # 0. For this purpose we choose generators
dy,...,d, for S and assume @,S = a,. Then the operation of S on {(a,...,a,.}
yields

(**) "‘,-IGTAd' #a, foranya, # aoand AC {1,...,m}, A # 0.
Define Po = {al} and Fg = P(-l U [b‘-ld( / b(-l E r‘l—l} fOl' i = l,...,m.
Then from (**) we get I, N {b,-d;/ b, €ET,.;} = 0. Hence

[al,dl,...,dj] = E bk foer. m;
br€ETy
in particular

2m 2m
[al,dl:OO-,dm] = E ai e < E a,>
i=1 i=0
and [Ws,S,m] # 0.
Now let W be a counterexample to [W,S,n] # 0 such that »n is maximal.
We have just proved n < m. Hence there exists o€ Gal(GF(2™)) \
{01,...,0.), and W @ V7 is not a counterexample. Pick

wW=wo®vEW eV, wEWandveE Ve,
such that [W,d,,...,d..] # 0. Then
v = ke, + kiex (ki k; € GF(2™),
and [W,S,n + 1] = 0 and (*) imply

n+l

0 ¢ [W,d;,...,d,"ll = kz E q:'"l([w)dl)---,di-l’dl#l,ﬂ-:dmﬂl] @ el)dio

=1
But this is only possible, if
w,diy... 8ty disry .., due] # 0 forsomei € {1,...,n + 1},

which shows that W is not a counterexample.

(1.13) Let S be a Sylow 2-subgroup of X and W be an irreducible
GF(2)-module for X. Suppose that

(@ [W,S,4] = 0, and

(b)) |[W| =2 0<r<m.
Then m = 3r and [W, S, 3] + 0.

Proof. Set W = W ® GF(2™). Then (a) holds for W and dim W =
2m+r). On the other hand W = ej,W*, where o,...,0,€E
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Gal(GF(2™)), m = na (a € N), and W is an irreducible GF(2")-module (see [7,
(30.11)]). Now (1.12) implies dim W = 2%, k < 3; hence 2*'m/a = m+r.
This yields k = 3 and a = 3.

2. Graph theoretical results

(2.0) Hypothesis. Let T be a graph and G be a group of automorphism of
r.

Notation. The notation differs only slightly from that in [4].

We write o €T, if is a vertex of I', and y € T, if v is a set or ordered tuple
of vertices.

For « €T and y € T G, is the stabilizer of o in G and G, is the pointwise
stabilizer of yin G. A(e) is the set of vertices adjacent to a. An arc of length
n is an ordered (n + 1)-tuple of vertices (o, ..., a,), wheren > 0, o, € A1)
forO <i=<=n-1and oy # o fori + jand (i,j) # (0,n).

A line is an ordered set { o, / § € Z} of vertices such that o, € A(css) fori €Z
and o; < o iff i < j; here again o # o fori + j.

For an arc v = (a,...,a,) we define

Ar(y) = Alow) \ {o) and  Ax(y) = A(e) \ {0n-1).

v is left (resp. right) singular, if G, is not transitive on A.(y) (resp. Az(Y));
otherwise it is left (resp. right) regular, and v is regular, if v is left and right
regular. Let X be a set of vertices. By (X, n) (resp. (n, X)) we denote the set of
arcs of length n whose left (resp. right) endpoint is in X. If « € T is in the same
G-orbit as «’, we say that « is conjugate to o’ (under G).

(2.1) [4, 2.3). Suppose that T is connected, G. is transitive on A(c) and G
is transitive on A(B) for some pair of adjacent vertices a,3. Then G is edge-
transitive on T".

(2.2) Suppose that T is a tree. Then T' is a bipartite graph.
The proof is obvious.

(2.3) [4, 2.6). Suppose that T is a tree, a; and o, are adjacent vertices, P, is
a subgroup of G fixing o, (i = 1,2) and
(Pl)m2 = (Pz)az = P1 ﬂPz.
Then <P1’P2>°‘l = Pi (i = 1,2).
(2.4) Suppose that N is an edge-transitive subgroup of G. Then G = G,N
for adjacent vertices o and B of T.

The proof is obvious.
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(2.5) LetT be atree and G be edge-transitive on T', and let o, and o, be ad-
Jacent vertices. Suppose that the following hold:
(@) No proper normal subgroup of G is edge-transitive on T'.
(b) N., is a normal subgroup of G,, transitive on A(a) (i = 1,2).
Then
Ga!az = (G"l“z N N“l)(G"'l"'z N Nal)o

Proof. Set N = <N.,,I(G.,,l‘,‘2 NN.), N.(G. o NN l)> . Then (2.1) and
(2.4) imply that N is edge-transitiveon I"and G = G. .,N. Hence N is normal
in G and G = N by (a). Now the assertion follows from (2.3).

(2.6) [4, 2.12]. Suppose that G is edge-transitive on T" and that there exist
non-regular arcs. Let s be the smallest integer for which a non-regular arc of
length s exists, and let 0 and A be the two G-orbits of vertices of T'(allowing
O = Nif G is vertex-transitive). Then G is transitive on (0, m) and (¥, m) for
m < s, and one of the following holds:

(@) There are no left or right regular arcs of length greater than s — 1.

(b) sisodd, ¢ + ¥, and if notation is chosen so that the elements of (0, s)
are right singular, then every regular arc of length greater than s — 1 is in

(0, 2n) for some n, and the elements in (m, X)) (resp. (¥, m)) are right (resp.
left) singular for m = s.

The integer s in (2.6) is called the singularity of T.

(2.7) LetT beatree, s €N and p be a prime. Suppose that the following
hold for « €T

@) G, is finite.

(b) G, is transitive on all arcs of length s starting at o.

(c) Stabilizers of arcs of length s are p’-groups.

@ |A@| =1+p"™ n. = 1.
Then s€{1,2,3,4,5,7,9,13).

Proof. Let T be a Sylow p-subgroup of G, 8 € A(a), and

v = (a,8,02...00)
be an arc of length ¢t < s — 1. Then (d) and an easy inductive argument yield
T, € Syl(G,),

and T, is transitive on A(a) \ {c.-1}. This observation enables us to apply the
proof in [10].
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DErFINITION. An n-translation on a line £ is a permutation x on ¢ such that
o = au, forall i€EZ and o, E ¢

A track is a pair (7, 7) where T is a line and 7 is a 2-translation on 7.

A K-track is a triple (T, 7, K) where (T, 7) is a track and KX is a subgroup of
Gr which is normalized by 7.

(2.8) Suppose that T is a tree and o and 3 are adjacent vertices inT'. Let K

be a subgroup in G,
XENs(K) \ Gs and y€ENg(K) \ G

Then there is a K-track (T, xy, K) with «,BE T.

The proof is the same as in [4, 2.10].

DeriNiTION. Let v = (a,,...,a,) be an arc of I" and X be a subgroup of
G,. We define S, x to be the set of subgroups X # 1 of G, such that:

(1) K = Ns(X).

(2) Ns(X),, is a transitive on A(w.), and N(X),, is transitive on A(a,).

(3) Ns(X)., normalizes A(a) Ny for 0 < i < n.

(4) There exists x € No(X) with o = a,.

(2.9) Suppose thatT isatree,y = (ao,..., ) isanarcofT and X € S, x.
Set N = Ng(X), and let T' be the graph with vertex set o where two vertices a

and o' are adjacent, if and only if they have distance n in I'. Assume that one
of the following holds:

G n=2.

(ii) A(o) Ny is the set of fixed points of X in A(e) for 0 < i < n.

Then the following hold:

(@) o has the same valency in TasinT.

(®) N is vertex-transitive on T.

Proof. Let r be the valency of «, in I'. As N, operates transitively on
A(aw), We get ny,...,n, € Ny, ny = 1, and v, = 4™ such that

YNy = [} fori # j.

Let 8 be a vertex of I' adjacent to a,. Then by definition there exists a unique
arc v’ = (ao,...,0) of length n in I'. It suffices to prove

Y € W1seens i)

After conjugation with a properly chosen element of {n7',...,n'} we may
assume that
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nz|yNy'| =1

Set YNy’ = (aos... ). If (i) holds, there exists v¢ = (8 B, B.), g EN,
and since N; is transitive on A(B), we may assume

YNy 2 f{a,) and o = ab.
Hence v’ = 7, since N,, leaves invariant {a,, o).
Now assume that (ii) holds. Then A(a) Ny = A(a) Ny’ and vy = ¥y’

(2.10) [4, (2.11)]. Suppose that (T, 7,K) is a K-track in a tree T" and G, is
finite for all « € T. For any U < G let Ty be the set of all fixed points of U in
T. Then either Ty = T or Ty is a finite subarc of T.

3. Point stabilizers with L,(2")-sections
(3.0) Hypothesis. LetT be a tree and G be a group of automorphisms of '
such that for o € T" the following hold:
(i) G is edge-transitive on I'.
(ii) No proper normal subgroup of G is edge-transitive on I'.
(iii) G, is finite.
(iv) |A(a)| = 2"+ 1, n, = 1, and there exists a normal subgroup N, of

G, such that O,(G.) < N., N./0xG,) = L,(2"), and N, is transitive on
Aa).

Throughout this paper we use the following facts about L,(2") and its opera-
tion on 2" + 1 symbols.

(3.1) Let S be a Sylow 2-subgroup of N, and K be a complement for S in
Ny (S). Then the following hold:
(a) All elements in S \ OxG.) have exactly one fixed point in A(x).

(b) K is cylcic, |K| = 2"~ 1, and all elements in K# fix exactly 2 points
in A(a); and Cy (K) = KOXG.) if K # 1.

(c) K operates transitively on (S/0(G.))#.
(d)  |Nyo(K) 7/ KNoyoo)(K)| = 2ifK # 1.

(e) If zis aninvolution in N, \ OxG.), then z is conjugate in N, to an ele-
ment of Ny (K).

(f) IfK + 1 and P is a 2-subgroup of N,,, then
<K,P>04G,) = N. or <K,P> = Ny(K)O)G.).
(8) N.N Gz = Ny (89 for B € A(a) and suitable g € N,,.
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(h) N, = <8,g>for g €N, \ Ny[S).

(3.2.)) For 6 ET define L, = 0*'(Gs). Suppose that B € A(a). Then the
JSollowing hold:

(@ L.= N, and G, = GulL..
() Gos = (Gus N OHL))Gas N O*(Ly)).
(© G.s = KO,)G.s), K a subgroup of odd order.
(d) If 0AG.) # 1, then
0xG.)O0xGp) € SylG.s) and Syli(G.e) & Syl(G.).

(e) No non-trivial normal subgroup of L. (resp. O*L.)) is normal in
(Lgresp. O*(Ly)).

Proof. With the Frattini argument we get G, = G,sN., and (2.5) implies
G.s = (Gus NNY(G.s N Np).

Pick T € Syl.,(N; N G,g). Since N; N G,sand N, N G,z are 2-closed and normal
in G, the structure of Aut(L,(2"%)) implies T < N,, hence (a) and (c) hold.

The normal subgroup O*L.) is also transitive on A(x), therefore a further
application of (2.5) yields (b).

Let X be a normal subgroup of L, (resp. O*L,)) which is also normal in
Ls(resp. 0%(Lg)). Then X = G, and (2.1) implies that X fixes every edge and
thus every vertex in T, so X = 1, and (e) is proved.

In particular, Ox(G.) = Ox(Gs) = 1 or O(G.) # OxGs). In the second
case we may assume Ox(G,) £ OxG,) and get (d) from (a) and (3.1)(c).

We now fix some notation for the remainder of the paper:

(3.3) Notation. Qs = O4G,),
Z, = <Z(S)N Qs / SESyl(Gy) >,

L, = 0¥(G)and L, = L,/ Q,for 5ET; |y| denotes the length of an arc y
of I.

Wefixa €T, BE A(a), S = O,(G.e) and a complement K for Sin G4, and
Set K.; = KnLa for 66 F.

(T, 7, K) is a K-track with «, 8 € T, s is the singularity of I', and ¢ and /are
the G-orbits on T (allowing ¢ = ., if G is vertex-transitive).

WesetT = (...0e. 0o . 0;...), iIEN, @, = aand o; = 8, and we then
identify the vertices in 7 with their indices such that

T= (.. —i.0..i..),

G, 2, =2,K,, =K, n, = n,etc. for ¢, ET.
max {|j—i|/j€ T and Z, < Gy}, if such a max-

a=08=1,andG,,
For i € T we define b,
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imum exists, and b, = o otherwise. Note that in the case b, < o, i — b, and
i + b, are not only integers but also vertices in T'and Z; < G-y, 0r Z; < Gus,.
Suppose Z; < G..,, (resp. Gu;); then (3.1)(a) and (3.2) imply Z, < Q. for
i-b.<k=<i(esp.i<k<i+hb)

(3.4) Suppose that n, > 1 and n, > 1. Then

(@ T= C(K)and

(b) Co(K) < GrforjET.

Proof. Assume that T # Cr(K). Then there exists ¢ € Cr(K) and an arc

v = (@,Q1---@n)

such that g, € T and @g.-1 € T. Therefore K < G,, and X fixes three vertices
in A(g.), a contradiction to (3.1)(b). Assume that X = Cg,(K) £ Gr. Then
there exist K€ T and k' € A(k) N T such that X < G, and X £ G,.,. Now
(3.1)(b) and (3.2)(a) yield a contradiction.

(3.5) Suppose that v = (m...r) is a right (resp. left) singular subarc of T.
Then Ox(G,) fixes every element in A(r) (resp. A(m)).

Proof. IfK = 1,thenn, = n, = 1and |A(m)| = |A(r)| = 3, and the
assertion is obvious.

Assume that K # 1 and that v is right singular. By way of contradiction we
may additionally assume that O,(G,) £ Q,. From (3.1)(a) we get that no ele-
ment in Ox(G,) \ Q. fixes an element in A(r) \ 7. On the other hand K < G,
and KX has orbits of length 1 and 2" — 1 on A(r) \ v (see (3.1)(b)). This yields
that G, is transitive on A(r) \ v, contradicting the hypothesis.

We will use (3.5) in the following without reference.

4. The case |G:| = 1(2)

(4.0) Hypothesis and notation. (3.0) and (3.3) hold, and in addition:

(@ no>1landn, > 1.

® Z,%x1=Z,.

c) s=1(2)ands = 5.

@ |G| =1().

() v is a regular subarc of maximal length r in T such that
Q = 04G,) # 1.

(4.1) Assume that Q, N\ Q., is normal in Go. Then the following hold:

(@ Qo/Q:N Q. is elementary abelian of order 2**.
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® Qo = [Qo, Q1)[Qo, Q-1(Q: N Q-1).

(¢) IfZ,is a natural module for L,and [Q, N Q-,,L] < Z,, then Q, N Q.,
is elementary abelian.

Proof. SetA = Q,N Q... We apply (3.2). Since Sylow 2-subgroups of L,
(and I_,) are elementary abelian of order 2™, we get #(Q,) < A and
|Qo 7/ A| =< 2. Hence Q, / A is elementary abelian, and the operation of K,
and K_, on Q,/ A yields

QoNQi=A or Q/A =(QoNQy)/AX(QNQ-y) /A

In the first case G(-1012) = K(QoN Q,) = KA, and (- 101 2) is not (left-)
regular, a contradiction to s = 5.

Thus the second case holds. If [Q;, Qo N Q] < A, then @, N Q., is normal
in <0,,0.,>Q, =L, and A = Q,NQ-, = QN Q,, a contradiction.
Hence we have

@, QNQ,] £ A

and with the same argument

[Q-1, QN Q] £ A.

Now again the operation of K, and K_, implies assertion (b).
Assume now that Z, is natural and {4,L,] = Z,. By (1.3),

A = CiKo) X Z, and @A) = ¢(Cu(Ko)).
On the other hand ¢(A) is normal in a Sylow 2-subgroup S of L,. Thus
HANZES) #+ 1,
which contradicts ¢(4) N Z(S) = ¢(4A)NZ, = 1.

Without loss of generality we may assume v = (0...r). Note that by (2.10),
v has finite length and subarcs of T of length greater than r have stabilizers of
odd order. We will use this last fact without reference.

@2 @ |[Q] =2™

®) r=0Q),s-1<r,andr=s-1o0r yE(o,r) (0Eo0) for every
maximal regular arc 4 in T.

(© |NefK)/K| = 2 and Co(K) < K for i€ T.

(d) Fori€T,x€ENg(K)\ Kand mEN, x interchanges the two vertices
i+ m and i — m of distance m from i in T.

Proof. We have Q = G, but QNQ, = 1. The operation of X on Q
((3.1)(0)) yields (a). Assertion (b) follows from (2.6) and the maximality of r,
and (c) and (d) are consequences of (3.1) and (3.4).

4.3) b.efr/2-1,r/2}.
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Proof. Setb = b, + 1, and pick x € Ng,(K) \ K. Then Z; = Z,, and by
@.1)(d),
Cr(Z) = (-(b-2)...D).

Therefore Z, is in G, but not in Q,, and the maximality of r yields
|Cr(Z)| =2b-2<r and b, <r/2.
Now assume 7/2 > b. For * € <7> with 1" = 2b -1 we get
Cr(Z70) = (b...3b-2)

and [Q,Z;"] = 1, as 2b—1 < r. Hence <Z,,Z]",K> = Nq¢(Q) = N, and
N, operates transitively on A)b). We choose z € Z, \ Q,. From (3.1)(e) we get
that z normalizes K* for suitable ¥ € N,. Together with (3.1)(a) and (3.4)(a)
this implies that

y* = (e B+ Db B+ ).
or

Y** = (re...(b+ Db b+ 1=...r)
is a subarc of T As y* and y** are stabilized by K*Q, the maximality of 7 im-
plies |y*| = |y**| = 2(r—b) < rand r/2 < b, a contradiction.

4.4 bo€fr/2-2,r/2-1,r/2}.

Proof. Set b = bo+ 2. Then Cr(Z;) = (—(b—4)...b), and we get the
assertion with the same argument as in (4.3).

(4.5). One of the following holds:

(a) [Z1, Z”l"'] <Z,N Zbl-l-l'

®) r=s-1,1[2,,2,) # 1, and b, is in the same G-orbit as 0 (i.e., (a)
holds with the roles of 0 and 1 interchanged).

Proof. Seth = b,+1, R = [2,,2,], X = [2,, Z,]], and assume that (a)
does not hold. Then R # 1, b, = b, < by, and A is in the same G-orbit as 0,
in particular b, = 1 (2).

Suppose that b, is in the same G-orbit as 0. Then Z, # Z(L,) and X # 1.
From (4.3) and (4.4) we get

(l) r/2"25bo=b1_l<r/2.
AsX = Z,N Z"o and |Zo| = |Zb°| , (1.3) implies
@) Z,/Z(L,) is a natural module for L,.

Assume r < s. Then (4.2)(b) yields r = s — 1, and assertion (b) follows.
Therefore we may assume

3 s<r



GRAPHS WITH EDGE-TRANSITIVE AUTOMORPHISM GROUPS 229

Assume Z(L,) # 1. We have [Z,,Z(L,)] = 1 and Z(L,) < Z,.; N Z,-,. Hence
by (1), Z(L,) stabilizes the subarc (0. ..24) of length rin T, and (4.2)(a) implies
Z(Ly) = Qand |Z(L,)| = 2™. Together with (2) we get
|Z(S) N Z,| = 2" for S € Syl(Go N Gy).
On the other hand (3.2)(e) implies Z(Lo) N Z(L,) = 1, hence
|Z,| = 2™ and |Q.NZ,| =2™.
Thus @, N Q-2 NZ, # 1, and Q, N Q_-2) N Z, stabilizes (- (h - 1)...

h + 1) of length r, where A + 1 is odd. This contradicts (3) and (2.6). Since & is
in the same G-orbit as 0, we have shown together with (2):

(4 Z(Lo) = 1, and Z, is a natural module for L,.

The subgroup X stabilizes (— b. ..2b,) of length 3b,, and the maximality of
r implies 3b, < r. From (1) and (3) we get

5) bo=r/2-2, by=r/2-1andr = 8or 12,
or
6) bo=2,b,=3andr = 6.

As Z, is a natural module and Z, < Q,, (3.2)(e) yields C.(Q) = Q, for
i = 0,1. Therefore we can apply (1.11). If (1.11)(d) holds, then |L,| = 2%
and s < §, a contradiction. Thus we get together with (4):

(7) Zl = Z(Ll) and Ile = 2”0.

Now (7) and (4) imply X = C(Z,) = Z, = Cz,, (Zo) = Zy-1, and the
operation of <> yields b, = 2. Together with (5) we have proved:

® bo=2b =3r=6o0rb =2,b =3,r=28.

SetV = <Z%>andA = Q,N Q... From (8) weget Z, < Aand V < Q;,
and from (4) and (7), [V, Q1] = Z, = Z(L,) < Z,. The operation of K, yields

|VQo/Qo| = 2° and <V, V™" >Q, = L,

We now apply (4.1). Then Qo N Q; < VA, and V' < Z, and (1.3) imply that
Q./A is direct sum of natural modules for L,. Let d be an element of order
three in L,; then (1.3),(4) and (4.1) yield:

(9) Q./A is direct sum of natural modules for Ly, |Qo/A| = 2™, and
A = Co,(d) X Z,.

Assume 7 = 6; then |Lo|, = 22" and Q, N Q-, = Z,. This implies (by
(9)) that Co (d) = 1, and, from (1.4), Q, is elementary abelian and a direct
sum of natural modules. But then Q, = Z, and b, = 1 which contradicts (8).

Note that we got this last contradiction with the help of (1.4) where n, > 1
is assumed. We will see in Section 5 that for n, = 1 another possibility arises
which does not lead to a contradiction.
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We may now assume 7 = 8. Set L = <V, V>, then LQ, = L, and
[A,L] = Z,. Hence [O%L,), A] = Z,, and (4) and (9) imply
A= CQO(KO) X Zo.
Set D = Coy(K,) and pick £, € N, , ,(K) \ G,and t, E N, (K) \ G,. Then

. 03(Lg)
to normalizes K, and therefore D; hence

[D,t] < [D,0*(Lo)IND = Z,ND = 1.

According to (2.8) and (3.4) we may assume #, = 7 and £} € G;. Thus 7
normalizes D N D", and |G| = 1 (2) implies DN D" = 1. On the other hand
r = 8and Q" ' and Q" ~* are contained in A. But the K-invariant subgroups of
A of order 2" are in D or Z,. In the second case they are Lo,-conjugates of Z,
(by (4)). Hence b, = 3 implies

<0 07> =< D.

It follows that Q""" = Q™ and Q"' = DN D", a contradiction.
From now on we may suppose that b, is in the same G-orbit as 1. (4.3) and
(4.4) yield:

(10) bo =r/2-2and b, = r/2.

In particular Z, stabilizes the arc (— (2 — 2)...h) of length . Then (4.2)(a) im-
plies |Z,| = 2", and K operates transitively on Z{. We get:

(a1 Z, = Z(Ly, |Z,| = 2"and X = 1.

Assume that r < s, Then there exists a maximal regular subarc of 7 starting at
1. So we are allowed to interchange the roles of 0 and 1, and from (4.3), we get
bo = r/2 — 1, a contradiction to (10). We have shown:

(12) s<r.

Assume that b, = 3. Then (10) yields b, = 1 and r = 6. Together with (12)
and (2.6) we get |Lo|, = 2°"2*, In addition, by (4.1) we have

L, = <24,2,>0,, |0:/Q0NQs| = 2", 0, = (ZoNONZ, N Q:XNQo N Qo),
[@oNQ:| = 2"2" and Z,NZ, = Z,.

This yields |Qo / Z,| = 2™. On the other hand
Qo = Co(K)Z, and [Lo,Q0] s Z,.

As K = KK, normalizes Cyo (K}), this implies Q, = Co,(K)Z,, contradicting
(4.2)(c). So we have shown:

(13) b, = 5.

Pick y € Z, and x € Z,, and let k be minimal in (- (b, — 5)...3) such that k
is fixed by y. Then (2.6) implies that x stabilizes

(- =5y"...k...1), ifk<l,
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and
A...k =1y . (= -5, ifk>1,

and that [x,y] and therefore R stabilizes (— (b, — 5)...h + b,). Hence
R =< Q,, since b, =5, and (1.3), (11) and (3.2)(e) imply that Z, is a natural
module for Z,. Then Z, = Z,-,Z.1, and Z,., and Z,,, stabilize the vertex 2. On
the other hand A = b, + 3 by (10), and Z, £ Q,, a contradiction to (3.1)(a).

(4.6) Suppose that 1 # [Z,,Z,,.,] < Z,N Z,,... Then one of the follow-
ing holds.
@ bo=0b,=1,r=s-1=4and:
(al) Q. and Q, are elementary abelian of order 2°*°;
@) |ZLJ)| = |ZLy)| = 2" and no = ny;
@3) Q./Z(L) is a natural module for L, (i = o,1).
(b) bo=3,b,=2,r=s5s-1=6,n, = 3n,and:
®1) Z, = Z(Lo), |Z,| = 2™, and Q, is special of order 2°;

(b2) Z, is a natural module for L,, Q.,/Z, is special, and
(Q:1/Z,)/Z(L,/Z,) is a direct sum of three natural modules for L,.

© bo=3,b,=2,r=5-1=6,n, = n,and:
) Zo = Z(Ly), |Z,| = 2", and Q, is special of order 2°*;
(c2) Q. is special, and Z, and (Q./Z,)/ Z(L,/ Z,) are natural modules for
L.

Proof. Set h = b,+1 and R = [Z,,Z,,.,]. Then R is contained in
Z,NZ,,., and stabilizes v’ = (—(h—2)...(h + bs)). The length of v’ is
2b, + b,, and the maximality of r implies:

(1) 2b,+b,<r.
First suppose that & is in the same G-orbit as 1. Then (1) and (4.3) imply:
(2 b, =2andr = 6, and v’ is a maximal regular subarc of 7.

Now (4.2)(b) yields r = s — 1, since y and v’ are not in the same set (7, r)
(vesp. (#, 1), and |Q,| = 2™2°, From [R, Z,] = 1 we know that R is cen-
tral in a Sylow 2-subgroup of G, N G, and therefore is contained in Z,. Pick

1 € No,(K) \ K.

Then (4.2)(d) and (3.1) imply R* = Rand R < Z(L,). Hence Z(L;) R = 1
((3.2)(e)), and from [R,Z,] = [R,Z,] = 1, (1.3) and (1.11) we derive that
either Z, = Z(L,) or Z,/Z(L) is a natural module and |Z,| = 2’ for
i = 2,3. In the second case no = ny, O, = Z,Z,Z,and Z, = RZ(L,)Z(L,). It
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follows that [Z,,Q) = Z(L) for j = 1,3, and Z(L,)Z(L;) is a normal
subgroup of L,. Now (1.5) implies that Z,Z,/ Z(L,)Z(L5) is elementary abelian
which contradicts [Z,, Z;] = R<£L Z(L,)Z(L;).

Thus we have shown Z, = Z(L,) and Z(L;) = 1 by (3.2)(e). Hence Z, is a
natural module for I;. In particular, Z, = Z,Z, and b, = 3. Conjugation
with 77! yields:

(3) bo = 3, b1 = 2, r = S—l = 6, Zo = Z(Lo), |Zo| = 2’“, and Zl iS a
natural module for I,.

Since s = 7, the order of a Sylow 2-subgroup of L, is:
@ |Lo|, = 2°2°™.
Set V = <Z7°>. Then (3) implies
V' = 2o, V/Zo < Z(Qo/Zo), QiZ,E Syl(L))

and
<Z.12,Z,>Q, = L,
We get
2,0 N Q] < [V',0:. N Q] < Z,
and

[<Z,Z,>,0.NQ] = Z,.

Therefore Qo N Q, is normal in L,, and by (4.1) and (1.3), Q,/Q, N Q; has
order 2’ and is direct sum of natural modules for I;, in particular n, < n,.

As we have seen above, [O%(L,), Qo N Q,] < Z,; on the other hand, non-
trivial elements of odd order in L,(2") act fixed-point-freely on natural
modules ((1.3)). This yields

qu(Kx) <= QNQ:; QNQ, = CQ1(K1) X Z, and |CQI(K1)| = 2",

Set D = Cy,(K,). Then Q, = VD, and with the same arguments as in (4.1)(c)
we conclude that D is elementary abelian. Hence:

(5) Q. is special, n, = no, and (Q,/Z,)/Z(L,/ Z,) is direct sum of natural
modules for L.

Since Qo N Q, has order 2"2>** and stabilizes (- 1...3), a K-invariant
subgroup of order 2™ stabilizes the maximal regular subarc (—2...4) in T.
This subgroup must be D. In particular we have [D, K] = D and therefore
[D,K,] = D, since K, centralizes D.

Let N be a normal subgroup of L, in Q,and Z, < N, and let ¢ be an element
in N;((K) \ Gi. If DN N # 1, then the operation of K, on D yields D < N
and [D,Q4] = Z, = N. Hence DV = Q, = N.

If |N/Z,| > 2™, then |Qo/N| < 2™ <2, and (1.2) implies
[Qo, Lo = N. Thus D = [D,K,] < Nand N = Q,.
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Now let N/Z, be a minimal normal subgroup of G,/Z, Since
D = [Q., Lo, we get with the above argument [Qo, Lo] = Qoand L, = Lg. If
N/2Z,is central in L,/ Z,, then the 3-subgroup-lemma shows [N,L,] = 1, a
contradiction.

Now assume that N/ Z, is not central. Then either N = Q, or N/Z, and
Q,/ N are non-central factors of L,. In the second case (4), (5) and (1.2) imply
ne = n.

Assume the first case and n, # n,. Then (5) implies

[QO: Qh Qh Ql; Qi] = 1.

Hence, from (1.13), we get [Qo, Q1, O, Qs] # 1 and n, = 3n,. Together with
(5) and (4) this yields assertion (b).

Assume n, = n,. Then (5), (4) and (1.5) imply assertion (c).

Suppose now that 4 is in the same G-orbit as 0. Then (1), (4.3) and (4.4)
yield:

6) by=r/2—-1,bo<2andr = 4or8.

Assume that r = 8, then b, = 2 (by (4.4)), v’ = (—2...6) and R" = Q.
Therefore Z, is contained in G, but not in Q,, and [Z,, Z,] = R. On the other
hand, (4.2)(d) yields y'* = v’ and R* = R for ¢t € Ng,(K) \ K. This implies

R =< Z(L,) and [Z,,L,] = Z(L,).

But then Z, centralizes O%(L,)Q, = L., and we get [Z,,Z,] = 1, a contradic-
tion.

Assume that r = 4. If b, = 2, then Z, stabilizes y. The action of X on Z,
and (4.1)(a) imply Q = Z,and |Z,| = 2™. Inparticular Z, is central in L, and
R = 1, a contradiction. Together with (6) we have shown:

(7) bo=by=1andr = 4,

From [R,Z,) = [R,Z,] =1 and (1.3) we get that n, = n, and that
Z,/Z(L) is a natural module for L, (i = 1,2). Set {1,2} = {i,j} and n = n,,
then we have |L,|, = 2*, sinces = r+ 1 = 5. Now (1.2) implies

[QiL] = Z, and Q. = Co(K)Z;

in particular, |Co(KJ)| = 2" and Co(K)NZ(L) # 1. On the other hand
(3.2)(e) yields Z(L)N Z(L;) = 1, and Z(L) is a subgroup of Z,. Hence the
elements of K operate fixed-point-freely on Z(L,). Therefore

|Z(L)| = 2 and Co(K) = Z(L),
and assertion (a) follows (after conjugation with 7°%).
(4.7) Suppose that [Z,, Zy,+] = 1. Then one of the following holds:

(@ b, + 1is in the same G-orbit as 0.
(b)) r=s5-1,[2,2s) = 1, and b, is in the same G-orbit as 1.
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Proof. Set b = b, + 1 and assume that 1 is in the same G-orbit as b (we
write 1 ~ b). Then wehave Z, = Z(L,)and Z, = Z(L,), and (4.2)(b) and (4.3)
imply that b, = 2, since b is odd. Therefore we get Z, < Z,, and Z, stabilizes
(= bo...b) in T; in particular:

(1) bo=b-2.

First assume that b, = r/2. Then Z, stabilizes the arcy’ = (1...(r+ 1))in
T of length r which has to be a maximal regular subarc of 7. Now (2.6) and
(4.2) imply r = s— 1. This allows us to interchange the roles of 0 and 1 (and v
and v').

Set 0 =1" and 1 = 0", If [Z,,,Z,,...] = 1, we get assertion (b), or
b,.+1’ ~ 1’. In the second case we get as above Z,. = Z(L,.), a contradic-
tion to (3.2)(e).

If [Z,.,Z,,,..] # 1, we can apply (4.5) and (4.6) and get one of the follow-

ing possibilities:
@2 [2o,2Z,40] # 1;
(3) b, is odd.

Case (2) contradicts [Z,, Z,,.,] = 1, and since b,. + 1 is odd, case (3) can not
occur.

Now we may assume that b, = r/2—-1 and b, = r/2 - 2. Choose
7’ € <7> such that 2 = r— 2. Then QZ, centralizes E, = <Z,,Z, >, and
E, = L,. As K normalizes E,, we have K N E, = K,. Thus K, centralizes QZ,.

On the other hand QQ, is a Sylow 2-subgroup of G, and Z,Q, is a Sylow
2-subgroup of G,. The structure of Aut(L,(2")) implies

[Lo,K:] = Qo and [L,K,] < Q,.
Hence L, = C1(K:)Qo and L, = C.,(K,)Qs, and, by (2.1), Co(K,) is edge-
transitive on I" and K, = 1, contradicting n, > 1.
(4.8) Suppose that [Z,,Z,,.,] = 1. Then one of the following holds.
@ bi=1,b=2r=s5-1=4and:

@l Z, = Z(Lo), |Zo| = 2%, Qo is special, and Q./ Z, is a direct sum of
two natural modules for L;

@2 2n, = ny;

(a3) Q. is elementary abelian of order 2**°, and Q. is an orthogonal module
forL,.
(b) Assertion (a) holds with the roles of 0 and 1 interchanged.

Proof. Setb = b, + 1. Then Z, = Z(L,), and (4.7) implies that b is in the
same G-orbit as 0 or that 7 = s— 1 and that we are allowed to interchange the
roles of 0 and 1. Therefore we may assume without loss that b is in the same
G-orbit as 0. This yields:
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M) Z, = ZLo).

Now (3.2)(e) impliesZ, < Z,, otherwise Z, would be central in L, and
Z,N Z, would be central in <L,, L;>. From (4.3) and (4.4) we get:

2 b=b,=r/2 and b, =r/2-1, Q = Z,, and Z, is elementary
abelian of order 2.

Set H = Z,N Q,. We first assume that H £ Q,.,. Since Z(L,.,) = 1 (see (1)
and (3.2)(e)), we have R = [H, Z,.] + 1. Let a = [h, 2] be a non-trivial ele-
ment in R such that # € H and z € Z,.,. We may assume that z does not fix 0.

If b, = 4, then Z, fixes — 1, and (—1)*"* has distance two or four from 1.
Therefore s = 5 and (2.6) imply that Z, fixes (— 1)=”*, and we conclude that a
stabilizes v’ = (—1...(b + b, + 1)). But by (2), the length of v’ is greater
than r, a contradiction. Together with (2) we have shown:

(3) by=1,bo=2andr =4;0orb, = 3,bo=4andr = 8.

Assume that r = 8. Then b, = 3, and with the same argument as above R
stabilizes (0...8) of length r. This impliesR = Q = Z,,and |R| = 2™. From
(1), (1.3) and Z(Ls) = 1, we get Z, = Z,Z;. Now, conjugation with 72 yields
Z, = Z,Z,. Hence (3) implies Z, = H =< Q,, a contradiction to the assump-
tion H £ Q.

Now assume r = 4. We want to show assertion (a). Since s = 5, we get

lLo‘z = 22n°22n1‘
Additionally we have Z,Q, € Syl,(L,) and Z, N Q, = 1. Therefore we get
Q| = Zo X Zz X (Qo ﬂ Qz).

Assume that ¢(Q,) # 1. Then ¢(QoNQ;) # 1, and Qo N Q,) <= O, N Q;,
since L, has elementary abelian Sylow 2-subgroups. Thus ¢(Q, N Q,) stabilizes
(—2...4) of length 6, contradicting r = 4.

We have shown that Q, is elementary abelian of order 22", Now (1.2) im-
plies:

@4) n, = 2n,.

Since Q, is abelian, Q,/ Z, is, by (1.3) and (4.1), a direct sum of X natural
modules for L,, and (4) yields ¥ = 1 or 2.
If £k = 1, then (1.5) and n, > 1 imply that Q, is abelian. It follows that

O:NQo = Z(Ly)

by (1). This contradicts (4.1). Hence k¥ = 2, and from (4) we get n, = 2n,. In
particular Q, is a module of order 2*"°. Thus [Q., Qo, Qo] # 1, (1.1) and (1.3)
imply that Q, is an orthogonal module for ;.

From now on we assume that H =<Q,.,. Then H stabilizes
(= -2)...(b +2)) of length r. Hence (2), (1.3) and the operation of K on H
imply:
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(5) H= Z,,and Z, = Z,Z, is direct sum of natural modules for Z,, in
particular n, < n,.

We have K = KK, (see (3.2)). On the other hand

Z,Q, € Syl,(Ly) and [K,,Z,)] = 1.
The structure of Aut(L,(2") yields [K,, Lo] = Q,. This implies
K,NK, =1 and |K,K,| = |Ko|? = |K.:Ko| = |K]|.

Hence (5) and (3.1) yield:

(6) n, = no, and Z, is a natural module for ;.

Assume b, = 1. Then (6) yields [Z,, Qo] = Z,. Since Z, is not in Q, and K
operates on Z,, we get [O(L,),Q,] = 1and Z, = (Z, N O¥(L,))Z,, which im-
plies [Z,, Qo] = 1, a contradiction. Since b, is odd, we have shown:

(7 b, = 3.
Set Vi, = <Z,*> for k€ T. Then (7), (2.6) and s = 5 yield
Vo = QN Q4

and (6) implies [Vo, Qo] = Z,. In particular V, and V,., are abelian. The
transitivity of L, on A(0) and (3.1) imply

zZp = Z,UZ%,
since Z,Q, € Syl(Lo). Set R = [Z_,,Z,); then V, = RZ,Z_,. We get
R = VoNV,,,

since Z, is contained in V,.,, and [R, Z,] = 1, since V,-, is abelian. Thus, by
(1.3), Vo/Cv(O*(Lo)) is a natural module for L.

Assume that R, = Cr(O*L,)) £ Z,. Since R, is contained in V,.,, it fixes
b. Pick

t€ Ny, (Ko) \ Ko

By (4.2), R.Z, stabilizes (b*...b) = (—b...b) of length r and |R.Z,| = 2",
But now (2) yields R, < Z,, a contradiction. We have shown:

®) Vo= Z,Z.,and |V,| = 2°™,
V, stabilizes (— (b —2)...(b— 2)) and R # 1 stabilizes
Yy=(-0b-2)...2(b-2).
The maximality of r and (2) yield 3(b — 2) < r and:
O r=Il12

Assume r = 12. Then 4 has length r, and R = Z,. Since Z; = Z,Z,, we get
[Z-1, Z5) = Z,. Conjugation with 7 yields:

(10) [Z;,Z;.6] = Zus for all j € T which are in the same G-orbit as 1.
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Next we want to show that (10) holds for an arbitrary arc A\ = (6-5...6;) of
length 6 in I, where 4_; is in the same G-orbit as 1. It suffices to show that A is
conjugate to a subarc of 7. Applying (2.6) we may assume that

<b6:...6:> = (0...5).

But then Q fixes (0...5) and operates transitively on A(0) \ {1}. Hence X is
conjugate to a subarc of 7. We have shown:

a1 [2.,,Z:) = Z,, for all arcs (6-s... d...0;) of length 6 in I, where 4.,
is in the same G-orbit as 1.

Pick z€ Z, and 2’ € Z,,. Then z fixes 6, but not 7, and z’ fixes 4 but not 3.
Hence (10-...6...10) and (0*'...4...0) are arcs of length 8, and by (11),

(25,2} = Z¢ and [Z,,Z}] = Z..

Since Z, and Z, are elementary abelian and contain Z, and Z,, respectively,
the elements (zz’)? and (z’z)* are involutions. But then

(zz')* = ('2)’€Z.N Z,,

and Z, N Z, is a non-trivial subgroup stabilizing (—2...12), a contradiction to
the maximality of r. We have shown (together with (2), (7) and (9)):

(12) b = 4,b, = 3andr = 8.

From (5), (6) and (8) we get Vo, = Z_.,Z, and V, = Z,Z, = Z,Z,. Thus we
have

VaNQo = Z, < Vo and [V2,QNQi] = V2NQo < Vo

In particular, [Q, N Q-;, < V2, Vi >] =< V,, and Q; N Q-, is normal in Go.
Hence (4.1) and (1.3) imply that Q,/ Q; N Q-, is a natural module for I, (since
no = n,) and

Q1N Q- = Co(Ko)Vo.

Pickt € Nomo)(K) \ K. Then ¢ normalizes K, and every subgroup of Cy, (Ko)
which contains Z,, since [Co,(Ko),t] = Co,(Ko)N Vo < Z,.
Assume |Co (Ko)| = 20, (4.2)(d) implies that Co,Ko)N L, stabilizes
(— 4...4) of length r. Hence Co,(Ko)N Ly > Z, would contradict (4.2)(a).
So we may assume that there exists i € {2,3} such that L, Co (Ko) £ Q..
Then

Co,Ko)NL)Q, € SyLL), L= Cr(Ko)Q: and Z, = Q,N Co,(Ko).

If i = 3, then Cs(Ko): and Cs(Ko)s operate transitively on A(3) and A(4)
respectively, since Z,Q, € Syl,(Ls). Hence (2.1) and K, # 1 implyi = 2.
Let x be an element in N;,(Z,). If x € G, then the arc joining 0 and 0~ has
lengthn < 4. Sinces = 5, we may assume that - € T. But then Z, stabilizes a
subarc of length r+ n in T, a contradiction to the maximality of r.
So we have shown that N;,(Z,) < Go. On the other hand Co (Ko) N Q; =
Z,, because otherwise either Co,(Ko)N Ly > Z, or Co,(Ko)NL; £ Qs, con-
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tradicting what we have already proved. Hence we get C.,(Ko)
< N.,(Z,) = G,, a contradiction to C;,(Ko)Q. = L..

Now assume |Cg (Ko)| = 2. Then QNQ., = Vo, and we get
|Qo| = 2°°, and, by (1.3) and (1.4), Qy = Z, = ¢(Qo). In particular,
Q0/2Zy = W,/2ZoX Vo/Z,, where W,/Z, is a natural module for L, and
W, £ Q.. Since Q, = Z,, we get that Qo N Q; is normal in G, and together
with (4.1) and (1.3) that Q,/ Q, N Q. is a natural module for L,. Now (1.5) im-
plies Q, = Z,. On the other hand, by (12), Z.,NQ, = Z,, hence
Vo, Ki] = Vs. Pick

g € L, \ Go.

Then <W,, W¢>Q, = L, normalizes (W.NQ)WNQ.)/Z, = X, and
W1N Q./Z, has order 2", Hence X is a natural module for L,, and X, nor-
malizes

W.iNQ1)Z,
and centralizes
0./ (W N Q)TN Q).
Thus we get
Vo = [Vo,Ki] = (WiNQLZ,.

Now the order of V, implies (W, NQ4)Z, = V, and W, NV, £ Z,, a con-
tradiction.

5. A special case

(5.0) Hypothesis and notation. Hypothesis (4.0) holds with (4.0)(b) re-
placed by

') no>1landn, = 1.
We use notation (3.3). In addition we define Z, = [Z,,K] for i€ T. If
Z, # 1, we set
r.=max{j—i/j€T,j>iand Z, < G}
and
¢, = max{i—j/jET,i>jand Z, < G}

Clearly b, = r,and b, = {,, and, by (2.10), any subarc of T of length greater
than r has stabilizer of odd order. We will use this fact in this section without
reference. Note that we no longer assume that (0...r) is a maximal regular
subarc of 7. But the operation of 7 yields that at least one of (0...r) and
(1...(r + 1)) is maximal regular. Note also that C{Z,) for i € T may no longer
be symmetric in i.

(5.1) For i€ T the following hold:
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(@ K=Loand [K,L,] = Q,.
() KESycfory=(~101).
(©) O*(Ns(K),) is isomorphic to a subgroup of C, X L..

(d) If Qi-i N\ Qi is normal in G, then Q,/ Qs N Q... is elementary abelian
of order 2" and Q, = (Qi- N Q)(Qivs N Q).

€ If[Z.,K] = 1,then C{Z) = (i—b,...i+ D).

Proof. The hypothesis and (3.2)(b) yield
K=K, and [K,L,] < Q,.

Hence Ng(K), operates transitively on A(1), and (3.1) implies K € S5, (for
definition see Section 2). Thus we can apply (2.9). Any normal subgroup X of
0% (Ns(K),) which is also normal in O* (Ny(K)-;) stabilizes 17¢'* by (2.1).
Since 7 € Ng(K), it follows that

X = GrNO¥*(Ns(K)y) = KNO¥(Ns(K)y) = 1.

Hence we can apply (1.10) and get (c).

Assertion (d) follows as in (4.1).

Assume now that [Z,,K] = 1 and without loss of generality that Z,
stabilizes i + b, but not i — b,. Then there exists i — b, < h < i such that
Z, = L,but Z, £ Q.. Hence we get

[Li,K] = Qn and [Lus, K] < Qm,-
If follows from (a) that 4 and i + b, are in the same G-orbit as 1, and
in particular, i — h < b, - 2.

Pick 6€ {h,h—1}Ni° Then 6+ b, > i and [Z,,Z] = 1. If 6 = h, then
Z, = Z(L,) and hence also Z, = Z(L); in particular [Z,.,,Z] = 1, since
b, + h—2 = i. Thus we have found that [Z,,Z] = 1 foru = h—1orh—-2.
Thend(u,u”) = 2ordforx€ Z, \ G,. Since s = 5, this implies Z, = Z,,, or
Z, = Z..s, and the operation of <7> yields Z,=< G, a contradiction.

(5.2) One of the following holds.

@ bo=1,b, =2,r =4, no = 2 and:

(al) Q, is elementary abelian of order 24

(@2) Q, is an orthogonal module for L,;

(@a3) Q, is extra special of order 25;

(@4) Q./Z,is a direct sum of two natural modules for L,.

(b) bo=3,b,=2,r=s-1=6,n, =3and:
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(bl) Q. is extra special of order 2°;

(b2) Z, is a natural module, (Q./Z,)/ Z(L,/Z,) is a direct sum of three
natural modules for L,, and Q,/Z, is special.

€ bo=3,b,=2,8s=5,r=6,n, = 2and:

(cl) Q, is extra special of order 2%, and Q,/ Z, is a orthogonal module for
L.

(c2) Q, is special, Z, is a natural module for L,, and Q,/ Z, is a direct sum
of two natural modules for L;

(c3) (1...(r+ 1)) is a maximal regular subarc of T.

Proof. From (5.1)(a) and the operation of ron TwegetK < L, fori€T
andi = 0(2),and [K,L)] < Q,forjETandj = 1 (2).

Suppose first that Z, # 1. Then r, and — ¢, are in the same G-orbit as 0 (we
write r, ~ 0 etc.), since otherwise [Z,, K] would be in Q., k = r, resp. —fo,
contradicting [Z,,K] = Z; £ Q..

Set b = ro—fo. If &y < ro, we get Z,) £ Q, but Z, < Q,,. Hence

[Z'o’ Zb] = l,

and <Z,,N.,(K)>Q, = L, centralizes Z,, a contradiction since K < L,.
If ro < £, we apply the same argument with the rdles of r, and ¢, inter-
changed. This shows:

(1) ro =t,and r, ~0.
We may choose the maximal regular subarc vy of T such that
y=@...nor(1...(r+1)).
Assume that (0...r) is a maximal regular subarc and r, < r/2 — 2 or that

(1...(r + 1)) is a maximal regular subarc and r, = r/2 — 1. In both cases (2.6)
yields r = 0 (2), and Q centralizes <Z,, Z,,,,>. On the other hand

< ZZ: eron > Qro+2 = Lro+2’
and K normalizes Cs(Q) N L,,,. Thus K < Cs(Q); in particular

y=A...(r+ 1),

and (0...r) is not regular. -

Since K € S5 for ¥ = (=10 1) (see (5.1)(b)), we can define I" with respect
to Ng(K) as in (2.9). From (5.1)(c) we get that maximal regular arcs in T have
length 7 < 4,hencer = 6or8.Ifr = 8,thenr, = 2and 7 = 4, and Qis con-
tained in Z(Ng(K)s). Hence C.(Q) and C, (Q) are transitive on A(5) and A(4)
respectively, contradicting (2.1).

Thus we may assume r = 6 and r, = 2. If b, = 1, then Q centralizes
<Z,,Z,>, and

<Z:,Z,>Q; = L,.
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Hence C, (Q) and C, (Q) are transitive on A(3) and A(4) respectively, contra-
dicting (2.1). Thus b, = 2, and 1 # [Z,, Z,] stabilizes (—2...4) of length 6.
Conjugation with 7 yields O,(G...s)) # 1, a contradiction. Hence we have
shown (together with (2.6)):

)@ ro=r/2,0r
(b) ro=r/2-1,...(r+1))is not regular and s < r.
Set R = [Z,,Z,,]. Since <Zo, Ns(K)NL,,>Q,, = L,,, we have R # 1.

oY

Assume now that Z, # 1, too. By (5.1)(a), Z, is normal in L,. Thus
Z, = (Z,NZ)x(Z.NZ),

and Z, stabilizes (—(ro—2)...7r), which implies r, = ro—1 < ¢,. If
r.=ro—1,weget[Z,,Z,] = R # 1 contradicting Z, < Q,. With the same
argument £, > r, — 1. Since r, is even and ¢, and r, are odd, it follows that

r,2r0+lsf1

and, by 2), r, = £, = ro+ 1, r, + {, = r, and maximal regular subarcs in T

are <7>-conjugates of (0...r). Hence |Z,| = |Z,N Z,|* = 2", which con-
tradicts the operation of K on Z,. We have shown:
B Z =1

Assume Z, # Z(L,). By (1.11), Z,/ Z(L)) is a natural module for L, (/ = 0,1).
But (3) yields [Z(S),K] = 1, contradicting the operation of K on Z,. Together
with (5.1)(c) we have shown:

Assume b, = r, and, without loss of generality, Z, < G,,. Then
2,,2,) < Z,nZ,,

and, by (1.3), Z,/Z(L,) is a natural module for L,. Additionally, (4) and
(3.2)(e) imply Z(Lo) = 1. Thus, by (1.3), Z, = Z,, but Z, < Z, and
[Z,,K] = 1, a contradiction. We have shown:

(5) be < ro.

Assume RN Z, # 1. Thisyieldls RNZ,NZ,, # 1,since R < Z,N Z, and
K normalizes R. Hence R N Z, N Z, stabilizes (- r,...2ro), and (2) and (5) im-
ply bo = 1, r, = 2 and r = 6. Thus, by (5.1)(d),

Ql = (Zo ﬂ Ql)(Z2 n Ql)(Qz ﬂ Qo) and Zo n Zz = Zl-

In particular, R < Z,, and (4) contradicts RN Z, # 1.
We have shown:

6 RNZ, = 1.

Assume b, = 2 and, as above without loss of generality, Z, < G,,. Then (5)
yields
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[Zo,K] = Qs,

and hence b, = 3.

IfZ, < R,then Z, < Z,N Z, and b, = (ro — 1) + bo. Thus by (3), (5.1)(e)
and 2), r = 2b, = 2(ro— 1)+ 2bo = r— 4 + 2b, and b, < 2, a contradic-
tion.

If Z, £ R, then by (5.1)(c), C:(K) = Z,R, since C;(K) is central in a
Sylow 2-subgroup of Ns(K):, and [Z,,Z,,,Z,] = 1. Now (1.3) implies
Zo = Z(Lo)Z,. But (4) and (3.2)(e) yield Z(L,) = 1and Z, < Z,, a contradic-
tion to Z, = C4(K). Hence:

(7 b, = 1.
From (7) and (5.1)(d) we get
L= <Z0,Z,>Q, |Q:/QoNQs| = 2™,
0, = (ZNQNZ:NQNQNQ;) and Z,NZ, = Z,.
In particular, [Qo N Q.,0%Ly)] = 1; thus Z,N Q, N Q, is normal in L, and
Z,NQyNQ, = Z,.

This implies, together with (4), that r, = 2and |Z,| = 2"°4, and (1) and (1.2)
yield the assertions (al) and (a2) for Z,. To prove assertion (a) it remains to
show QoNQ, = Z,and r = 4.

If r = 4, then |L,| = 4° by (2.6) and Q, N Q, = Z,. Hence it suffices to
show r = 4.

Assume r # 4. Then (2) yields r = 6, |Lo|, = 2% and |Qo,N Q,| = 8. On
the other hand we get Q, = (Qo N @2)Z, and [Q,, Z;] < Z, which implies

[QoNO1,K] < Z,,

since K < Lo,. Hence by (4) we have Qo N Q, = Cy (K) and, by (5.1)(c),
|@o N Q.| =< 4, a contradiction.

From now on we assume that Z, = 1. Then Z, = Z(L,), and (3.2)(e) yields
Z(L,) = 1. Hence Z, £ Q,or Z, = Z, X Z,. In the first case we get

Z(Ll) = Ql =1 and |Qo| = ILolz = 2,
a contradiction. In the second case we get Z, = 1, and (5.1)(c) implies:
(8) Zl = 1, Zl = Zo X Zz, |Zo| = 2 and bo = 2.

Note that (5.1)(e) implies now that C{(Z)) is symmetric in i for i € T} in par-
ticular, 2b, < r. Since Z, = Z, X Z,, we have b, = b, — 1, and since K cen-
tralizes Z,, b, is in the same G-orbit as 1.

SetR = [Z,,Z,). ThenR # 1 and R < Z, N Z,. On the other hand,

Z"o = Zbo-lzbo+ls

which implies R = Z, = Z,-, and b, = 3, since |G| is odd. We have
shown:
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9 bo=3and b, = 2.

Ass = 5, we know from (9) that Z; fixes exactly the vertices of distance less
than 4 (resp. 3) from 6 € I'. Now choose T* to be a line in I stabilized by K
such that

T* = (...064...6,...) and Cn(Q) = (8o...5,4)
and r* is maximal with this property. If 8 ~ 0, then [Q, Z,]] = 1 and z € Z§,
fixes &; but not 8,. Hence we get another line stabilized by K:
T** = (...6;...656,...6....) and crea(Q) = (6ys...05...6,%).

The maximality of r* implies 2(r* — 3) < r*and r* < 6.
If & ~ 1, then Cz, (Q) = Z,,, and z € Z}1 fixes 8, but not 8. Arguing as
above we get
T** = (...8...8408:...8....) and cree(Q) = (Or...084...5%)

and r* < 8. Hence in both cases we get r < r* < 8.
We define Vo = <Z%> and V, = V. Then V] = Z,and V, = Z, by (8)
and (9), and Q, N Q, is normal in L,. Hence (5.1)(d) implies
0, = (@Q:NVYNA:NVY)QNQ) and L, = <V,, V2>(Qo N Q).
Thus
Qo NQ,=DX2Z,
where D = Cy (d) and d is an element of order 3 in < Vo, V,>. Moreover
HQNQy) = ¢(D) = 1,
since D has trivial intersection with Z,. We have shown:

(10) r <8, Q, = DV, is extra special and Q,/D X Z, is a direct sum of
natural modules for Z,.

If r = 8 then r = r*, and we have shown above that (0...8) can not be
regular, hence KQ = G, ..y, and [K, Q] = 1. On the other hand

Q= QNQs = D" X Z,

and we get [K,Q0,0s] =1 and [Qs,Q,K] =< [Z;,K] = 1. Thus the
3-subgroup-lemma yields Q < Z,, which contradicts (8) and (9).

We have shown r < 6. Since (—3...3) is stabilized by Z,, we get after con-
jugation with 7%

(11) r = 6, and (1...7) is maximal regular subarc of T.

Assume first that (0...6) is also a maximal regular subarc of 7. Then (2.6)
implies r = s — 1, and we are in a similar situation as in (4.6) after steps (4)
and (5). With the same argument as there we get assertion (b).

Assume now that (0...6) is not regular. Then (2.6) implies s = 5 and
|Lo|2 = 2™8. Thus we are in a similar situation as in the proof of (4.5) after



244 BERND STELLMACHER

step (9) (with the roles of 0 and 1 interchanged). In (4.5) we used (1.4) and
Hypothesis (4.0)(a) to get a contradiction. Since in our situation now n, = 1,
we get no contradiction but with the same argument as in (4.4) that Q, is
special and that Q,/Z, is direct sum of natural modules. Since
|Qo/Zo| = 274, we get n, = 2 from (1.2), and assertion (c) follows with (1.1)
and (1.5).

6. The case |G| = 0 (2)

(6.0) Hypothesis and notation. Hypothesis (3.0) and notation (3.3) hold in
this section. Additionally we choose 0 € ¢ and assume:

@ |Gr| =0(2).

(b) s=1@2)ands = 5.

© Z,#1=#2Z,.

(d) max{ne, n, >1.

(¢) (0...r) is a maximal regular subarc of 7.

Note that maximal regular subarcs of 7" have length s — 1 or are in (7,2m)
(see (2.6)).

(6.1) For Q = O,Gy and v = (012) the following hold:
@ Q # land Gr = QK.
(b) QES, i

Proof. For the definition of S, x see (2.9). By (3.2)(c), Gos is 2-closed,
hence (a) holds.

Set M = Ng(Q). There is a finite subarc 4 in T of maximal length such that
G, # Gr(see (2.10)). ¥ is a maximal regular subarc of T, and Q is a normal
subgroup of G,; thus Gy = M5 We may assume that ¥ = (0...2m) and
2m = s—1 (see (2.6)). Hence o™ = 2m and <Mj5, M%"> is transitive on
A(2m). Conjugation with 7 implies that M, and M, are transitive on A(0) and
A(2) respectively.

Next we shall prove that there is an element x € M, such that 0* = 2. Asser-
tion (3.1)(b) implies that it suffices to show Ny, (K) $ M, U M,. Pick

X' € Ny K) and x” € Ny,(K)

such that (=1)*" = 1 and 3*" = 1. Then

07 = (=2 £0, 2" =4" %2 and 1I"% = 1= =1,
Since <77’ ,7x"> = Ny, (K), we have Ny, (K) ¢_ M,UM,.
To prove assertion (b) it remains to show that M, normalizes {0,2]}. Assume
not; then (3.1) implies that M, is transitive on A(1). Hence, by (2.1), M is edge-
transitive on I' and Q = 1, a contradiction to (a).
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Notation. Q = OyGyp), vy =01 2), M = Ny(Q). For X, YES, x we
define X < < Y, if No(X)o = No(Y)o. Let S¥; be the set of < <-maximal
elements in S, x.

(6.2) Suppose that XE S, x and M = NyX). Then the following hold:
(@) M, normalizes {0,2) and M, £ M,.
b o.nNn M, € Sylz(Mo) N Syl(M,).

Supgose that X € S_;“K; then no non-trivial characteristic subgroup of
O, N M, is normal in M,.

Proof. Assertion (a) follows from the definition of S, x, and (b) is a conse-
quence of (a), (3.1) and (3.2).

Assume that X € SY¥, and that C # 1 is a characteristic subgroup of
Q. N M,, which is normal in M,. From (a) and (b), it follows that C is also nor-
mal in M, and M,. Hence CE S, x and M, < Ny(C),. The maximality of X
implies M, = Ng(C)o. Thus Q, N M, € Syl(G,), and (b) implies that G, is
2-closed, a contradiction to the hypothesis.

(6.3) Suppose that X € S¥, and M = N«X). Define T with respect to M
as in (2.9), and let A be the connected component of T’ containing 0. Then the
following hold:

(@) M. < Q..

(b) M/ M., is vertex-transitive on A, and 0 has the same valency in A as in
T.

© |M,|, = 2*"°|M.|, k = 1,2,3 or 4.
(d) 0,(M,) is elementary abelian.
(e) Ifk < 2, then Sylow 2-subgroups of M, are elementary abelian.

€) If k > 2, then O,(M,)/Z(0*(M,)) is a natural module for
0% (Mo/ O(M,)).

(8) Maximal regular arcs in A have length k.

Proof. Since M. a fixes A(O)~ poi~ntwise, we get (a) fr~om 3.2).

Set T = Q. NMo, W =M/M,and B = TM./M.,. Then (6.2)(b) implies
B € SylL(Wo) N\ Syl,(W»>),

and from (2.9) we get assertion (b). Now (2.1) yields that no non-trivial normal
subgroup of O* (W) is normal in O* (W) for {i,j} = {0,2}. Thus we can apply
(1.10) and get:

(1) B is elementary abelian of order 2“*, k < 2, or

3ng

(2) O(W) is elementary abelian of order 2" or 2°™, and
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O,(W)/Z(0* (W) is a natural module for O* (W,/ O,(W).

It is now easy to verify (c) and (g), and (e) and (f) follow, if we have proved
(d). Hence it remains to prove (d).

Set Y = O%O*(M,)); then M, = YKT. If [Y, O,(M,)] = 1, then &(T) is
characteristic in 7 and normal in M,, and by (6.2)(c), #(T) = 1. Thus we may
assume V = [Y, O,(M,)] # 1and Z, < O,(M,), and again by (6.2)(c) we can
apply (1.6). Since (2.1) implies [Z,,Y] # 1, we get V = [Z,,Y] and
V = Z(0/My).

If T = Q,, then, by (1.7), there exists a non-trivial subgroup A4 in Q, which
is normal in O%G,) and M,. Since M, is transitive on A(0) and O%G,) on A(1),
(2.1) contradicts A # 1. Hence T < Q,, and we can choose t' E Ny (T)\ T
such that ¢’ € T. From (6.2)(a) we have t € N (K) \ M, such that £ € T.
Thus, in addition, we may choose ¢’ such that [¢,¢’] € T. Note that <¢’,K>
normalizes O,(M,), since <t’,K> =< G,and O,(M,) = Q,N T.

First assume that [O*(A,), Y] # 1. Then (1.6) yields

V = [0*(M.), Y] < O¥(M.).

Set R = <(VV9)<'¥>>_ As shown above, R = 0,(M,) and
[R,Y] = V < R. Hence R is normal in M,. On the other hand <¢,¢’,K>
normalizes R, so R € S, x and ¢’ € Ns(R)o \ M,. This contradicts theé maxi-
mality of X. Thus we have shown:

() [0*(M), 7] = 1.

Now assume that H # ¢(O,(M,)) # 1. Then (2) and (3) imply H < M, and
[H, Y] = 1. Since't’ normalizes O,(M,), it also normalizes H. Thus HH" is
normalized by<t,t’, Mo, K>, and HH* € S, x. Again, t' € No(HH"), \ M.,
contradicting the maximality of X.

(6.4) There exists § € {4,5) such that the following hold:

(@ [Mo|, = 2FVm|Q].

(b) 0,(M,) is elementary abelian.

©) O.(My)/Z(0*(M,)) is a natural module for O* (M,/ O,(M,)).

(d) Maximal regular subarcs of T have length 2§ — 2.

() s =2§-3.

Proof. (6.1)(b) yields Q € S, x. Choose X € S¥, such that Q << X. Set
M = Ng(X). Then, by definition, M, < M,, and an application of (6.3)(d)
yields M, = M, and, without loss, Q = X, since Q < O,(M,). Thus we may
apply (6.3) to M,. Let kK and A be as in (6.3). Define § = k+ 1. Then
§ = 2,3,4 or 5, and maximal regular arcs in A have length k.

Let 4 be a maximal regular subarc of T of length r. Then we may assume
FTE(0,r) and r = 0 (2) (see (2.6)) and, by (6.0)(e), ¥ = (0...r). The restric-
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tion of 4 to A is again a maximal regular arc, since Q is normal in G3;. Hence
= 2k = 2§ — 2. It remains to show (e), since then s = 5 implies § = 4 or 5.
Assume thats = 2§ — 1. Then v, = (1...(2§ — 1)) is also a maximal regular
subarc of T, and Q is normal in G, . Pick 7* € <7> such that

¥i* = (—(25-3)...1).

Then <G, ,G’;> is a subgroup of M, and (3.1) implies that <G, ,G};> is
transitive on A(1). This contradicts (6.2)(a).

6.5 QNZ =1fori€T.

Proof. 1t suffices to show Z,NQ = Z,NQ = 1. Assume that
R = Z,NQ # 1 for some i€ {0,1}. Then (6.4) yields [R, O (M,)] = 1.
Ifi = 1,thenRE S, xand Q, < Ns(R),, and (6.1)(b) implies

Q. € SyLL(Ns(R)o).
Ifi = 0, then R = Z(L,), and (6.2)(b) implies R < Z,. Thus we may assume
i =1, RES,xand Q, € Syl,(Ns(R)o). But now (6.2) implies that R € S, and

that no non-trivial characteristic subgroup of Q, is normal in Ng(R),. Hence
(6.4)(c) and (1.7) yield a contradiction to (2.1), as in (6.3).

Note that (6.4), (6.5) and (2.10) imply that b, (for i € T') is an integer.

(6.6) Suppose that there exists i € T such that Q,-, N\ Qi is normal in G,
Then Qi = [Ql: QI-I][Qi, Qi+l](Qi-l N Q:u), and Q:/ Q;-; N QH—[ is elementary

abelian of order 2*"-,

The proof is the same as in (4.1).
6.7) bo > 2.

Proof. In the following we apply (6.4) without reference. Suppose that
b, = 2. We get [0*(M,),0,(My)] < Z,, and Z,/ Z, N Z(O* (M,)) is a natural
module. In particular Z,Z, is normal in M, and thus also normal in G,.

First assume that C.,(Z,) = Q.. Then Qo N Q, = Co(Z:Z,), and Qo N Q; is
normal in Go. Hence Qo N Q; = Q; N Q-4, and (—1 01 2) is left singular. This
contradicts (2.6) and s = §.

Assume now C; (Z,) # Q. Then Z, = Z(L,) = Z,, and (3.2)(¢) implies
Z(Lo) = 1. Hence by (1.3):

() b, =3,[S,Z) = Z,, and Z, is a natural module for L.

Set V=<Z%>,A=VNQoand B = V"N Q,, then [V, Q] = Z, and
S = VQ, (since b, = 2). In particular we get [Q, N Q-,, <V, V"'>] = Z,
and Q, N Q., is normal in G,. Together with (6.6) and (1.3) we have shown:

@@ @,V =2,
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() Qo = AB(@:NQ-),
(©) Qo/Q:N Q. is direct sum of natural modules for L,,
(d) |Qo/Q:iNQ.| = 2" and n, = n,.

Suppose that 7, = 1 and pick ¢ € Q#. Then (1) and (2)(a) imply | Z,| = 4,
|Z,| = 2and[q, V] < Z,. Hence:

3 |V/Cvig)| =< 2.

Set X = Cs(q), and note that BQ, = S € Syl,(L,). Since O* (M,) < X, X,
is transitive on A(0). Thus, by (2.1), X, is not transitive on A(1). There exists
YE X, with I = —1 and A” = B, hence, by (3), |B/Cs(q)| =< 2. Now, (2)
implies

|Ca(@)Q1/ Qu| = 27,

Thus X, N X, and X; N Z, generate a subgroup of I; with Sylow 2-subgroups
of order at least 2"*"". Since <X, N X;, X, N X,> is not transitive on A(1),
from [6, I1 § 8] we haven, = 2and |Cs(q)Q:/ Q1| = 2 is the only possibility.

Let N be a normal subgroup of G, such that Z, <= N < Vand N/Z,is a
minimal normal subgroup of G,/Z,. We want to show N = ¥V, so assume
N # V.From (2)(a) and (b) we have [NN Q-,,Q] = NN Z, = Z, and hence

(NN Q-)Zo, Qo] = Z,.

But (NN Q-))Z, is normal in <V, V"> and <V, V"'> = L,. Thus (1) im-
plies[NNQ.,,Q] = land NN Q., = Z,. Now the order of N/Z, is at most
22 ((2)(d)), and (1.2) yields |[N/Z,| = 2 and [N, K] = 1. On the other hand,
NNQ, £ Q. and K = K, = K, since NNQ., = Z, and n, = 1. This
contradicts (3.1)(b) and (c). We have shown:

(4) V/Z,is an irreducible module for Z,.

Since the orthogonal and the natural module are the only irreducible
GF(2)-modules for L,(4) (see (1.12)), we get |V| = 25. We conclude that
VNQ., = Z,and, by (6.5), NV = 1.

On the other hand [Q, V'] < Z., < Z, and [Q, V'] < Z; < Z, ((2)(a)),
and it follows that [Q, <B,A">] =< V. Since K normalizes <B, A"> and
<B,A> = L,,wehave K < <B,A> and [Q,K] <= QN V = 1. But now
K < X,, and (3.1)(f) implies that X, is transitive on A(1), a contradiction. We
have shown:

() no> 1.

Choose ¢ € Ny, (K) \ M, with 2 € Q,. Note that by (3.2)(b), (1.3) and (1),
K = K, x K, since Z, = Z(L,). If [K,,f] = 1, then the structure of
Aut(L,(2"")) implies (Ko, L,] = Q,, in particular [K,, B] < Q, N Q.,. This
contradicts (2)(c) and (1.3). Hence [K,, f] # 1and R = KK; N K, # 1. Note
that R centralizes Q.
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Since (2)(a) yields [Q,A] = Z,, with the 3-subgroup-lemma we get
[A,R,Q] = 1. Thus [A,R] = O,(M,) = Q.,, and it follows that
[L-1,R] = Q.4, since AQ-, € Syl,(L-,). On the other hand Z,Q_, € Syl,(L-,),
since b, = 3, and [L.;,R] < Q-,. Therefore C,(R) is transitive on A(i) for
i = —1,-2, and (2.1) implies R = 1, a contradiction.

(6.8) There exists no pair (G, T') which satisfies (6.0).

Proof. Let (G,T') be a counterexample, and let § be the integer defined in
6.4). If Z, £ Z(0O* (M,)), then (6.4) implies b, = 2 which contradicts (6.7).
Hence:

() Zo = Z(0*(M)).

Now (6.4) and (6.5) yield:

2)(@a) § = 5,s = 5or7, and maximal regular subarcs of T have length 8.
() Z, = Z(Lo), by = 4 and |Z,| = 2™.

In addition (6.2)(b) implies Z, <= Z(SNM,) and Z, = Z, X Z,. Thus with
(1.2) and (1.3):

(3) b, = 3,|Z,| = 2", and Z, is direct sum of natural modules for L;, in
particular n, = n,.

Set V = <Z;°> and V, = V. Then (6.4) implies
V==0WMy)andZ,Z, <V =< Z,Z_,Q.

According to (6.1)(b) and (6.2) there exists ¢ € Ny (K) \ M,. Since K, cen-
tralizes Z(0* (M,)) and K, centralizes Z(0O* (M,)) = Z(0* (M) and

Z(0*(Mo) N Z(0* (M) = Q,

by (1.3) and (6.4)(c) we have K, N K = 1. Since (3.2)(b) and (c) and (3) imply
K = KK, and |K| < |K,|? we derive:

4 K = K,xK;and n, = n,.

In particular we have Q < Co (K) and Q = Co (K) by (3.4).
Hence

17 = [Oz(Mo),KJ = le-la

and (2)(b) implies Z,0,(M,) € Syl,(M,). Now the structure of Aut(L,(2"%)
yields

(K4, Mo] = Ox(Mo).

Thus V is normal in M, and [0.,(M,),M,] < V. It follows that
Z,V = V = Z,Z_,. Conjugation with 7 yields:

(5) V = le-l and Vz = le3-
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We have L, = <Z_,,Z,>Q,, since b, = 4, and get the following com-
mutator relations:

[Ql N Q-u Z)] = [Z-I(Qz N Q-l): Z) = (2., 2,)Z,,
since b, = 3 and [V,, Q,] = Z,, and
[Ql n,Qo: ZA] = Vzn Qo = Zl

by (5).
Thus we have [Q, N Q_,,Z,] = Q,NQ-,, and @, N Q_, is normal in L,. From
(6.6), (5), the second commutator relation and (1.3), Q,/Q; N Q-, is a natural
module for Z,.

Next we show Q, N Q-; = QV. As shown above, [<Z,,Z_,>,0,.N Q-]
=< V, hence

o.NQ., = CQo(Ko) v,

since K, operates fixed-point-freely on Q,/Q; N Q-, (note that K, # 1 by
hypothesis and (4)).
Set D = Cqo (Ko). Assume D Q,. Then the structure of Aut(L,(2")) yields

[Ko, L)) = Q. and L, = C.(Ko)Q:
which implies [Ko, V)] < Z,, since Z, = Z,Z, and [Z,, Ko] = 1. But then
[Ko,LJd < Z, < Qo and [K,, Lo = Qo

a contradiction.

Now assume D £ Qj; then [Ko,L;] < Qs and L; = Cr(Ko)Qs. On the
other hand b, = 4 and Z,Q,€ Syl,(Ls), hence [Ko,Ly] < Q. and
L, = C.(Ko)Qs. Thus Cs(Ko), is transitive on A(/) for i = 3,4. Now (2.1)
yields K, = 1, a contradiction.

We have shown that D < Q, and therefore D < L,. Since b, = 4, we get

D=20NQ) and Z,NQ, = 1.
IfDNQ, # Q, then N0 (Q) > Q and Npno (Q) £ OZ,, but
Npno Q) = 0:(My)

and QZ, is the centralizer of K, in O.(M,) (see (6.4) and (3)). This contradic-
tion shows DN Q, = Qand D = QZ,, in particular 9, N Q_, = QV.

Now we apply (1.5) and (6.4) to Q,/ V and L, and get that Q,/ V is elemen-
tary abelian, in particular [Q,, Q] < V. On the other hand

[Q,0i] = [Q, Z0:N Qo)] = [Q,Z(Q: N Qz)] = [Q,0:.N Q] =
[Q,0:.NQ) = VNV, = Z, (see(5)).

Now let K* be the subgroup of maximal order in K such that [K*,L,] < Q,.
From (4) we get |K*| = |Ko| # 1. This yields

[L,,K* Q] < [0,,0]l =Z, and [K*Q,L] =1,

hence, with the 3-subgroup-lemma, [Q,L,,K*] < Z,; in particular
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[0, 0., K* = Z,. Since [Q,Q,] is a module for M,, by (6.5) either
[0,0.] = Z, or [Q,Q.]Z, = V,. In the first case, [Q,(Q,,K;] = 1 and
[K2, Q,Q;] = 1 and hence, as above, [Q,, K, Q] = 1. Conjugation with 7!
yields [Q,, Ko, Q] = 1. But, as we have seen, Q, = [Qo, Ko](Q: N Q-,) and
0. N Q-., = QV; thus [Q,, Q] = 1 which contradicts (6.5).

Assume [Q, Q;1Z, = V,. Then [V,,K* < Z, and [Z,,K*] < Z, = Q,,
and we get

[K*,Lo] < Qo and Lo = CLO(K*)Q()'

But now C4(K*), is transitive on A(i) fori = 0,1, and (2.1) yields K* = 1, a
contradiction.

7. Some small cases

(7.0) Hypothesis and notation. Hypothesis (3.0) and notation (3.3) hold in
this section. In addition we assume that (0...s) is right singular. Note that by
(3.5), OxGoo..e)) = Q..

(7.1) s =3,0rGo = G, = L,(2" and n, > 1.

Proof. Assumes =< 2. Let S be a Sylow 2-subgroup of L,NL,. If s = 1,
then S = Q,, and L, is 2-closed, a contradiction.

If s = 2, then Q, = Q,, and (3.2)(e) yields O, < Q. or Q, = Q, = 1. In
the first case the operation of K implies Q, € Syly(L,) and L, is 2-closed, a
contradiction. In the second case (after conjugation with 7°!) we find that
L, = L, = L,2"), and S has order 2"°. The operation of K = KK, and (3.2)
vield K = Ko = Ky, no = n, > 1, L, = Goand L, = G,.

(7.2) Suppose that s = 3. Then one of the following holds.
@ n,=1,n, > 1and:

(@al) O%Lo) = Cj;

(@2) Q, is elementary abelian and C.(Q,) = Qi

(@3) There exist arcs of length s with stabilizers of even order.
(b) no>1,n, > 1and:

(bl) O*Ly) = L,(2") and OX(L,) = L,(2");

(b2) Sylow 2-subgroups of G, are elementary abelian of order 2

notny

Proof. Set R = Q,N Q,, then R is in Q,. Since Q, N Q, and Q, N Q; are
L,-conjugates, we get R = Q, N Qs, and R is normal in <Q,, 0:>Q; = L,;
in particular

L,/R = L,2")x Q,/R and Q, € Syl(<Q,, Q:>).
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If C_g,0,-(R) < R, we apply (1.7) and get a contradiction to (3.2)(e).
Thus we may assume C_g, ¢,.(R) £ R. From (1.9) we get:

(1) OXL, = L,2")' and O%L,) = L,(2")’, and Sylow 2-subgroups of
G, are elementary abelian of order 2" or 2"°""; or

(2) no = 1.0%Ly) = Csand C.(Q:) < Q,, and Q, is elementary abelian.

In case (1) we get |Go|, = 2" since s = 3, and (3.2)(b) yields assertion
(b).

In case (2), again, (3.2)(b) implies n, > 1 and assertion (a).

(7.3) Suppose that Zo =1 or Z, = 1. Then s =2 and G, = G,
= [,2"), n, > 1.

Proof. 1f Z, = 1 for some i € {0,1}, then Q, = 1 and |L,|, = 2™. This
implies s = 2, and the assertion follows from (7.1).

(7.4) Suppopse that s is evenand s > 2. Thens = 4, and Q, is elementary
abelian and a natural module forL; (i = 0,1).

Proof. Lety = (0...s) be a subarc of length s in T, and set Q = Ox«G,).
From (2.6)(a) we get that all arcs of length greater than s — 1 are singular.
Hence (3.5) and (2.10) imply Q = O,(Gy).

Assume Q # 1. Then there exists 6 €I' of minimal distance from 0 such
that Q £ G;,. Let ¥ = (8...6,), 6 = 0and §, = §, be the arc joining 0 and
8. The minimality of » yields Q < G,, for i < n. Now define ¥ to be the arc

(6'3—3-1' . -6n-l)
ifn—-1=s,and
Ss—(Mm—-1)...00...6.-1),

if n—1 < s, such that 4 has length s. Then 4 is a subarc of 7% for some
G-conjugate of the K-track (7', 7, K) (see (2.6)). In particular <K¢, Q> =< Gj,
and (3.5) and (2.10) imply Q = G,, a contradiction.

We have shown that G, is a 2’ -group. Now (2.7) implies s = 4.

Pick S € Syl,(Lo N L,). The transitivity of Lo N L, = N.,(S) on the arcs

(016,06;6s) and (106, 6-26-4)
(see (2.6)) yields
|S| = 22”1"‘1 = 22n04n1.

This implies n, = n,and |S| = 2’ in particular |Q,| = |Q,| = 2™.

Assume first that C.(Q) < Q, for i = 0,1. Then we apply (1.11) and get
either the assertion or Z;, = Z(L,) for some j € {0,1}. In the second case
|Q,/Z,] < 2%, and (1.2) yields a contradiction.
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We may assume now without loss that C; (Qo) £ Q.. Applying (1.9) we get
n, = 1 and L, = Z,. But now (3.2) implies
§ = (SNOHLJSNOHLY)) = Qs
a contradiction.
8. The stabilizer of A(x)

(8.0) Hpypothesis and notation. In this section we assume Hypothesis B
and use notation (3.3) as far as it suits this hypothesis. In addition,

XA(&) = n Xgp

pEA(S)

for6€Tland X < G.
(8.1) Suppose that T is a tree. Then G, is solvable and O(G4,) = 1 for
8 €T, and one of the following holds.
(a) There exists an edge-transitive normal subgroup E of G such that:
(al) OY(Es)/OAEs) = Ly(2™), or ny = 1 and OL(E,) € Syl.(Es);
(a2) no proper normal subgroup of E is edge-transitive on T';
@3) Co(Q.) = Q. ifand only if C(Qs) = Qs.
(b) s = 3, and {G,, G4} is parabolic of type
Aut(L,(2") | Aut(L,(2")) or Aut(L,(2") | Aut(L,(2"9)).

(c) (possibly after changing notion) ng = lands = 3, Q, is elementary
abelian,
G./Q. = H = Aut(L,(2"),

Q.. is isomorphic to a submodule of the natural permutation GF(2)-module for
G./Q.Gs = G, W, W = X, and W is normal in Gg.
Proof. The first property is obvious:

(1) Gs/Gaw, is isomorphic to a subgroup of Aut(L,(2™)) which contains
L,2™',86€T.

Since O(Ga(.y) is normal in G.s we get [O(Gaa)), Gasl
< O(Gay) = O(G.g). Hence (1) and the structure of Aut(L,(2")) yield
O(Ga(ay) < O(Ga). The same argument applied to O(Ga) shows
O(Ga(ay) = O(Gas). Hence O(Gy(o) is normal in <G., Gs> = G. We get:

(2) O(GA(a)) = O(GA(B)) = 1.

Let H, be the largest perfect normal subgroup in G, ;. Again the structure
of Aut(L,(2")) yields H, = Hj and:



254 BERND STELLMACHER

(3) H, = H; = 1, in particular G, is solvable for 6 € T'.

If Q. < Gss and Qs < G,(), then the above argument shows
Q. = Qs = 1, and (2) and (3) imply Gaay = Gasy = 1, and (a) holds.

Thus we may assume, without loss, Q. £ Ga,. Since Q, is normal in Q.,
we get:

4 [Q.Gaw] = QuNGa = Qs

Set Wy = < QS > Q,. Then (4) implies that every chief factor of W, which
isin W3 N G4 but not in Qg is central. Hence, [6, V 25.7] and the structure of
Aut(L,(2")) yield Ws N Gy = Qs and W/ Qs = Ly(2").

Assume that Q; £ Ga.). Then we define W, = <Q% >Q, and, as
above, get

W.NGsey = Q. and W,/Q. = Ly2").
Set
E = <OYW.)O0 Wy N G.), O(We)(OX(W,) N Gg) >

and 7, = Cg(Q,) for 6 = «,B. Then (2.3) and (2.4) imply that (al) and (a2)
hold in E, and (3) and (4) yield Ts N\ G4y = Z(Q,). Hence T, £ Q,if and on-
ly if Cw(Qs) £ Q..

Thus either case (a) holds for E, or we have one of the following:

(D) Qs £ Gaw» Cws(Qs) £ Qs and Cy,(Qo) < Qo
(D Qs £ Gaw» Cwa(Qo) £ Qa and Cwy(Qs) = Qs
(Il) Qs < Gaca-

Since (I) and (II) only differ in notation, we may assume without loss of
generality that we are in case (I) or (III).

Assume (III). This implies Qs < Q. and Q. € Syl,(W,s). By (2.1),
< W 0(G.)Q.> is edge-transitive on I'. Thus no non-trivial subgroup of W,
is normalized by O%G.)Q.. Hence (1.7) implies Cwy(Qs) £ Qs. So we have
shown in both cases (I) and (III):

() Cws(Qo) £ Qs

Then W; = QsCws(Qs), and ¢(Q.) is normal in the edge-transitive subgroup
< W;, G,>. This implies:

6) We = QW3 Wi = L,(2™), and Q, is elementary abelian.

Set Rs = Ngup-ca@Gacs). The subgroup N g caeGags, is normal in
<G., Ws>. Hence, as above,

n GA(M =1= RanGAw)-

B'eA(a)
For subsets {8,...8,} in A(a) we define

k k
Yk = n GA(p‘) al‘ld Yk = H Rn‘.

im1 in]
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Assume first that R, = 1. Since [Q.Ks] = Ry it follows that Kz = 1 and
2" = 2. We know that Z(Qs,Q.) = <a,> is cyclic of order 2, since, by
(3.2)(e), Z(Qs,2) N Qs = 1 fori + j.

If I1}a;, = 1, then a, = II5}a, € Q,, and thus k — 1 = 0 (2). On the other
hand, if kK < 2"+ 1, then a,,...,a: € Q. \ Qs,,, yields k = 0 (2), a contra-
diction. This shows that Q. is isomorphic to the non-trivial submodule of a
natural permutation GF(2)-module for G,/ Q..

Now assume that Rg # 1, and let k£ be maximal such that

k
.= X R, and FNY.=1,

and assume that there exists 81 € A(@) \ {B1,...,8:). Then R,,,, < Y, and
hence ¥,., = X*IR,,. By the maximality of k there exists

1 #nmyeE Yer N Yiu
for r € Ry}, and y € ¥,. Then
y (S GA(gk”) and re€ Y;,ﬂy" g GA(ak“)

which contradicts R,,,, N Gagg,,,) = 1.

We have shown that there exists a normal subgroup W = Xs. ca(o)Rs in G,
and R; is a subgroup of Aut(W}) containing the normalizer of a Sylow
2-subgroup of W} In particular, (Rs N Q. )W}’ = Ly(2™), and (R, N Q. )W’
is normal in G, since G, normalizes R,. According to (6) we may choose
Ws = (ReN QWS _

There exists an involution ¢t € W, with o' = «’ for o # o’ € A(B). Set
X = G.,NG:NG,. Then [X,t] = W;NG,NG, = 1. Hence a subgroup
X, in X is transitive on A(a) \ {8}, if and only if it is also transitive on
A(a’) \ {B}. This shows that s = 3 and that there exists no regular arc
(aBa’B’) of length 3, and since Q, £ G, we gets = 3.

Assume that n; > 1. Then Cg (W) = 1and G, < Aut(W) (here and in the
following we interpret the natural monomorphism into the automorphism
group as inclusion). Set

W= X Aut(Rs).

B'E€A(a)
As G fixes every 8’ € A(e) and Aut(W) = Aut(Ry) | L)ae)|» We get
GA(,,) = Won Ga =< Ga < Aut(Rp) l EIA(a)I.

On the other hand G, W,/ W, = H < Aut(L,(2")), and G, operates in its
natural permutation representation on {R,./8’ € A(x)}. But then G, W, is con-
jugate in Aut(W) to Aut(R,) | H. Hence we may assume

Rs | L2 = G, < Aut(Ry) | Aut(L,(2").

It is easy to see with Schur’s lemma that Aut(Rs) is a subgroup of
Aut(L,(2")), hence

G. = Aut(Ry) | Aut(L,(2"9)) =< Aut(L:(2")) | Aut(L(2")).
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With the same argument we get

Gs < Aut(( X  Rp) X Ly(2")
)

B#BEA(a

< Aut( X L,2"))

B'ea(a)
< Aut(L(2") | Zjace -
Set
Wo = X Aut(Ly(2™)).

B'eA(a)

Then G,y Ws < W,, and Gs/ Gz N W, is isomorphic to a subgroup of the
normalizer of a Sylow 2-subgroup in Aut(L,(2"%)). In particular the permuta-
tion representation of G/ GsN Woon (R, /B8 # B’ € A(a)} is unique, and G,
is in Aut(Xs ca(ayL2(2™")) conjugate to a subgroup of

Aut(Ly(2™)) | Aut(Ly(2™)).

This shows assertion (b), if n, > 1.

Assume n; = 1. Then W is elementary abelian of order 22", and G;is.no
longer a subgroup of Aut(#). But now O*G,.,) is normal in <G,, Gs>
= G. Hence G.(,, = Q. = W, and assertion (c) follows.

9. Finite graphs
(9.0) Hypothesis and notation. In this section we assume Hypothesis (3.0)
and use notation (3.3). In addition:
(1) max{no, n,} > 1,
2 s=3,
(3) arcs of length s have stabilizers of odd order in G.
It follows from (3) and (3.1)(e) that there are involutions
LhEN(K) \ L, and #, €N (K) \ L.

Hence we may assume 7 = tf, (see (2.8)); then 7 = 7' and kK = — k and
k' = 2 — k for k € T. Furthermore

Aut’l") = <x€Aut(l") 7/ 0-€0°>,
X = NAuto(I‘)(G)) X = {T¢/g € X} and
H ey = {y/v arc of length 2(s — 1) and y S T* € x};

7(8:,8,) denotes the unique arc starting at 6, which joins the two vertices 8, and
8.
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(9.1) Suppose that v is an arc of length s. Then v is contained in a unique
element of X.

Proof. Since v is conjugate to (0...s) or (1...s+ 1) (see (2.6)), v is con-
tained in some element of 1.

Now assume that v is a counterexample. Then v € TN T* for some g € X
and T # T¢, and without loss of generality we may assume

TNT: = 0...w), w=s.
In particular G(,.., = K = K¢, since G, has odd order. Thus

0...w) and (0c...w?)
are both subarcs of T&.

First suppose that w = 1 (2). Then A(0) or A(w) contains more than three
elements which contradicts K = K® and (3.1)(b). Hence w = 0 (2), and there
exists 7* € < 7¢> such that

0 =0 and we = w
or

O¢*=w and w&* =0

In the first case g7* € G ,..., = K¢, and gr* and 7* normalize 7. It follows
that <g> normalizes T, contradicting T # T=.
In the second case there exists a reflection ¢’ on 7® such that

gT*t, e G(O.,.w)'

Thus as above, ¢’ , 7 and g normalize 7%, a contradiction.

9.2) Let X = O*(<Go. 1) Gs-1..2¢-1))>). Then:

(@ X/XNQ,, = L,2%™).

(b) K normalizes X.

(©) XN Q,.,isanatural module for X/ XN Q,.;, or XN Q,_, = 1.

Proof. We define
T, = Oz(G(o...s-l)), T, = 02(G(s-l...2(s—l)))’

K* = C(T)) and R = <T,, T.> N Q.. Since K operates on T, and T, and
arcs of length s have stabilizers of odd order, we get together with [6, I 14.4]:

(1) T.is elementary abelian of order 2™ *and T.N Q,., = 1,i = 1,2.
Q) TQ.1ESYlL,), i = 1,2,and <T,,T,>/R = L,(2™").
(3) K*centralizes <T,,T,>.

(4) There exists a complement X = L,(2"*) in <T,, T,> which contains
K,.,.
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Hence it suffices to show that R is a natural module or R = 1.

If s = 3, we apply (7.2) and get <T,,T,> <O*L,.,) and R = 1, since
[T,K] = T, fori = 1,2,
If s = 0 (2), we apply (7.3) and get that R = 1 or R = Q,, is a natural
module.

Hence we may assume s= Sands = 1 (2), in particular p = (s — 1)/2isan
integer and a vertex in T

Suppose first that K* # 1. If Cy _ (K*) £ Q,-,, then the operation of K on
Co, (K*) yields Q,..Cyo,_(K*) € Syli(L,-;) and [L,,, K*] < Q,.,. Together
with (2) and (3) this contradicts (2.1).

We have shown:

(5) Co,(K*) = Q.ma.
Since < T, T,> operates transitively on A(s — 1), we get
R=scCokn= () g =H

pEA(s-1)
Now, an application of (4.6), (4.8) and (5.2) yields one of the following
cases:

G H =1
() H=2Z-=Z2(L.)and H < G,.

Gii) s = 7, H = TsZ,.,, where Ts = Oy(G,,. s1.-1), and Z,_, is a natural
module for Z,_,.

In case (i) we get R = 1. In case (ii), R < Z(< Ty, T.>), and (4) and the
operation of K imply R = 1.

Assume now case (iii). With the help of (4.8) and (5.2) it is easy to check that
[T:,K,] = 1 and hence K, = K*. On the other hand, p = 3ands-1 = 6,
and (3.2) implies K, = K*. Since T, stabilizes the maximal regular arc
(n...s+p—1), we get T,NQ, =1 and Cr(K,) =1 or K, =1=K* So
Cr,(K,) = 1andR = 1or R = Z,,, and the assertion holds.

Suppose now that K* = 1. Then we are in case (5.2)(a) or (b)and X = K,.,.
Ifs = 5, then CL3(K) st <Z],Zs> and lZgl = 2 and <Zl, Z;> = 23.
If s = 7, then C,(K) = <Z,,Z;> = L.. Let d be an element of order 3 in
C;,_,(K), and let @ be the set of all elementary abelian subgroups Fin Q,., such
that FNQ,.sN Q... = 1, |F| = 2™ and [K, F] = F. If (5.2)(a) holds, it is
;aslﬁ to check that @ = (T, T% T7 }. We want to show the same, if (5.2)(b)

olds.

Define Q,-; = Q,-2/Q,-sNQ,-, and @ = (F/FEQ}. Clearly |0] = 3,
since T;, 7% and T¢ " are contained in Q. Assume || > 3, then the opera-
tion of d implies | | = 6, and there are at least 42 images of involutions and
at most 21 images of 4-elements in ,.,. We now take a factor group 0 of Q,.,
which is a non-abelian extension of Q,., of order 27. All such possible exten-
sions contain more than 21 4-elements. Hence we have shown:

©® | =3.
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Now let T; = Oy(Gy,..s)). Then Q, N Qs = T,Zs, and there exists a reflec-
tion ¢ on T in L, which inverts the elements of K and interchanges T, and T;.
Since |K| > 3, there are only two K-modules of order 22in T,T,Zs/ Z,, name-
ly T\Zs/Zs and T>Zs/Zs. On the other hand

Z, = Z,Z! < Co(K) and QNT.Zs = (T.};

thus we have shown for s = 5 and 7, @ = {T,, T}, T%"}. One of these three
elements in Q, say T, is_::ontained in Q,-, and sinced € <Z,, Z,_,>, there ex-
ists € Z, such that T¢ = T3. Hence we have shown:

(7) T, and Tj are the only complements for Q,-, in T,Q,-, which are nor-
malized by K.

Now reflecting T with 5’ yields:

(8) T,and Tj are the only complements for Q.-1in 7,0, (Z € Z,-,) which
are normalized by K.

If we now take Y as described in (4), we can fine x € < Z,_,, Z,> such that
Yx = < Tl N Tz >.

(9.3) Suppose that o,,q2,03 €T, (o, s) €N 2(s-1) and
d(oz,a3) = 2(s — 1).
Then y(o;, 03) € K 3(s-1)-

Proof. We use the following notation: v, = y(a;,a) for {i,Jj,k}
= {1,2,3},

Y1 N 72“ Y3 = {)\]9 Tl = OZ(G‘Y(W.)\))Q

L = <T, T,>, tis a reflection on vy, contained in O,(G s,..s,_,)) for some
arc (\;...0,-,) of length s — 1.

By (9.2), L/Ox(L) = L,(2™), and O,(L) is a natural module or O,(L) = 1.
It is easy to check that TN T, # 1 (v E L) implies T} = To.

There exists ¢ € T, which interchanges the two vertices in A(\) N v,. Hence
v. and v3 have an arc of length s in common. It follows from (9.1) that
v2 = 75 The structure of L,(2™) yields the existence of ¢’ € T, such that
<t,t'’>Q\/Qr = L,, and the structure of L implies <t¢,¢’> = L,. Note
that the relation #* = ¢’ holds.

Setv = t*, thent' €ET,NT,and T} = T, On the other hand T» = T,
thus vf, normalizes 7, and T,. From the structure of L and L, we conclude that
[L,vt)] = 1.By(7.4), this is only possible if s = 1 (2). Hence v¢, stabilizes the
arc (A1...\...\;) of length s — 1 where \, is the midpoint in y(c;, N). So vt, has
order 1 or 2, and v and # commute. Therefore y(\, as) and (N...4,-,) have an
arc (\...\;) of length (s — 1) /2 in common. Since both v and ¢, fix two vertices
in A(\s), we get v, 1, € O, and v and ¢, fix the elements in A(As) N 2. Thus v,
stabilizes ¥ = (A;...\...\sp) where u € A\;) Ny, and p € (N...)\s). Since ¥
has length s, it follows that v, = 1 and v = f,. Hence o} = o = o, and
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a> = o) = as, since v = t'"*€T; = T,, and we have shown y;* = 7,
GKz(,_l).

(9.4) There exists an equivalence relation = on T such that:

(a) T=T/=isan (s — 1)-gon (where two equivalence classes are adja-
cent, iff they contain some pair of adjacent vertices).

(b) X operates on r.
() X, and X, operate faithfully on r.
Moreover, for X = X7, one of the following holds:

(1) s=3, G=L,2" x L,2"), X < Aut(L.(2") x L,(2")), and
{Xo, X1} is parabolic of type L,(2") x L,(2™).

Q) s=4,G =Ly2"), X < Aut(L;(2")) and {X,, X,} is parabolic of
type L;(2™).

3) s =5G = 5ps2") orU,2"), X < Aut(Sp.)2") (resp. Aut(U(2")),
and {X,, X1} is parabolic of type Sp(2"°) (resp. U.,2")).

@) s=17, G =G,2" or 3D,2"), X < Aut(G,(2"°)) (resp.
Aut (°D4(2"))), and {X,, X} is parabolic of type G,(2") (resp. *D(2").

Proof. For 6 €ET we define:
I's = NET/%(6,N) €EHX3-1)} U {8).

Note that y(6,\) € ¥;(,-1, implies y(\,8) € A ,,-1,, since the elements in A
allow reflections. X operates on the graph I" with vertex set {I',/8 € i,
where two vertices I'; and I';, are adjacent iff § # 6’ and {6,6'} S I'sNT,..
Now we define an equivalence relation ~ on I':

6 = ¢’ for 6,6’ €T iff I';is in I in the same connected component as I's/.

Set I' = I'/ = and denote by § the equivalence class of 5 € I'. Two vertices
«,( are adjacent iff there exist o’ € a and B’ € 8 such that 8’ € A(a’).

It is easy to see that X operates on I'. We want to show first that I' is non-
trivial:

_ (1)_ If 6 has distance less than 2(s — 1) from 0 (resp. 1), then § # 0 (resp.
d# 1)oré = 0(resp. 6 = 1).

Let & # 0 be of distance less than 2(s — 1) from 0. Assume that 6 € 0. Then
there exist elements 8,4, ...,0, such that 3, = 0 and §, = 6 and I';, is adja-
centtol,, inT fori = 0,...,n -1, which means

(015 0001) € H2(s-1).

Let n be minimal with these properties.
There exists 6,, 0 < k< n, such that d(d,,d,) is maximal. Set
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Y(Bxk s Oxe1) N ¥(0k, 6i-1) = (Bk...N),
()\. . 6k+1) and Y3 = ()\. . 6,,_1).

Y1

Y2

Since v, is contained in at least two different elements of ¥, it has length less
than s. On the other hand d(o,\) + |v:| < d(d0,0) for i = 2,3. Hence the
length of v, is s — 1 for i = 1,2,3, and we can apply (9.3) to get

Ok-1,0k41 € F‘k-n N Pakﬂ-

But nOW 8o, ..., 81, 0k1,. . . , 0, have the same properties as o, ..., 5,, contra-
dicting the minimality of n.
The same argument holds for 1 in place of 0.

(2) Suppose that § and \ are adjacent in I'. Then for every 6 € & there exists
\ € X such that § € A(\).

By definition, there exist 8, € § and \, € such that 8, € A(N\o). Assume that
6 € & and y(8o,8) €A 3(,-1,. It suffices to show (2) for all such vertices 6.

Let \* be the vertex of distance s — 1 from &, and & in (8o, 6). Then y(\o,\*)
has length s, and (9.1) implies that there is a unique element 7* in ¥ containing
1o, \¥). Pick \, € T* of distance 2(s — 1) from X\, and 2(s — 1) — 1 from §,
and 8, € T*N A(\,) of distance 2(s — 1) from 8. Note that § = & and
No = Ar

If € T*, then 6 = §, and d(6,\,) = 1. So assume § € T*. Then we can ap-
ply (9.3), and get v(5,,8) €E T**E X,

Hence there exists \; € A(8) N T** of distance 2(s — 1) from \,, and since
A\ € T** it follows that A, EX, = \.

(3) For 6, A\ €T the following hold:

(@ d@G,\) = min{d(é’,\") | 5’ €3,\’ EN.

®) |A@)| = |A®)|.

(o) T is a generalized (s — 1)-gon; in particular T' is finite.

Parts (a) and (b) are easy consequences of (2). By (1), T has diameter s — 1,
and the classes of vertices in T form a circuit of length 2(s — 1). Again by (l),
2(s — 1) is the girth of T'.

Set X = XT. In the following we use ~ convention for subgroups and
subsets of X and T'.

(4) Any arc of length s in T' is contained in a unique element of 7.

Since the elements of X are circuits of length 2(s — 1), this follows im-
mediately from (2.6) and (3)(c).

(5) X, and X, operate faithfully on T'.

Suppose that x € X fixes every 5 in T'. Then we can choose 6 such that x
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fixes 6’ for v(0,8) = (0...6’ ) but not 6. Hence d(6,6*) = 2and € 5w§_1ich
contradicts (1). The same argument shows that X, operates faithfully on I'.

(6) Suppose that s = 4. Then assertion (9.4)(2) holds.

If s = 4, then T is a generalized 3-gon. It follows that [ is the incidence
graph of a projective plane 2 of order g,. Hence X operates as a group of col-
lineations on #, and the elements in Z#(i € T') induce elations on 2. Since G is
transitive on the points and lines of 2, the assertion follows from [13, 13.11].

From now on we assume s # 4 and refer to Sections 4 and 5, where the
structure of L, and L, is described, and (6.8) and (7.2) as (*). Set
p=(6-1)/2, W = <t t;>and g, = 2™,

(7) Kl’ = K“z“ fOl‘ iG T.

We apply (*). Then s = 3, 5 or 7, and in all but one case there exists a
subgroup D, such that [D,, K] = 1,

CT(Dg) = (i Ry ,i + [l,) and D[Q‘*" e Sylz(LI*”).

In the remaining case ((4.8)(a), resp. (5.2)(a)) we have K, = K;x K; with
|K:| = ¢*—1, |K;| = g—1and |K]| = g+ 1,andget[D,K;] = 1, where
D, has all the other above properties. In addition,

K| | (g 1)g-1),

and K; is the unique subgroup in K of order ¢ + 1. Hence K = Kj,,,, and it is
easy to apply the following argument to K; instead of K, to get K; = K.a,.

Thus we assume [D,, K] = 1. This implies [K,,L,.,] = 1 and with the same
argument [Ku.,,Lu) = 1. If K, = C(T,) and K., = Ck(T..,), then
K, = K..,,. Hence we may assume K, # C(L.,). Since K = KK, (by (3.2)),
it follows that i + p € i° and ¢, < g..,. Hence we are in case (4.8)(a) (resp.
(5.2)@)), |K| = (.- 1)Xq.+ 1) and |C(T..,)| = q’— 1. But then there is a
unique subgroup of order g, — 1 in C(L,,) and again K, = K,,.

8) ™€ Xrand W = D,,.

Since W is an infinite dihedral group and & X7 for 0 < kK < 2u—1 by
(1), it suffices to show 7 € Xr.

Wedefine t,; = ¢ and t,,., = #;° for i € Z. Note that ¢, inverts the elements
in K; and 7% = tots, = titz.. From (7) we know that #.f,, centralizes K, and
that ¢,4,,., centralizes K,. Hence 7** centralizes K.

Set A = <7*>, and suppose that A # 1. If we are in cases (4.8)(a) (resp.
(5.2)(a))—we shall call this the U,case—we choose notation such that
go = q*. The elements in A N K are inverted by 7, and f,, thus

ANK = K NK,

and, by (*), K, N K, = 1. Hence we get a direct product 4 x K, (i = 0,1), and
since K, operates transitively on A(7) \ T (see (3)(b)), there exists

x=ak€AxRK, <a> = AandkE€ER,
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which fixes every element in A(/) and in T. Thus x also fixes
-~ La™™y
AD™ = A+ 2p)
by (4). Hence x and x™ = ak™ are in CHA( + 2p)). Now (7) implies
k%™ € CHAG + 20) N Koy = 1,

and k = k™. It follows that k' = k' = k™, since = t{t,,. If wearenotin
the Us-case or if i = 1, then by (*), K,N K., = 1. On the other hand,

= [k)t:’bu]EKinKHu;

thus we have k = 1.

Ifi = 0and we are in the U,-case, it follows that K, N K, = K}, where K} is
the unique subgroup of order ¢, + 1 in K, and k € K;.

The operation of 7 on T implies that we have to treat the following two
cases:

i A = cxa@)) forallieT,
(i) the U,-case holds, and A < CxA(?)) for all odd /€ T.

Assume (ii). Then k € K:, and k fixes every element in A({) for i = 1 (2).
Hence x fixes every element in A(Y), i = 1 (2), A0) and A(d). Pick

5F€a@\T and 5,€23)\T.
Fori = 3,5 and § € A(D), v(§,5) denotes the arc

(@01...38,) (resp. (30 1...5 35)).
By (4), 7(@ 6,) is contained in a unique element T'(g, 6,) of ¥, and x fixes all of
these 7(g,3). Hence again by (4), x fixes every element in AGy), AGB), AQ),

A(3), AG.), and (5, 333 §,) is a G-conjugate of (0...3).
Thus, in both cases (i) and (ii) it suffices to prove (**) to get a contradiction:

(*»*) Let x be an element in X which fixes the elements in

AD),...,ACZD).
Then x = 1.

By (4), x stabilizes every vertex in T. Pick k€ T, s < k < 25— 3, and
Seak) \ k=1

~ ~ ()
Then y = (6 k...k — (s — 1)) is an arc of length s contained in a unique ele-
ment T of #. Since x stabilizes

K...k=(s-1)

and the vertices in
[, )
A(k = (s = 1)) N T,

it follows from (4) that x stabilizes 7' and hence &. Thus we have shown that x
fixes the elements in A({) for 7€ T.
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Now let § be any vertex in T, and choose £ € T such that d(3, k) is minimal.
By mductlon we may assume that x fixes every vertex m r whlch has distance
less than d(5, k) from some vertex in 7. Let (3,...,3.), 3 = £, 5, = 5, be
the arc joining £ and 5. Then n < s — 1 ((3)(c) and

[ -
Gk+@E—-n+1)...k...6,-)

is an arc of length s contained in some T € ¥. As above x stabilizes 7' and
therefore 6.

- oy , ,

9) Set N = WK and B = Go,. Then (B, N) is a BN-pair of G.
For the definition of a BN-pair see [11]. It suffices to show:
(*»+) £,Bw C BwBUBiwB fori = 0,1 and wE W.

Every w € W can be written as ;7" or 7" for some0 < m < s — 1. We shall

show (*+) fori = 0 and w = £;%". The other cases follow with the same argu-
ment. For x € G,, we get

O D" = 2 1) = 2+ 2m 1),
Pick 2k(s — 1) + 1 € T such that d(2 + 2m,2k(s — 1) + 1) is minimal. Then
d@2+2m,2k(s—1)+1) = s-1
and there exists ¥ € Gax(s-1) N Gax(s-1)+1 Such that

m, ~m=1

O D™ C T and (0 1)*™ " = (01)
or
© 1o = (o1).
Hence toxt,7my7™™ ' € Goy OF toXt,7™YT ™ 'to € Goy, and from
NG = B
we get
fo%f7" € Bf;#*'B U B#*'B = BwB U BtowB.

Note that B = SK for S € Syl,(B) by (3.2)(c). Hence we can apply (9) and
[11] to get the assertion.

10. Proofs of Theorems 1 and 2 and Corollary 1

Proof of Theorem 2. Let G be a counterexample. Suppose first that I'is a
tree and that G is not vertex-transitive. We apply (8.1) and conclude that
(8.1)(a) holds for some normal subgroup E in G.

Assume that Hypothesis (3.0) holds in E. Then it follows from Sections
4,5,6,7 and 9 that E is no counterexample. Since G < Aut(E) and G is a
counterexample, the singularity s of £ cannot be the singularity of G. Hence



GRAPHS WITH EDGE-TRANSITIVE AUTOMORPHISM GROUPS 265

there exists an arc 4y = (\...0) of length s¢ which is regular under the opera-
tion of G. By (2.6) we may assume additionally y € T for some K-track
(T, 7,K) defined in (3.3) with respect to E. Again by the above mentioned sec-
tions we get |E,|, = 1or2andse = 1(2) or n, = ng >1. Thus without loss
of generality we may assume n, > 1, and the choice of K assures that K does
not fix every vertex in A(\). But [K, G,] < E,, and the structure of G, and the
transitivity of G, on A(\) \ y imply 2™| |[K, G,]|, a contradiction.

Now assume that Hypothesis (3.0) does not hold in E. By (8.1)(a) we may
assume that n, = 1 and E,, is 2-closed. Pick S, € Syl,(E.s). Then S, is normal
in E, and [So, E.s] =< So. The structure of Aut(L.(2")) and (2.1) imply
Es/OyEs) = L,2") and E = <OXE,),Es>. Hence no non-trivial charac-
teristic subgroup of S, is normal in E,. From (1.7) we get

Ce,(O:E2) £ O:(Es)
and thus, by (8.1), Cr (Ox(E.)) £ O(E.). Again, (2.1) implies
E = < CE ﬁ(oz(Eﬂ)) ) CEa(Oz(Ea)) >.

Therefore ONEp) NOE,) = 1, E, = Oy(E,) X As, |Oy(E.)| = 2™ and
E; = L,(2™).1t is now easy to check that s = 3 and {G., G4} is parabolic of
type L,(2") x L,(2)’, and G is not a counterexample.

Now assume that I' is not a tree, and let G* be the amalgamated product of
G, and G, with respect to G, N G,. We identify G, and G with the cor-
responding subgroups in G*. There exists a normal subgroup N in G* such
that G*/N = G. Let ¢ be the natural homomorphism from G* to G.

G* operates by right multiplication on the graph I'* with vertex set

(Gux/XxEGHU{Gsx/x € G*

where two vertices are adjacent iff they have non-empty intersection.

According to [4, (2.4) and (2.5)], G* and I'* fulfill Hypothesis B, I"'* is a
tree, and the vertex stabilizers are conjugate to G, or G,. What we have
already proved shows that G* is not a counterexample to Theorem 2.

Let = be the equivalence relation on I'* induced by N (i.e., 6’ = 6 for
8’ ,8 € T* iff §’ € &) and define 6’" to be adjacent to " iff there exist 6, € 6"
and 8, € 8" such that 8, € A(S,). As the vertices of I'* are the cosets of G, and
G, the vertices in I'* / = are the cosets of G.N and GsN. If G is not vertex-
transitive on T,

(G:Nx)y = 6, x€GandéE (a,l),

defines an isomorphism from I'*/ = to I'. This isomorphism is compatible
with ¢. Hence G operates in the same way on I as on I'*/ =, and G is no
counterexample.

Now assume that G is vertex-transitive. Then n, = n; > 1, and G, is con-
jugate to G, in G. From the structure of G* we see that {G,, G} is parabolic of
type L2(2") X L2(2"), Ly(2"*) or Sp4(2"9). It is now easy to check thats = 3,4
or 5 respectively. This shows that G is not a counterexample.
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Proof of Theorem 1. Let G* be the amalgamated product of M, and M,
with respect to M, N M,. We define the graph I'* as in the proof of Theorem 2.
As we have shown there, Hypothesis B holds in G* with respect to I'*, and
vertex-stabilizers in G* are conjugate to M, or M,. Hence Theorem 2 implies
Theorem 1.

Proof of Corollary 1. Let G be a counterexample. Then either (c) or (d) in
Theorem 1 holds.

Assume case (d). Then |0,(M})| = 2"1and n, > 1. Now an easy applica-
tion of [3, Corollary 4] and the Main Theorem in [3] shows G = M,0(G).

Now assume case (c). We choose notation such that n, > 1. Since maximal
elementary abelian subgroups of O,(M;) have order 23, it is easy to see that M,
has sectional 2-rank 4 and that O,(M,) is weakly closed in a Sylow 2-subgroup
S of M,. Hence S is a Sylow 2-subgroup of G, and G has sectional 2-rank 4.
Now [12] implies that {M,, M,} is parabolic of type J,.
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