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ON GRAPHS WITH EDGE-TRANSITIVE
AUTOMORPHISM GROUPS

BY

BERND STELLMACHER

In [4], Goldschmidt considered groups G with finite subgroups MI and M2
and the following three properties:

(i) G <MI,M2>.

(ii) No non-trivial normal subgroup of G is contained in M M.
(iii) [MI/M M2[ 3fori 1,2.

He was able to give the exact structure (the isomorphism classes) of all possi-
ble pairs of subgroupsM and M. In his proof he used a graph theoretical ap-
proach:
Any group G with properties (i) and (ii) operates as an edge-transitive group

of automorphisms on a graph 1 whose vertex set is

{M,x/x . G} 0 [Mx{x . G}

and where two vertices are adjacent iff they have non-empty intersection. G
operates on I by right multiplication, the vertex-stabilizers in G are conjugate
to MI or M2, and the edge-stabilizers are conjugate toM M (see [4, (2.6)]).

Since G is a homomorphic image of the amalgamated product of Mt and M2
with respect to M t M, one can study this amalgamated product and the
corresponding graph F. Serre [9] has shown in this case that I is a tree. Hence
the above problem leads to the investigation of edge-transitive groups of auto-
morphisms of the trivalent tree with finite vertex-stabilizers.
We use this method to investigate a more general situation. We make the

following hypotheses.

Hypothesis A.
such that:

(1)

(2)

(3)

(4)

Let G be a group andM and M2 be finite subgroups of G

G <MI, M2>.

NO non-trivial normal subgroup of G is contained in M f)M.

[M/M f) M21 2" + l,n >_ 1, 1,2 andmax[n,n] > 1.

There exists a normal subgroup N in Mr such that

N,/R L(2"9’ for R Oe,,,, (M, M] ) and [i,jl 11,21.
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Hypothesis B. Let r’ be a connected graph and G be an edge-transitive
group of automorphisms of F such that for a F:

(a) G is finite.

(b) A(c0[ 2" + 1, n >_ 1 and max{n,na] > 1 for fl A(u).

(c) There exists a normal subgroupN in G such that Nt = L(2)

Here G denotes the stabilizer of c in G, zX(t) the set of vertices adjacent to
c, andNt the permutation group on A(c0 induced by N. Any graph in this
paper is undirected and without loops and multiple edges.
The condition max{hi,n21 > (resp. max{n,na} > 1) only excludes cases

treated in [4], and condition (b) and (c) imply that N is transitive on A(c0.
Let q, q and q2 be powers of 2, and let Aut(L(q i)) Aut(L(q)) be the

wreath product of Aut(L(ql)) with Aut(L2(q)) with respect to the natural
permutation representation of L(q). We define:

IL,(ql) x L2(q), Aut(L(ql)) Aut(L(q)), maxlql, q2} > 1; L(q),
Sp4(q), G2(q), q > 2; U4(q), 3D4(q), J2}.

LetXbe a group in. IfX is not the wreath product, thenXcontains exact-
ly two conjugacy clases of maximal 2-local subgroups which contain Sylow
2-subgroups of X. Let X1 andX be representatives for these two classes in X.
If X is the wreath product, then there exist exactly two classes of 2-local sub-
groups which contain Sylow 2-subgroups of X and fulfil (3) and (4) of
Hypothesis A. In this case let X1 and X be representatives for these classes.

DEFINITION.
if fori 1,2,

A pair of groups [MI, M2} is parabolic of type X for X E ,
(.) X is not the wreath product, and Mi is isomorphic to a subgroup of

N,,,tx(Xi) which contains X, or

(**) X is the wreath product, and M is isomorphic to a subgoup of X
which contains X fq L(ql ) L(q2)

A pair of groups <M1,M> is parabolic of type J, if for 1,2 there ex-
ists a normal subgroup X, in M, such that:

(i) [M,/X, <_ 2.

(ii) X1/O(X1) L(4), O(X1) -- Q,D and Cm(O2(X1)) <_O(X1).

(iii) X BO,.(X),B C x F,, O(X9 is special of order 26, and the
3-elements in O’(X) operate fixed point freely on O(X,).

Note that all groups inY fulfil Hypothesis A with respect to X1 and X. But
these are not all the known examples.
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The simple group J3 has (up to notation and conjugation) two pairs of sub-
groups M1 and M2 for which Hypothesis A holds, in one case they are
parabloic of type J2, in the other case parabolic of type L3(4).
But as the following theorems show, the examples in Y give the pattern for

all possible examples.

THEOREM 1. Assume Hypothesis A. Then one of the following holds
(possibly after interchanging 1 and 2):

(a) M H _< Aut(L2(2nl)), 1,2.

(b) {M,M2] is parabolic of type Xfor some X in ..
(c) {Mx, M2] is parabolic of type J.

(d) n > 1, 02(M) is elmentary abelian, M/O,.(MI) H <_

Aut(L2(2n)), and 02(M) is isomorphic to a submodule of the natural per-
mutation GF(2)-module for M/O2(M); n2 1, M2 NMI(S)W for
S E SyI2(M tq M,) and a normal subgroup W of M2 which is isomorphic to

As a special case we get from Theorem and [3]"

COROLLARY 1. Assume Hypothesis A, andsuppose that G isfinite and that

M No(O2(M)) for 1,2.

Then {Mt,M2} is parabolic of type Xfor some X , or G MO(G) for
some j [1,2}.

A graph I’ is locally (G, s)-transitive with respect to a group G of automor-
phisms of F, if for every a E I’, G is transitive on the arcs of length k starting
at x for k _< s and s is maximal with this property.

THEOREM 2. Assume Hypothesis B. Then F is locally (G, s)-transitive, and
one of the following holds for A {G, Ga}:

(a) s 2, and G H <_ Aut(L2(2"))for

(b) s 3, and A is parabolic of type L2(2") x L2(2").

(c) s 3, and A is parabolic of type Aut(L2(2")) Aut(L2(2na))

(d) (possibly after interchanging and {3) s 3, na 1, 02(G) is
elementary abelian, G/O2(G) H <_ Aut(L2(2)), and 02(G) is isomor-
phic to a submodule of the naturalpermutation G(2)-modulefor G/O2(G);

N(S)Wfor S SyI2(Ga) and a normal subgroup W of Ga isomorphic
to E3.

(e) s 4, and A is parabolic of type L(2).
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(f) s 5, and A is parabolic of type U4(2-), Sp4(2-a), or J.

(g) s 7, and A is parabolic of type G2(2"a), or 3D4(2").

I would like to thank R. Weiss for his helpful conversations on Chapter 9. I
also wish to thank G. Stroth for pointing out an error in Lemma 1.3.

1. Group theoretical results

Hypothesis I. Let G be a finite group such that

(a) Co(02(G)) < 02(G) and

(b) G/O2(G) -- L2(2"), n >_ 1.

DEFINITION. Let V be a faithful OF(2)-module for L(2") and T be a Sylow
2-subgroup of L2(2").
V is a natural module for L2(2") iff Cv (T) IV[ 2".
V is an orthogonal module for L,_(2") iff ICy(T)] IV 2-.
Note that this definition is compatible with the usual definition of a natural

(resp. orthogonal) L2(2") GF(2)-module. If X -- L2(2") and V is a natural
(resp. orthogonal) L2(2")-module for X, we simply write V is a natural (or-
thogonal) module for X.
We assume Hypothesis I for the lemmata (1.1)-(1.7).

(1.1) Let 02(G) be elementary abelian oforder 22". Then 02(G) is a natural
or orthogonal modulefor G/O2(G), and 02(G) is a natural module, ifand on-
ly if all elements in 02(G) # are conjugate in G.

Proof. See [1, 4.31.

(.2) lo(o)i >- 2".

Proof. See [2, Hilfssatz].

(1.3) Let Tbe a Sylow 2-subgroup ofG, andsuppose that 02(G) is elemen-
tary abelian, Z(G) 1 and

(i) [G, O(G)] O(G), or

(ii) 02(G) < Co2t,(T)>
Then the following statements are equivalent:

(a) 02(G) is direct sum of natural modules for G/O2(G).

(b) [O2(G),T,T] 1.

(c) Co,o,(T)l IO(G) i.
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All non-trivial elements of odd order in G operate fixed-point-freely on

Proof Note that G <T,t> for any element t G \No(T) (see
(3.1)); thus

Co,,(T) CI Co,,(t) 1 and

Set V [G, O2(G)]. It follows from [5, Theorem 8.2] that the three
statements are equivalent for V in place of O,(G). If V : O,(G), then

O,_(G) VCoo(T),

and from ICv(T) I’- vl, we get Co,o,(T) }’- > }O,_(G) and Z(G) . 1, a
contradiction.

(1.4) Suppose that an element of order three in G operates fixed-point-
freely on O(G). Then O2(G) is elementary abelian and direct sum of natural
modules for G/O(G), or n 1.

Proof. See [5, Theorem 8.21.

(1.5) Let Z(G) be elementary abelian and O(G)/Z(G) be a natural module
for G/O(G). Then O(G) is elementary abelian, or n 1.

Proof. We may assume that Z(G) has order 2. If Z(G) contains all involu-
tions of O2(G), then O,(G) Q8 and n 1.

If Z(G) does not contain all involutions of O(G), then by (1.1) all elements
in xZ(G) for x E O,(G)\ Z(G) are involutions. But this implies that all
elements in O,(G) # are involutions, and O,(G) is elementary abelian.

(1.6) [2]. Let T be a Sylow 2-subgroup of G, and suppose that no non-
trivial characteristic subgroup of T is normal in G. Then the following hold:

(a) T has class 2.

(b) Z(O(G))/Z(G) is a natural module, and [G, O(G)] < Z(O(G)).

(c) There exists a Aut(T) such that T Z(O(G))aO2(G).

(1.7) Assume the hypothesis of (1.6). Then

<Z(O(G)) / c Aut(T), o(c0 odd>

is a normal subgroup of G.

Proof. Define Q O(G), Z Z(Q) and A {Za/t . Aut(T),
Z -< QI, and let g be an automorphism of T of odd order. From (1.6) we get

[<A>,G] <_ Z< <A>.
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So it suffices to show Za 6 A.
Assume Za A. Let -/be any automorphism of T such that Z* - Q. Then

Z-I - Q, and IZ/Cz(Z’,)I IZ’,/Cz.,(Z) 2", since Z/Z(G) is a natural
module for G/O2(G) by (1.6). In particular wc have ZQ T and

Let d be a p-element in G \ N(T), p an odd prime. Then d is fixed-point-
free on Z/Z(G) (see (1.3)(d)) and G <Z,Z> Q. Set

(20 n cdz’9.
Then Q QoZ and Qo n z z(63. in particular Qo is normal in G.
Therefore we have [Z, T] [Z, Z] [Z, T] [Z, Z]a, which implies

(,) [z,. [z,. z].

From (.) we get [Z’, Za] #: 1. Assume that [Z2,Z] #: 1. Then T Z’Q
and

__
Z U QoZ,Z"

but in TQo the only maximal clcmcmary abclian subgroups are the images of
Z and Z.

So we haveZ A. Since/ has odd order, we may assume that Aa : .
Pick B 6 Aa \ A, then T BQ and

[z ’, OoZl [z  ,Ool _< Qo n z
On the other hand (*) implies [Za*, T] [Za*, Za] [Za, Z]g Z(G). This

contradiction shows the assertion.

Hypothesis II. Let G be a group and M1 and M, finite subgroups of G such
that for 1,2:

(a) O"(M,/O2(M,)) L(2"9, n, > 1.

(b) M, n M, NM,(S) NM,(S) for S e SyI,(M, n M2).

(c) No non-trivial normal subgroup of O*’(M,) is normal in O*’(M),
ji.

We assume Hypothesis II for the lemmata (1.8)-(1.11).

Notation. Q, O2(Mt),Z, Z(Q,), L, O2’(M,), L,/Q,,
S Sy&(M M), K, is a complement for S in N,.,(S). In addition we
choose K and K such that K = KIK is a subgroup of odd order.

(1.8) (a) J(S) , n
(b) S Q,Q,, or Q, Q, 1.

Proof. Part (a) is obvious. The structure of L2(29 (see (3.1)) implies that
K--, is transitive on -# (i 1,2). This yields (b).
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(1.9) Suppose that C,.I(Q1) QI. Then 02(L) = L2(2"1) ’, and one ofthe
following holds:

(a) O’-(L) = L(2") ’, S is elementary abelian, and Sl 2" or 2/2.

(b) n 1, and Q is elementary abelian and non-central in O’(L)Q.

Proof. If Q, 1 or Q2 1, then S has order 2"x, and S is elementary
abelian, since Sylow 2-subgroups of L2(2") are elementary abelian. Thus we
may assume Q #= 1 = Q2.
Suppose first that O(O2(Lx)) #= 1. Then from [6, V 25.7] we get

S tq O’-(Lt) = Q8 and fl,(Z2) Q,.

Hence fl,(Z2) is normal in Mx and M2 and therefore fit(Z2) 1, but this con-
tradicts Q = 1.
Assume now O2(LI) = L2(2"x) Then b(Q) _< Qt, and $(Q2) is normal in

Lt and L2. This implies b(Q2) 1.
Assume nx > 1. Then K1 = 1 and Cs(Kt) Qt. From (1.8)(b) we get

IS, K1] <_ Q2, and the structure of Aut(L2(2")) implies [L2,Kt] _< Q2. Hence
Cz,(Kt) is normal in L1 and L2 and must be trivial. But then

Z, tq Z(S) tq Q, 1,

and Q, 1 or z(s) Q. The first case contradicts the assumption. In the
second case we get as above O2(L2) = L(2"’)’ and [Q, O2(L2)] 1. Thus
Qx tq Q2 is normal in Lt and L2 and must be trivial. This proves assertion (a).
Now assume nt 1. Then (b) holds, or Q is central in O"(L2)Q,_, and with

the above argument (a) holds.

(1.10) Suppose thatMI andM2are conjugate in G. Then one ofthefollow-
ing holds for 1,2:

(a) O(Li) = L(2") ’, and S is elementary abelian of order 2" or 2.
(b) Q, is elementary abelian of order 2" or 23, and Q,/Z(L) is a natural

module for.
Proof. Pick g EG such that M M2. Then <S,S,> < M and

S S‘m for somem E M, since S is a Sylow 2-subgroup ofM. Hence we may
choose g Na(S).

If C,.(Q) " Q, for 1,2}, then (1.9) yields assertion (a). Thus we assume
Cr,(Q) < Q, and can apply (1.6).

Set.if, j} [1,2}. IfZ _< Qj, then [Z,Zj, L,] < Z and [Z,Z,L] <_ Z, and
ZZ is normal inL andL, a contradiction. Hence Z, Qj, and the operation
ofK on S (see (3.1)) yields

S Z,Q,Q C(Z,)Z and IQ /C /Z,)l Iz /z(s)l 2",.

Let d be an element of odd order in Lj \ N,.(S) and
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Oo c(z,) n cm(z,’).
Then

<Z,Z>O, O OoZ and Oo Z Z(L).

In particular L C,.(0o)Oo, and Z/Z(L) is a natural module for --.
Now set j 1 and 2. Assume that IOn, Zd : 1. Then

[z,z,l IOn, z,] <- z, n (2 z(s) n (2 z n O Z(L).

This contradicts the operation of Z on Z,./Z(L,).
We have shown that Q < Cm(ZO. Since Qo cI Q is normal in L, and

we get Qo Q, 1, and the operation of K yields Ce(Z) QoQ[ or
Qo 1. In particular [Qol 1 or 2", and Qo is elementary abelian. This im-
plies assertion (b).

(I. 11) Suppose that C,.,(Q,) Q, for 1,2. Then one of the following
holds:

(a) J(S) . Q Q, z(J(S)) z(s), Z(L,) : 1, and Z,/Z(L,) is a natural
module for L, (i 1,2).

(b) Z, Z(Z,).

(0 z, Z(L,).

(d) $ has class 2, and Z/Z(L,) is a natural module for (i 1,2).
Moreover, if Z(LO 1 or Z(L,.) 1, then Q, Z,, and Q, is a natural
module for (i 1,2).

Proof. Assume Z Z(LO and Z Z(L). If the hypothesis of (1.6)
holds inM, we get (d) for 1 and Z(S) Z(J(S)). This shows J(S) Q
and (d) for 2, too.
Thus we may assume additionally that M and M do not fulfil the

hypothesis of (1.6) and that (without loss)J(S) Q. We apply the tech-
niques in [21. Define B C,(Z(J(S))) and [ <B">. Then Baumann’s
argument [2, (6)] shows that Z(J(S)) XZ(S), whereX is a normal subgroup
of [. This yields B Cs(X) and B SyI([,,).

If J(S) < Q, then C,.(Z(J(S))) B is normal in L, and no non-trivial
characteristic subgroup of B is normal in L. Now (1.7) applied to , and
L N(B) yields a contradiction.

So we may assume J(S) g Q. As above B SyI(<B’> ), and [2, (6)] im-
plies that [S, Z(J(S))] is normal in L and L. Hence we get Z(J(S)) Z(S).
An application of Baumann’s techniques in [2, (1), (10)] yields assertion (a).

For the next two lemmata suppose that X L(2m). Let V be a natural
GF(2")-module for X, and denote by V the conjugate of V by
a.GaI(GF(2")). If a : 1, then V and V are non-isomorphic
GF(2")-modules.
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For S _< X and an X-module W we define

[W,S] [W,S, 11 and [W,S,n] [[W,S,n-1],S]

forn > 2.

(1.12) Let W be a non-trivial irreducible GF(2m)-modulefor X. Then there
exist n E N and ol on GaI(GF(2m)) such that W (R) ,.1V’, where
VI,..., Vn are pairwise non-isomorphic GF(2)-modules. Moreover, the
following two statements for S SyI2(X) are equivalent:

Set

(a) W= (R) ,., V’.

(b) [W,S,n] :/: 0 and [W,S,n + 1] 0.

Proof. The first part of the assertion follows from [5, Theorem 8.2].
Let el (1,0) and e2 (0,1) be a basis of V (1 < _< n) and

S={( 0)/1 <j<2%{ql,... q,} GF(2")}qy 1

(1 0)d q

Then d operates on V’ in the following way:

eld el and e2d e2 +

If n 1, then W is a natural module, and (a) and (b) are equivalent. Hence
we may assume n > 1.

n-iV’ and w wl (R) e_ for wl W1. ThenDefine W
wd, dk] w

and

[w,d:] wl (R) e2 + (wl (R) e)d [wl, dl , e + q"(wl (R) el)d.

(,) [w, d d,] [w d, d,] (R) e +

q, ([, d d,_, d,/,, dl (R) e,)d,.

Applying induction on n we get, from (,),

[,d,...,d/d 0 and [W,S,n + 11 0.

It remains to show that [W,S,n] 0. Let be the natural permutation
GF(2m)-module for X. Then X operates on a basis [ao,..., aml of I, and

Hence
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Ws t/ < , a,>

is an irreducible GF(2)-module, the Steinberg-module. Hence (R)/’., V’.
We first argue that W, S, m] = O. For this purpose we choose senerators

d,,...,d for S and assume aoS ao. Then the operation of
yields

(**) a,,^d, a, for any a, ao and A C___ [1,... ,m}, A

Define ro {a} and r, r,_ U {b,_d,/b,_ r,_} for 1,...,m.
Then from (**) we get r,_ {b_d / b,_ r,_} . Hence

in particular

[a,d,...,d] b for j_< m;
bk.rj

2

[a,,a,,...,a,l a, < a,>
il

and [Ws, S,m] O.
Now let W be a counterexample to [W, S, n] 0 such that n is maximal.

We have just proved n < m. Hence there exists a E GaI(GF(2"))\
{al,..., n}, and W (R) V* is not a counterexampl. Pick

w (R) yEW (R) V’, wEWandvEV,
such that [, all,..., d,/d 0. Then

v ke + k2e2 (k,k2 E GF(2m)),

and [W, S, n + 1] 0 and (.) imply

0 [, dl,...,d,./d k q"/([w,d,...,d_,d/,..., d,,/d (R) e)d.

But this is only possible, if

[w,d,...,d_,d/l,...,d,/d 0 for some E {1,...,n + 1},

which shows that W is not a counterexample.

(1.13) Let S be a Sylow 2-subgroup of X and W be an irreducible
GF(2)-module for X. Suppose that

(a) [W,S, 4] O, and

(b) WI 22"/’-’, 0 < r < m.

Then m 3r and W, S, 3] O.

Proof. Set lz W (R) GF(2"). Then (a)holds for I and dim ffz

’ where o o,2(m+r). On the other hand W= (R),.
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Gal(GF(2)), m na (a N), and I’ is an irreducible GF(2m)-module (see [7,
(30.11)]). Now (1.12) implies dim I = 2, k _< 3; hence 2-m/a m + r.
This yields k 3 and a 3.

2. Graph theoretical results

(2.0) Hypothesis.
1

Let I be a graph and G be a group of automorphism of

Notation. The notation differs only slightly from that in [4].
We write a F, if ct is a vertex of I, and C__ 1, if 7 is a set or ordered tuple

of vertices.
For I and 7 C__ I G is the stabilizer of c in G and G, is the pointwise

stabilizer of in G. A(c0 is the set of vertices adjacent to c. An arc of length
n is an ordered (n + 1)-tuple of vertices (,..., t), where n > 0, c A(t,+)
for 0 <_ _< n- 1 and t :/: tj for :/: j and (i,j) :1: (0, n).
A line is an ordered set ct / Z] of vertices such that u A(ct+) for Z

and ct < aj iff < j; here again t tj for j.
For an arc 7 (o,..., c,) we define

A,.(5,) A(ao) \ [o,] and A(7)= A(a,,) \ [o_}.

7 is left (resp. right) singular, if G, is not transitive on A,.(7) (resp. As(7));
otherwise it is left (resp. right) regular, and 7 is regular, if 7 is left and right
regular. LetX be a set of vertices. By (X, n) (resp. (n, X)) we denote the set of
arcs of length n whose left (resp. right) endpoint is in X. If 1 is in the same
G-orbit as a’, we say that is conjugate to c’ (under G).

(2.1) [4, 2.3]. Suppose that I" is connected, G is transitive on A(ct)and G
is transitive on A()for some pair of adjacent vertices ,. Then G is edge-
transitive on I’.

(2.2) Suppose that I is a tree. Then I is a bipartite graph.

The proof is obvious.

(2.3) [4, 2.6]. Suppose that I" is a tree, a and a2 are adjacent vertices, P is
a subgroup of G fixing ct (i 1,2) and

Then <Pl, P2 >,1 Pt (i 1,2).

(2.4) Suppose that N is an edge-transitive subgroup ofG. Then G GaN
for adjacent vertices c and [3 of F.

The proof is obvious.
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(2.5) Let I be a tree andG be edge-transitive on F, and let ct and cx2 be ad-
jacent vertices. Suppose that the following hold:

(a) No proper normal subgroup of G is edge-transitive on P.

N, is a normal subgroup of G, transitive on A(a,) (i 1,2).(b)

Proof. Set N <Nt(G.2 n N), N(G.. nN)>. Then (2.1) and
(2.4) imply that N is edge-transitive on F and G G.N. HenceNis normal
in G and G N by (a). Now the assertion follows from (2.3).

(2.6) [4, 2.12]. Suppose that G is edge-transitive on I and that there exist
non-regular arcs. Let s be the smallest integerfor which a non-regular arc of
length s exists, and let and be the two G-orbits of vertices of i(allowing

: 0 G is vertex-transitive). Then G is transitive on ( , m) and(, m)for
m <_ s, and one of the following holds:

(a) There are no left or right regular arcs of length greater than s- 1.

(b) s is odd, l , and ifnotation is chosen so that the elements of( s)
are right singular, then every regular arc of length greater than s- 1 is in
(o, 2,) for some n, and the elements in (m,::) (resp. (3:, m)) are right (resp.
left) singularfor m s.

The integer s in (2.6) is called the singularity of 1.
(2.7) Let I be a tree, s N andp be a prime. Suppose that thefollowing

holdfor t E I:

(a) G. is finite.
(b) G is transitive on all arcs of length s starting at t.

(c) Stabilizers of arcs of length s are p’-groups.

(d) a( )l 1 +p"% n, > 1.

Then s 11,2,3,4,5,7,9,13}.

Proof. Let T be a fylow p-subgroup of G.a, (E A(c0, and

(,,c...c0

be an arc of length t s- I. Then (d) and an easy inductive argument yield

and T, is transitive on A(c,) \ [cx,_}. This observation enables us to apply the
proof in I0].
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DEFINITION. An n-translation on a line f is a permutation x on such that
a/ for all i Z and

A track is a pair (T, ) where T is a line and is a 2-translation on T.
A/C-track is a triple (T, ,,K) where (T, ) is a track and K is a subgroup of

Gr which is normalized by T.

(2.8) Suppose that r is a tree and a and are adjacent vertices in I. Let K
be a subgroup in Goo

xN,(K) \ Ga and yN(K) \ Ga.
Then there is a K-track (T, xy, K) with ,[3 T.

The proof is the same as in [4, 2.10].

DEFINITION. Let 7 (,..., a) be an arc of F and K be a subgroup of
G. We define S.r to be the set of subgroups X : 1 of G such that:

(1) K _< No(X).

(2) Nc(X)o is a transitive on A(ao), and N(X),. is transitive on A(a).

(3) NX) normalizes A() 7 for 0 < < n.

(4) There exists x N(X) with

(2.9) Suppose that I’ is a tree, 7 (o, ,) is an arc off andX S..
SetN N(X), and let I" be the graph with vertex set
and a’ are adjacent, ifand only if they have distance n in I’. Assume that one
of the following holds:

(i) n 2.

(ii) A(a,) f3 7 is the set offixed points ofX in A(ai) for 0 < < n.

Then thefollowing hold:

(a) ao has the same valency in I" as in I’.

(b) N is vertex-transitive on I’.

Proof. Let r be the valency of ao in F. As No, operates transitively on
A(ao), we get nl,..., n, E Nao, nl 1, and 71 7" such that

7,n7 {ao} fori :j.

Let 1 be a vertex of I’ adjacent to o. Then by definition there exists a unique
arc 7’ (o,..., 1) of length n in 1. It suffices to prove

’ E I,,..., ,1.

After conjugation with a properly chosen element of In,t,... ,n} we may
assume that
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n 1.

Set "r n "r’ (Co,... ,c). If (i) holds, there exists -r (I ), g E N,
and since N is transitive on A(), we may assume

n and a a;.
Hence ,’ % since N leaves invariant {ao,a}.
Now assume that (ii) holds. Then A(a)n 7 (a)n 7’ and . -’.

(2.10) [4, (2.11)]. Suppose that (T, ,K) is a K-track in a tree I" and G is
finitefor all a T. For any U <_ G let Tv be the set ofallfixedpoints of U in
T. Then either Tv T or Tv is a finite subarc of T.

3. Point stabilizers with L2(2")-sections

(3.0) Hypothesis. Let I be a tree and G be a group of automorphisms of I"
such that for E I the following hold:

(i) G is edge-transitive on I’.

(ii) No proper normal subgroup of G is edge-transitive on I.
(iii) G is finite.

(iv) [A()l 2" + 1, n _> 1, and there exists a normal subgroup N of
G such that O2(G) < N, N/O(G) -- L2(2"), and N is transitive on

Throughout this paper we use the following facts about L(2") and its opera-
tion on 2" + 1 symbols.

(3.1) Let S be a Sylow 2-subgroup ofN and K be a complementfor S in
N(S). Then the following hold:

(a) All elements in S \ O(G) have exactly one fixed point in A().

(b) K is cylcic, K[ 2"- 1, and all elements in K # fix exactly 2 points
in A(c); and C(K) < KO2(G) ifK #; I.

(c) K operates transitively on (S/O(G)) #.

(d) [N(K) / KNo,(K) 2 ifK 1.

() Ifz is an involution in N \ O(G), then z is conjugate in N to an ele-
ment ofN(K).

(f) IfK ; and P is a 2-subgroup ofN, then

<K,P>O(G) N or <K,P> < N(K)O2(G).
(g) N n G N(S,) for A() and suitable g N.
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(h) N < S, g >for g N \ NN(S).

(3.2.) For E F define L, 02’(G,). Suppose that 3 A(ta). Then the
following hold:

(a)

tb)

<d)

(e)

L N, and G GL.
Ga (Ga N O’(L))(Ga t’) 02(La)).

Ga KO2(Ga), K a subgroup of odd order.

If 02(G) 1, then

02(G)O2(Ga) SyI2(Ga) and SyI2(Ga) c_C_ SyI2(G).

No non-trivial normal subgroup of L (resp. O’(L)) is normal in
(Laresp. O(Lo)).

Proof. With the Frattini argument we get G GoN, and (2.5) implies

G (G NN)(G N).

Pick T SyI2(Na f) Ga). Since Na f) Ga andN f) Ga are 2-closed and normal
in Ga, the structure of Aut(L2(2")) implies T _< N, hence (a) and (c) hold.
The normal subgroup O2(L) is also transitive on A(tx), therefore a further

application of (2.5) yields (b).
Let X be a normal subgroup of L (resp. O2(L)) which is also normal in

La(resp. 02(Lo)). Then X _< Ga, and (2.1) implies that X fixes every edge and
thus every vertex in I’, so X 1, and (e) is proved.

In particular, O2(G) O2(G) or O2(G) O2(G). In the second
case we may assume O2(G) O2(Ge) and get (d) from (a) and (3.1)(c).

We now fix some notation for the remainder of the paper:

(3.3) Notation. Qe 02(Gn),

z < z(s) Q / s Syt,(G) >,

Le O"(Ge) and L / Q for 6 F; [’1 denotes the length of an arc .
of F.
We fix c F,/ E A(ct), S 02(G) and a complement K for S in G, and

set K KNL for 6 F.
(T, z, K) is a K-track with a ,/3 E T, s is the singularity of F, and 0 and /are

the G-orbits on F (allowing 0 , if G is vertex-transitive).
We set T (... a_,... Cto... ct...), E N, Cto (x and at /3, and we then

identify the vertices in T with their indices such that

T= (...-i...O...i...),

0, /3 1, and G, G,, Z, Z,, K, K,, n, n etc. for ix, E T.
For T we define b, max []j i]/j T and Z, <_ Gj}, if such a max-
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imum exists, and b oo otherwise. Note that in the case b < oo, i- b and
+ b are not only integers but also vertices in T and Z < G-b or Z < G/b.

Suppose Z <_ G-b, (resp. G,/b; then (3.1)(a) and (3.2) imply Z, Qk for
i-b < k_< i(resp, i_< k < i+b).

(3.4) Suppose that no > 1 and nl > 1. Then

(a) T= Cr(K) and

(b) Coj(K) <_ GT for j E T.

Proof. Assume that T Cr(K). Then there exists 0 C Cr(K) and an arc

(,...,)

such that , T and ,-1 T. Therefore K _< G,, and K fixes three vertices
in A(,), a contradiction to (3.1)(b). Assume that X Coj(K) GT. Then
there exist k E T and k’ A(k)C T such that X < G and X G,. Now
(3.1)(b) and (3.2)(a) yield a contradiction.

(3.5) Suppose that / (m... r) is a right (resp. left) singular subarc of T.
Then 02(G,) fixes every element in A(r) (resp. A(m)).

Proof. If K= l, thenn, n, Iand [A(m)[ [A(r)[ 3, and the
assertion is obvious.
Assume that K 1 and that - is right singular. By way of contradiction we

may additionally assume that 02(GO t Q,. From (3.1)(a) we get that no
ment in O2(G) \ Q, fixes an element in A(r) \ 7. On the other hand K G
and K has orbits of length I and 2"- 1 on A(r) \ 7 (see (3.1)(b)). This yields
that G, is transitive on A(r) \ 7, contradicting the hypothesis.
We will use (3.5) in the following without reference.

4. The case [Gr ffi 1 (2)

(4.0) Hypothesis and notation. (3.0) and (3.3) hold, and in addition:

(a) no> landnl > 1.

(b) Zo Z,.

(c) s t 1 (2) ands 5.

(d) lOT[-- 1(2).

(e) is a regular subar of maximal length r in T such that
O(G) 1.

(4.1) Asume that 01 -, is normal in Go. Then thefolloin hold:

(a) o/QI -1 i elementary abelian of order 2’1.
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(b) Qo [Qo, Q,][0o, Q-,I(Q, n Q_,).

(c) IfZois a natural moduleforoand[Q, Q-,,Lo] Zo, then
is elementary abelian.

Proof. Set A Q, N Q-I. We apply (3.2). Since Sylow 2-subgroups of
(and --1) are elementary abelian of order 2"1, we get (Qo)-< A and
[Qo / A < 22"1. Hence Qo / A is elementary abelian, and the operation ofKI
and K-I on Qo/A yields

QoQI A or Qo/A (QoQI)/AX(Qof’)Q-I)/A.

In the first case Gt-I o 2 K(Qo t’) QI) KA, and (- 1 0 1 2) is not (left-)
regular, a contradiction to s > 5.
Thus the second case holds. If [QI, Qo 0 Q-I] <- A, then Qo Q-I is normal

in <QI, Q_I>Qo Lo and A QoOQ-, QoQI, a contradiction.
Hence we have

[QI, Qo f Q-,] *g A

and with the same argument

[Q-,, (20 Q,I A.

Now again the operation of KI and K-I implies assertion (b).
Assume now that Zo is natural and [A ,Lo] < Zo. By (1.3),

A CA(Ko) Zo and (A) (C(Ko)).

On the other hand #(A) is normal in a Sylow 2-subgroup $ of Lo. Thus

which contradicts tb(A ) Z(S) < tb(A ) Zo 1.

Without loss of generality we may assume "t (0... r). Note that by (2.10),, has finite length and subarcs of 7’ of length greater than r have stabilizers of
odd order. We will use this last fact without reference.

(4.2) (a) [QI 2n.

(b) r 0 (2), s- < r, and r s- 1 or E (o, r) (0 o) for every
maximal regular arc in P.

(c) No,(K) / K 2 and Co,(K) < Kfor C T.

(d) For T, x No,(K) \ K and m N, x interchanges the two vertices
+ m and i- m of distance m from in T.
Proof. We have Q Go but QQo = 1. The operation of K on Q

((3.1)(c)) yields (a). Assertion (b) follows from (2.6) and the maximality of r,
and (c) and (d) are consequences of (3.1) and (3.4).

(4.3) bl {r/2- 1, r/2}.
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Proof. Set b b + 1, and pickax E NI(K) \ K. Then Z: Zx, and by
(4.1)(d),

Cr(Z,) (- (b 2)... b).

Therefore Z, is in G but not in Q, and the maximality of r yields

Cr(Zt)[ 2b-2 _< r and b r/2.

Now assume r/2 > b. For z* E < z> with 1"* 2b 1 we get

Cr(Z’ (b. 3b 2)

and [Q,Z’*] 1, as 2b- 1 < r. Hence <ZI, Z’’,K> No(Q) N, and
N operates transitively on A)b). We choose z Z \ Q. From (3.1)(e) we get
that z normalizes K for suitable u N. Together with (3.1)(a) and (3.4)(a)
this implies that

* (ru...(b + 1) b (b + 1)u...ru)
or

.** (ru...(b + 1)u b (b + 1)u...ru9

is a subarc of T. As * and ** are stabilized by KuQ, the maximality of r im-
plies I/*[ I’**l 2(r-b) _< r and r/2 b, a contradiction.

(4.4) bo [r/2- 2, r/2- 1, r/21.

Proof. Set b bo + 2. Then Cr(Z) (-(b- 4)...b), and we get the
assertion with the same argument as in (4.3).

(4.5). One of the following holds:

(a) [Z,, Z,/,I <-Z, rq Z,/,.

(b) r s- 1, [Zo, Zo] #: 1, and bo is in the same G-orbit as 0 (i.e., (a)
holds with the roles of 0 and interchanged).

Proof. Set h b, + 1, R [Z,, Zl, x [Zo, Zo], and assume that (a)
does not hold. Then R : 1, bh bo < b, and h is in the same G-orbit as 0,
in particular b E 1 (2).

Suppose that bo is in the same G-orbit as 0. Then Zo : Z(Lo) and X : 1.
From (4.3) and (4.4) we get

(1) r/2-2 <_ bo b-I < r/2.

As X _< Zo tq Zo and Zol Zol, (1.3) implies

(2) Zo/Z(Lo) is a natural module for o.
Assume r s. Then (4.2)(b) yields r s- 1, and assertion (b) follows.
Therefore we may assume

(3) s < r.
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Assume Z(Lh) : 1. We have [Z,, Z(Lh)] 1 and Z(Lh) <- Zh+ Z.. Hence
by (1), Z(Lh) stabilizes the subarc (0... 2h) of length r in T, and (4.2)(a) implies
Z(Lh) Q and [Z(Lh)[ 2. Together with (2) we get

Z(S) Zo[ 22"0 for S SyI2(Go f3 Gx).

On the other hand (3.2)(e) implies Z(Lo)f3 Z(L) 1, hence

[Z,[ >_ 23" and IQ,Z,I >2’.
Thus Qh f3 Q_t_ f3 Z, 1, and Qh Q-th-2 Zx stabilizes (- (h 1)...
h + 1) of length r, where h + is odd. This contradicts (3) and (2.6). Since h is
in the same G-orbit as 0, we have shown together with (2):

(4) Z(Lo) 1, and Zo is a natural module for o.
The subgroup X stabilizes (- bo... 2bo) of length 3bo, and the maximality of

r implies 3bo _< r. From (1) and (3) we get

(5) bo r/2-2, ba r/2-1 andr 8or 12,

or

(6) bo 2, b, 3andr 6.

As Zo is a natural module and Zo <_ Q,, (3.2)(e) yields C,,(Q) <_ Q for
0,1. Therefore we can apply (1.11). If (1.11)(d) holds, then ILol 2

and s < 5, a contradiction. Thus we get together with (4):

(7) Z, Z(L,)and [Za 2".

Now (7) and (4) imply X Czo(Zo) Z, Cz (Zo) Zo-,, and the
o

operation of < .> yields bo 2. Together with (5) we have proved:

(8) bo 2, b, 3, r 6orbo 2, b, 3, r 8.

Set V <Z> andA Q cI Q,,. From (8) we get Zo < A and V<
and from (4) and (7), [V, Q] z Z(L,) < Zo. The operation ofKo yields

IVQo/Qo[ T and <V,V’-’ >Qo Lo.
We now apply (4.1). Then Qo f3 Q < VA, and V’ < Zo and (1.3) imply that
Qo/A is direct sum of natural modules for oo. Let d be an dement of order
three in Lo; then (1.3),(4) and (4.1) yield:

(9) Qo/A is direct sum of natural modules for o, Qo/AI 2’, and
.4 C, o(d) x Zo.
Assume r 6; then ILol 2a’2’ and Q Q_ Zo. This implies (by

(9)) that Co(d) 1, and, from (1.4), Qo is elementary abelian and a direct
sum of natural modules. But then Qo Zo and bo 1 which contradicts (8).
Note that we got this last contradiction with the help of (1.4) where no > 1

is assumed. We will see in Section 5 that for no 1 another possibility arises
which does not lead to a contradiction.
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We may now assume r 8. Set L <V"-I,V>, then LQo Lo and
[A,L] Zo. Hence [02(Lo),A] Zo, and (4) and (9) imply

,4 Co(Ko) x Zo.
Set D Co(Ko) and pick to E No2,.o(K) \ 01 and tl NLI(K) \ Go. Then
to normalizes Ko and therefore D; hence

[D, to] < [D, O’(Lo)l f3 D Zo FI D 1.

According to (2.8) and (3.4) we may assume tort and t Gr. Thus
normalizes D f3 D’t, and Gr[ 1 (2) implies D f3 D’ 1. On the other hand
r 8 and Q’-I and Q"2 are contained in A. But the K-invariant subgroups of
A of order 2 are in D or Zo. In the second case they are Lo-conjugates of Zt
(by (4)). Hence bl 3 implies

<Q,-I,Q,-,-> < D.

It follows that ’-"’ @’- and @’-’ D Cl D", a contradiction.
From now on we may suppose that bo is in the same G-orbit as 1. (4.3) and

(4.4) yield:

(10) bo r/2-2andb, r/2.

In particular Z, stabilizes the arc (-(h 2)... h) of length r. Then (4.2)(a) im-
plies Z, 2", and K operates transitively on Z. We get:

(11) Z, Z(L,), Z, 2" and X 1.

Assume that r s, Then there exists a maximal regular subarc of Tstarting at
1. So we arc allowed to interchange the rSlcs of 0 and 1, and from (4.3), we get
bo > r/2 1, a contradiction to (10). We have shown:

(12) s<r.

Assume that bl 3. Then (10) yields bo 1 and r 6. Together with (12)
and (2.6) we get [Lol,- 2’2’. In addition, by (4.1) we have

LI < Zo, Z,_ > QI, [Q, /Qo f3 Q,_ 2"-’, QI (zo ci QI)(Z, c1Qa)(Qo cI Q,),

Qof3Q,-[ 2"2"1 and ZoFIZ,_ Zl.

This yields Qo / Zol 2". On the other hand

Qo Cao(K)Zo and [Lo, Qo] < Zo.
As K KIKo normalizes Co(KI), this implies Qo Cao(K)Zo, contradicting
(4.2)(c). So we have shown:

(13) bl 5.

Pick y Z and x Z,, and let k be minimal in (-(bl 5)... 3) such that k
is fixed by y. Then (2.6)implies that x stabilizes

((- (bl 5))-1... k... 1), if k 1,



GRAPHS WITH EDGE-TRANSITIVE AUTOMORPHISM GROUPS 231

and

(1... k (k l)y-l...(- (bl 5))y-1), if k > I,

and that [x,y] and therefore R stabilizes (-(b-5)...h+ bo). Hence
R < , since bl >5, and (1.3), (11) and (3.2Xe) imply that Zh is a natural
module for Z. Then Zh Zh-IZ/, and Zh. and Z/I stabilize the vertex 2. On
the other hand h bo + 3 by (10), and Z, . 3, a contradiction to (3.I)(a).

(4.6) Suppose that 1 [ZI, Zb.] < Z Ci Zb/. Then one of the follow-
ing holds.

(a) bo bl 1, r s-1 4and:

(al) Qo and Q, are elementary abelian of order 2’;

(a2) tZ(Lo) Z(L,)l 2-0 and no n;

(a3) Q/Z(LJ is a natural module for (i o, 1).

(b) bo 3, b 2, r s-I 6, no 3nand:

(bl) Zo Z(Lo), [Zol 2", and Qo is special of order

(b2) Z is a natural module for , Q/Z, is special, and
(Q/zJ/Z(LI /Z) is a direct sum of three natural modules for

(c) bo 3, b 2, r s-1 6, no n and:

(cl) Zo Z(Lo), [Zot 2", and Qo is special of order 25";

(c2) Q is special, and Z and (QI/ZJ/Z(L/ZJ are natural modulesfor

Proof. Set h b+ 1 and R [ZI, Zb/]. Then R is contained in
Z N Zb/ and stabilizes 7’ (- (h-2)...(h + b,)). The length of 7’ is
2b + b, and the maximality of r implies:

(1) 2b + b, s r.

First suppose that h is in the same G-orbit as 1. Then (1) and (4.3) imply:

(2) b 2 and r 6, and 7’ is a maximal regular subarc of T.

Now (4.2)(b) yields r s- 1, since 7 and 7’ are not in the same set (g, r)
(resp. (, r)), and Q 2"2". From [R, Z] 1 we know that R is cen-
tral in a Sylow 2-subgroup of G CI G and therefore is contained in Z. Pick

t No(K) \ K.

Then (4.2Xd) and (3.1) imply R’ R and R < Z(L). Hence Z(L) f R 1
((3.2)()), and from [R,Z] [R,Z] 1, (1.3) and (1.11) we derive that
either Z Z(L) or Z,/Z(LJ is a natural module and IZ[ 23-0 for
i 2,3. In the second case no = nl, Q ZZtZ and Z RZ(LJZ(L.). It
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follows that [Z,Qy] _< Z(Lj) for j 1,3, and Z(Lx)Z(L3) is a normal
subgroup of L2. Now (1.5) implies that Z1Z3/Z(LI)Z(L) is elementary abelian
which contradicts [ZI, Z] R Z(L)Z(L).
Thus we have shown Z2 Z(L2) and Z(L) by (3.2)(e). Hence Z3 is a

natural module for -. In particular, Z Z2Z4 and b2 3. Conjugation
with r-x yields:

(3) bo 3, bt 2, r s- 1 6, Zo Z(Lo), Zol 2"t, and zl is a
natural module for

Since s 7, the order of a Sylow 2-subgroup of Lo is:

(4) ILo1-2"2"’.
Set V <Z>. Then (3) implies

v’ Zo, V/Zo <_ z(2o/Zo),

and

We get

and

<Z.2,Z4>Q, L,.

[z,,O, n Q,.I <- [W,Q, n Q,] <_ z,

< z,, z_, >, Q_ o 0o1 -< z,.
Therefore Qon Q, is normal in L,, and by (4.1) and (1.3), Q,/Qon Q2 has
order 2"" and is direct sum of natural modules for Z-, in particular nx < no.
As we have seen above, [O’(L), Qo N Q,] _< z; on the other hand, non-

trivial elements of odd order in L2(2") act fixed-point-freely on natural
modules ((1.3)). This yields

C,(K,) <_ QoO O,, OoO O, Co,(K,) Z, and Co,(K,)I 2".

Set D Ce,(K,). Then Qo VD, and with the same arguments as in (4.1)(c)
we conclude that D is elementary abelian. Hence:

(5) Qo is special, n, _< no, and (Q, /Z,) /Z(L, /Z,) is direct sum of natural
modules for L

Since Qon Q, has order 2"2-" and stabilizes (-1 ...3), a K-invariant
subgroup of order 2"0 stabilizes the maximal regular subarc (-2... 4) in T.
This subgroup must be D. In particular we have [D,K] = D and therefore
[D, Ko] D, since K centralizes D.

Let Nbe a normal subgroup of Lo in Qo and Zo < N, and let t be an element
in N,.o(K). \ G. If D n N : 1, then the operation of Ko on D yields D < N
and [D, Qd Z s N. Hence DV Qo N.

If IN/Zol > 22", then [Qo/N < 2*"t _< 2*", and (1.2) implies
[Qo, Lo] -< N. Thus D = [D, Ko] _< N and N Qo.
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Now let N/Zo be a minimal normal subgroup of Go/Zo. Since
D <_ [Qo, Lo], we get with the above argument [Qo, Lo] Qo and Lo L. If
N/Zo is central in Lo/Zo, then the 3-subgroup-lemma shows [N, Lo] 1, a
contradiction.
Now assume that N/Zo is not central. Then either N Qo or N/Zo and

Qo/N are non-central factors of Lo. In the second case (4), (5) and (1.2) imply

Assume the first case and n : no. Then (5) implies

[Qo, Q,, Q,, Q,, Q,I 1.

Hence, from (1.13), we get [Qo, Q, Qt, Qd : I and no 3n. Together with
(5) and (4) this yields assertion (b).
Assume n no. Then (5), (4) and (1.5) imply assertion (c).
Suppose now that h is in the same G-orbit as 0. Then (1), (4.3) and (4.4)

yield:

(6) b r/2-1, bo < 2andr 4or8.

Assume that r 8, then bo 2 (by (4.4)), ’ (-2...6) and R" Q.
Therefore Z2 is contained in G4 but not in Q4, and [Z2, Z4] R. On the other
hand, (4.2)(d) yields ." ,’ and R’ R for t No2(K) \ K. This implies

R .<_ Z(La) and [Z,L] <_ Z(L).

But then Z2 centralizes O’(L)Q L, and we get [Z, Z41 1, a contradic-
tion.
Assume that r 4. If bo 2, then Z stabilizes ,. The action of K on Z

and (4.1)(a) imply Q Z and Z2 2". In particular Z2 is central inL and
R 1, a contradiction. Together with (6) we have shown:

(7) bo b 1 andr 4.

From [R, Zd [R, Z2] 1 and (1.3) we get that no nx and that
Z,/Z(L,) is a natural module for (i 1,2). Set {1,2} if,j} and n no,
then we have ]L,I, 24", since s r + 1 5. Now (1.2) implies

[Q,,Ld Z, and Q, C,(K,)Z,;
in particular, CQ,(K)I 2" and CQ,(K)N Z(L) : 1. On the other hand
(3.2)(e) yields Z(L) Z(Lj) 1, and Z(L) is a subgroup of Zj. Hence the
elements of K operate fixed-point-freely on Z(L). Therefore

Z(L) 2" and Cn,(K,) Z(L),

and assertion (a) follows (after conjugation with -).

(4.7)

(a)

(b)

Suppose that [Zx, Z,/t] 1. Then one of the following holds:

bl + 1 is in the same G-orbit as O.

r s- 1, [Zo, Zo] 1, and bo is in the same G-orbit as 1.
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Proof. Set b b + 1 and assume that 1 is in the same G-orbit as b (we
write 1 b). Then we have Z Z(L) and Zb Z(Lb), and (4.2)(b) and (4.3)
imply that b 2, since b is odd. Therefore we get Z < Zo, and Zt stabilizes
(- bo... b) in T; in particular:

(1) bo < b-2.

First assume that b r/2. Then Z stabilizes the arc 3" (1... (r + 1)) in
T of length r which has to be a maximal regular subarc of T. Now (2.6) and
(4.2) imply r s- 1. This allows us to interchange the rSles of 0 and 1 (and
and ,’).

Set 0 1’ and 1 0’. If [Z,,Z,/,] 1, we get assertion (b), or
b, + 1’ 1’. In the second case we get as above Z, Z(L,), a contradic-
tion to (3.2)(e).

If [Z,, Z,/,] I, we can apply (4.5) and (4.6) and get one of the follow-
ing possibilities:

(2) [Zo,,Zo,/O, 1;

(3) bo, is odd.

Case (2) contradicts [Z, Z/] 1, and since bo, + I is odd, case (3) can not
occur.
Now we may assume that b r/2-1 and bo r/2-2. Choose

,’ < z> such that 2" r 2. Then QZb centralizes Eb < Z,Z >, and
Z’. AsK normalizes Eb, we haveK f3 Eb Kb. Thus Kb centralizes QZb.

On the other hand QQo is a Sylow 2-subgroup of Go and ZbQ is a Sylow
2-subgroup of G. The structure of Aut(L(2")) implies

[Lo, Kb] < Qo and [L,Kb] < Q.
Hence Lo C,.o(Kb)Qo and L C,.t(Kb)Q, and, by (2.1), Co(Kb) is edge-
transitive on I’ and Kb 1, contradicting n > 1.

(4.8) Suppose that [Z, Z/] 1. Then one of thefollowing holds.

(a) b 1, bo 2, r s-1 4and:

(al) Zo Z(Lo), ]Zo] 2", Qo is special, and Qo/Zo is a direct sum of
two natural modulesfor o;

(a2) 2no

(a3) Q, is elementary abelian oforder 2’, andQ is an orthogonal module
for.

(b) Assertion (a) holds with the rles of0 and I interchanged.

Proof. Set b b + 1. Then Z Z(L), and (4.7) implies that b is in the
same G-orbit as 0 or that r s- 1 and that we are allowed to interchange the
r61es of 0 and 1. Therefore we may assume without loss that b is in the same
G-orbit as 0. This yields:
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( ) Zo Z(Lo).

Now (3.2)(e) impliesZo < Z,, otherwise ZI would be central in L1 and
Zo Z, would be central in <Lo, L>. From (4.3) and (4.4) we get:

(2) b bo r/2 and b r/2-1, Z,, and Zo is elementary
abelian of order 2".

Set H Z t Qb. We first assume that H Qb/t. Since Z(Lb+t) (see (1)
and (3.2)(e)), we have R [H, Zb/l] : 1. Let a [h, z] be a non-trivial ele-
ment in R such that h 6 H and z 6 Zb/. We may assume that z does not fix 0.

If b >_ 4, then Z fixes 1, and (- 1)"- has distance two or four from 1.
Therefore s > 5 and (2.6) imply that Zt fixes (- 1)z-’, and we conclude that a
stabilizes ,’ (-1...(b + b + 1)). But by (2), the length of ,’ is greater
than r, a contradiction. Together with (2) we have shown:

(3) b 1, bo 2andr 4; orb 3, bo 4andr 8.

Assume that r 8. Then b 3, and with the same argument as above R
stabilizes (0... 8) of length r. This implies R Q Z4, and R[ 2". From
(1), (1.3) and Z(Ls) 1, we get Zs Z4Z,. Now, conjugation with -’ yields
Z ZoZ,. Hence (3) implies Z H Qs, a contradiction to the assump-
tion H g Qb/.
Now assume r 4. We want to show assertion (a). Since s 5, we get

]Lol 2"2"’.
Additionally we have Zo Syl(Lo) and Z o 1. Therefore we get

Zo z (o ).

Assume that 0() 1. Then 0(o ) 1, and
since has elementary abelian Sylow 2-subgroups. Thus 0(o ,) stabilizes
(- 2... 4) of length 6, contradicting r 4.
We have shown that is elementary abelian of order 2"2. Now (1.2) im-

plies:

(4) nl <_2no.

Since Q is abelian, Qo/Zo is, by (1.3) and (4.1), a direct sum of k natural
modules for o, and (4) yields k or 2.

If k 1, then (1.5) and no > 1 imply that Qo is abelian. It follows that

{2 Qo Z(Lo)

by (1). This contradicts (4.1). Hence k 2, and from (4) we get n 2no. In
particular Q is a module of order 24". Thus [Q, Qo, Qo] 1, (1.1) and (1.3)
imply that Q, is an orthogonal module for Z’.
From now on we .assume that H Q,/. Then H stabilizes

(- (b 2)... (b + 2)) of length r. Hence (2), (1.3) and the operation ofK on H
imply:
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(5) H Z, and Z ZoZ is direct sum of natural modules for L--, in
particular n _< no.
We have K KoK (see (3.2)). On the.other hand

ZQo

_
SyI(Lo) and [K, Z] = 1.

The structure of Aut(L(2")) yields [K, Lo] -< Qo. This implies

KtqKo 1 and IKol IKol IKKol
Hence (5) and (3.1) yield:

(6) n no, and Z is a natural module for

Assume b 1. Then (6) yields [Z, Qo] Zo. Since z is not in Qo and K
operates on Z,, we get [O(Lo), Qo] 1 and Z (Z O(Lo))Zo, which im-
plies [Z, Qo] 1, a contradiction. Since b is odd, we have shown:

(7) b 3.
LkSet V < Z,t > for k T. Then (7), (2.6) and s 5 yield

vo QoQ,

and (6) implies IVo, Qo] zo. In particular v and V_ are abelian. The
transitivity of Lo on (0) and (3.1) imply

Z ZU z

since ZQo SyI(Lo). Set R [Z_,, Z]; then Vo RZZ_. We get

R s VoO V_,

since Z is contained in V_, and [R, Z] 1, since V_ is abelian. Thus, by
(1.3), Vo/Cvo(O(Lo)) is a natural module for
Assume that Ro C(O(Lo)) Zo. Since Ro is contained in V_, it fixes

b. Pick

t Noo,(Ko) Ko.
By (4.2), RoZo stabilizes (b’... b) (-b... b) of length r and RoZo 2,
But now (2) yields Ro Zo, a contradiction. We have shown:

(8) Vo z,z_ and IVo] 2.
Vo stabilizes (-(b- 2)... (b- 2)) and R 1 stabilizes

(- (b 2)... 2(b 2)).

The mimality of r and (2) eld 3(b- 2) r and:

(9) r12.

Assume r 12. Then has length r, and R Z. Since Z Z,Z, we get
[Z_, Z] Z. Conjugation with yields:

(10) [Za, Za.] Z+ for all j T which are in the same G-orbit as 1.
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Next we want to show that (10) holds for an arbitrary arc X 0-3... 63) of
length 6 in F, where 6_ is in the same G-orbit as 1. It suffices to show that X is
conjugate to a subarc of T. Applying (2.6) we may assume that

< a_...a> (0...5).

But then Q fixes (0... 5) and operates transitively on A(O) \ [1}. Hence X is
conjugate to a subarc of T. We have shown:

(11) [Z_a,Za] Zo for all arcs (a_a... ao...aa) of length 6 in F, where a_a
is in the same G-orbit as 1.

Pick z E Zo and z’ E Zlo. Then z fixes 6, but not 7, and z’ fixes 4 but not 3.
Hence (10... 6... 10) and (0"... 4... 0) are arcs of length 8, and by (11),

[Z9, Z9] Z and [Z, Zt’] Z4.

Since Z, and Z9 are elementary abelian and contain Zo and Zo respectively,
the elements (zz’) and (z’ z) are involutions. But then

(zz’) (z’z) z n z,,
andZ Z is a non-trivial subgroup stabilizing (- 2... 12), a contradiction to
the maximality of r. We have shown (together with (2), (7) and (9)):

(12) bo 4, b 3andr 8.

From (5), (6) and (8) we get Vo Z_xZ, and V2 ZxZ3 Z,Z4. Thus we
have

v2f3Qo Zx <_ Vo and [V2,QoQx] <_ vf3Qo <_ Vo.
In particular, [Qx N Q-x, < v2, w-2>] < Vo, and Qx f3 Q-x is normal in Go.
Hence (4.1) and (1.3) imply that Qo/Qx Q-x is a natural module forgo (since
no n) and

Q- Co(:o)Vo.
Pick t No.,. (K) \ K. Then t normalizes Ko and every subgroup of CQo(Ko)
which contan’Zo, since [CQo(Ko),t] < Ceo(Ko) Vo <_ Zo.
Assume IC o( o)l > 2 (4.2)(d) implies that Co(Ko)L4 stabilizes

(- 4... 4) of length r. Hence Co(Ko) L4 > Zo would contradict (4.2)(a).
So we may assume that there exists i {2,3} such thatL Co(Ko) - Q.

Then

(Co(Ko) f3 L,)Q Syl(L,), L C,(Ko)Q and Zo Q f3 Co(Ko).

If 3, then Co(Ko) and Co(Ko)4 operate transitively on A(3) and A(4)
respectively, since ZoQ4 SyI2(L4). Hence (2.1) and Ko #: 1 imply 2.

Let x be an element in N(Zo). If x Go, then the arc joining 0 and 0 has
lengthn _< 4. Sinces > 5, we may assume that 0 C T. But thenZo stabilizes a
subarc of length r + n in T, a contradiction to the maximality of r.
So we have shown that N(Zo) <_ Go. On the other hand CQo(Ko)f3 Q2

Zo, because otherwise either Ceo(Ko)f3L4 > Zo or Co(Ko)f3L3 : Q, con-
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tradicting what we have already proved. Hence we get C,.,_(Ko)
<_ N2(Zo) Go, a contradiction to C,2(Ko)Q L.
Now assume Ceo(Ko)l T. Then QtqQ_ Vo, and we get
Qol---2", and, by (1.3) and (1.4), Q Zo (Qo). In particular,
Qo/Zo w/ZoX Vo/Zo, where W/Zo is a natural module for and
W - Q,. Since Q s Zo, we get that Qo t3 Q2 is normal in G and together
with (4.1) and (1.3) that Q/Qo t3 Q is a natural module for Z’,. Now (1.5) im-
plies Q Zl. On the other hand, by (12), Z_ltqQ2 Zo, hence
[Vo, K] Vo. Pick

gL \ Go.
Then < W, W>Q L1 normalizes (W f3 Q)(W f3 Q)/z x, and
W1 f3 Q/Zo has order 2. Hence X is a natural module for Z-, and K nor-
malizes

and centralizes

Thus we get

(w, n

Vo [Vo, K,] _< (w, no,)z,.

Now the order of Vo implies (W, fl Q,)Z, Vo and W, fl Vo Zo, a con-
tradiction.

5. A special case

(5.0) Hypothesis and notation. Hypothesis (4.0) holds with (4.0)(b) re-
placed by

(b’) no > andnl 1.

We use notation (3.3). In addition we define ,,, [Z,,K] for E T. If
i : 1, we set

r, maxlj- i/j T, j > and 2, < Gj}

and

e, maxli-j/j T, > j and 2, _< Gj}

Clearly b, _< r, and b, e,, and, by (2.10), any subarc of Toflength greater
than r has stabilizer of odd order. We will use this fact in this section without
reference. Note that we no longer assume that (0...r) is a maximal regular
subarc of T. But the operation of r yields that at least one of (0...r) and
(1... (r + 1)) is maximal regular. Note also that Cr(Z) for Tmay no longer
be symmetric in i.

(5.1) For T the following hold:
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(a) K < Loand [K,L,] <_

(b) KSr.for (-101).

(c) Oa’(N(K)I) is isomorphic to a subgroup of Ca x
(d) If Q,_, (3 Q,+, is normal in G,, then Q,/Q,-I (3 Q,/I is elementary abelian

of order 2ane and Qe (Q,-, (3 Q,)(Q,+, (3

(e) If [z,, K] 1, then Cr(Z,) (i b,... + b,).

Proof. The hypothesis and (3.2)(b) yield

K Ko and [K Ld <_ Q.
Hence N(K)t operates transitively on A(1), and (3.1) implies K E Sx (for
definition see Section 2). Thus we can apply (2.9). Any normal subgroup X of
Oa’(N(K)x) which is also normal in Oa’(N(K)_) stabilizes 1Ntx by (2.1).
Since r E No (K), it jfollows that

X <_ Gr (30a’(N(K)I) K (30a’(No(K),) 1.

Hence we can apply (1.10) and get (c).
Assertion (d) follows as in (4.1).
Assume now that [Z,K] and without loss of generality that Z

stabilizes + b but not i- b. Then there exists i- b < h < such that
Zi <- Lh but Z : Qh. Hence we get

[Lh, K] <_ Qh and [L,+,,K] _< Q,+,.
If follows from (a) that h and + b are in the same G-orbit as 1, and

i-h E be (2);
in particular, i- h _< be- 2.

Pick 6 [h,h- 1}(3 . Then 6 + be > and [Z,Z] 1. If 6 h, then
Zh Z(Lh) and hence also Z Z(Le); in particular [Zh-a, Ze] 1, since
b,+h-2 >_ i. Thus we have found that [Zu, Ze] lforu h-lorh-2.
Then d(u, u) 2 or 4 for x Ze \ Gu. Since s > 5, this implies Zu Zu/a or
Z Zu/4, and the operation of < r> yields Zu < Gr, a contradiction.

(5.2)

(a)

(al)

(a2)

(a3)

(a4)

(b)

One of the following holds.

bo 1, b =2, r 4, no 2and:

Qo is elementary abelian of order 24;

Qo is an orthogonal module for o;
Q is extra special of order 2s;

Q/Z, is a direct sum of two natural modules for.
bo 3, b 2, r s-1 6, no 3and:
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(b 1) Qo is extra special of order 29;

(b2) Z, is a natural module, (QI/z)/Z(L/Z) is a direct sum of three
natural modules for L, and Q1/z is special.

(c) bo 3, bx 2, s 5, r 6, no 2and:

(cl)
Lo;

Qo is extra special of order 2, and Qo/Zo is a orthogonal modulefor

(c2) Q is special, z is a natural modulefor L, and Q/Z1 is a direct sum
of two natural modules for -;

(c3) (1... (r + 1)) is a maximal regular subarc of T.

Proof. From (5.1)(a) and the operation of , on T we get K _< L for E T
and 0 (2), and [K, Ly] _< Qy for j C T and j E 1 (2).

Suppose first that ,o : 1. Then ro and to are in the same G-orbit as 0 (we
write ro 0 etc.), since otherwise [o,K] would be in
contradicting [o, K] o " Qk.

Set b ro- eo. If go < to, we get gro " Qb but b <- Q,o" Hence

[o, b] 1,

and <o, N’b(K) > Qb Lb centralizes b, a contradiction since K _< Lb.
If ro < o we apply the same argument with the r61es of ro and o inter-

changed. This shows:

(1) ro toandro -0.

We may choose the maximal regular subarc 3’ of T such that

7 (0... r) or (1... (r + 1)).

Assume that (0...r) is a maximal regular subarc and ro <- r/2- 2 or that
(1... (r / 1)) is a maximal regular subarc and ro <- r/2 1. In both cases (2.6)
yields r 0 (2), and Q centralizes < Z2, Z2o/ >. On the other hand

< Z2, Z2ro+2 > Qro+2 L,o/2,
and K normalizes C(Q) (3 L,o/2. Thus K _< C(Q); in particular

(1... (r + 1)),

and (0...r) is not regular.
Since K E S7,K for q (- 0 1) (see (5.1)(b)), we can define 1 with r.espect

to No(K) as in (2.9). From (5.1)(c) we get that maximal regular arcs in I have
length f < 4, hence r 6 or 8. If r 8, then ro 2 and f 4, and Q is con-
tained in Z(N(K)5). Hence C,.5(Q) and C,.4(Q) are transitive on A(5) and A(4)
respectively, contradicting (2.1).
Thus we may assume r 6 and ro 2. If bo 1, then Q centralizes

< z, z4 >, and
( Z2" Z4 ) Q3 La.
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Hence C,(Q)and C4(Q) are transitive on A(3) and A(4) respectively, contra-
dicting (2.1). Thus bo 2, and 1 [Zo, Z] stabilizes (-2... 4) of length 6.
Conjugation with r yields O(Gto...6) 1, a contradiction. Hence we have
shown (together with (2.6)):

(2)(a) ro r/2, or

(b) ro r/2- 1, (1...(r+ 1)) is not regular and s < r.

Set/ [go, o]. Since < go, No(K) n Lo> Qo Lo, we have/ 4: 1.
Assume now that 1, too. By (5.1)(a), is normal in L. Thus

x (go n ,) x ( n
and , stabilizes (-(ro-2)...ro), which implies r > ro-1 _< ex. If
r ro- 1, we get [, o] / contradicting ’o < Q," With the same
argument , > ro- 1. Since ro is even and t’ and r are odd, it follows that

rt >_ ro+l <

and, by (2), r, e ro + 1, r + e r. and maximal regular subarcs in T
are < ,>-conjugates of (0... r). Hence [g Io n 2 which con-
tradicts the operation of K on o. We have shown:

(3) 2, 1.

Assume Z Z(L). By (1.11), Z/Z(L,) is a natural module for -(i 0,1).
But (3) yields [Z(S),K] 1, contradicting the operation ofK on o. Together
with (5.1)() we have shown:

(4) Z Z(L)and Z, 2.

Assume bo ro and, without loss of generality, Zo _< G,o. Then

[Zo, o] Zo n zo,

and, by (1.3), Zo/Z(Lo) is a natural module for Lo. Additionally, (4) and
(3.2)(e) imply Z(Lo)= 1. Thus, by (1.3), Zo o, but Z < Zo and
[Z,, K] 1, a contradiction. We have shown:

(5) bo < ro.
Assume/ n o : 1. This yields/ f3 o n ,o : 1, since/ _< Zo f3 Z,o and

K normalizes/. Hence/ no f3 ,o stabilizes (- ro... 2ro), and (2) and (5).im-
ply bo 1, ro 2 and r 6. Thus, by (5.1)(d),

Q (Zo n Q)(z n Q,)(Q2 n Qo) and Zo n z,_ zx.
In particular,/ _< Z,, and (4) contradicts/ f3 o : 1.
We have shown:

(6) / n Zo 1.

Assume bo > 2 and, as above without loss of generality, Zo < Gbo. Then (5)
yields
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[Zo, K] Qbo
and hence bo > 3.

If ZI -< /, then Z1 _< Zo CI Z,o and b >_ (ro 1) + bo. Thus by (3), (5.1)(e)
and (2), r > 2bl > 2(ro- 1)+ 2bo > r-4 + 2bo and bo < 2, a contradic-
tion.

If ZI : /, then by (5.1)(c), Czo(K) ZI/, since Czo(K) is central in a
Sylow 2-subgroup of Na(K)I, and [Zo,,o,,o] 1. Now (1.3) implies
Zo Z(Lo)o. But (4) and (3.2)(e) yield Z(Lo) and ZI < o, a contradic-
tion to ZI <- Ca(K). Hence:

(7) bo 1.

From (7) and (5.1)(d) we get

LI <Zo, Z,.>QI, IQ/Qo QI 2’,
QI (Zo f’) Q,)(z,_ N QI)(Qo N Q2) and Zo N Z2 ZI.

In particular, [Qo N Q2, O-(Lo)] 1; thus Zo t Qo t Q, is normal in LI and

Zo Qo Q Z.
This implies, together with (4), that ro 2 and IZo[ 2n4, and (1) and (1.2)
yield the assertions (al) and (a2) for Zo. To prove assertion (a) it remains to
showQoQ Z, andr 4.

If r 4, then ILo[ 4 by (2.6) and Qo t’)Q,_ zl. Hence it suffices to
show r 4.
Assume r : 4. Then (2) yields r 6, [Lo [,. 2 and Qo Q, 8. On

the other hand we get Qo (Qo tq Q2)Zo and [Qo, ] < Zo which implies

[Oo c O,, Kl _< z,,
since K _< Lo. Hence by (4) we have Qo Q,- <- CI(K) and, by (5.1)(c),
[Qo Q,-I -< 4, a contradiction.
From now on we assume that 2o 1. Then Zo Z(Lo), and (3.2)(e) yields

Z(LI) 1. Hence Zo :g QI or zl Zo x Z2. In the first case we get

Z(LI) Q, and IQol Lol 2,

a contradiction. In the second case we get ,1 1, and (5.1)(c) implies:

(8) , 1, Z1 ZoXZ2, ]Zol 2andbo > 2.

Note that (5.1)(e) implies now that C(Z,) is symmetric in for E T; in par-
ticular, 2b, _< r. Since Z, Zo x Z, we have b, bo- 1, and since K cen-
tralizes ZI, bo is in the same G-orbit as 1.

Set R [ZI, Zbo]. Then R : and R _< ZI f’l Zbo. On the other hand,

Zbo Z,o_iZ,o/1,
which implies R Z2 Zo_, and bo 3, since [G[ is odd. We have
shown:
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(9) bo 3andb 2.

As s >_ 5, we know from (9) that Z fixes exactly the vertices of distance less
than 4 (resp. 3) from 6 F. Now choose T* to be a line in F stabilized by K
such that

T* (... 6_,... ,...) and C.(Q) (o... .)

and r* is maximal with this property. If o 0, then [Q, Zo] 1 and z Zo
fixes but not/4 Hence we get another line stabilized by K:

T** (... ,... 3 ... ...) and CT..(Q) (..... ... :.).

The maximality of r* implies 2(r* 3) _< r* and r* _< 6.
If 6o 1, then Czo(Q) Z, and z Z#I fixes 64 but not 6. Arguing as

above we get

T** (... ,... 4 6... ...) and CT..(Q) (..... 4... ;. )

and r* < 8. Hence in both cases we get r _< r* _< 8.
We define Vo <Z"> and V V. Then V Zo and V Z by (8)

and (9), and Qo f3 Q is normal in Lx. Hence (5.1)(d) implies

Q, (Q, f3 Vo)(Q, f3 v2)(Qo f3 Q2) and L < Vo, V> (Qo f3 Q).

Thus
QoQ DxZ,

where D Ce,(d) and d is an element of order 3 in < Vo, V>. Moreover

0(o Q,) (D) 1,

since D has trivial intersection with Z,. We have shown:

(10) r <_8, Qo DVo is extra special and Q,/D x Z, is a direct sum of
natural modules for L,.

If r 8 then r r*, and we have shown above that (0... 8) can not be
regular, hence KQ G,... 9 and [K, Q] 1. On the other hand

Q-< Q4Qe D"2XZs,
and we get [K,Q, Qs] and [Qs, Q,K] <_ [Zs, K] 1. Thus the
3-subgroup-lemma yields Q < Zs, which contradicts (8) and (9).
We have shown r _< 6. Since (- 3... 3) is stabilized by Zo, we get after con-

jugation with ,:

(11) r 6, and (1... 7) is maximal regular subarc of T.

Assume first that (0... 6) is also a maximal regular subarc of T. Then (2.6)
implies r s- 1, and we are in a similar situation as in (4.6) after steps (4)
and (5). With the same argument as there we get assertion (b).
Assume now that (0...6) is not regular. Then (2.6) implies s 5 and

ILol 2"8. Thus we are in a similar situation as in the proof of (4.5) after
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step (9) (with the roles of 0 and interchanged). In (4.5) we used (1.4) and
Hypothesis (4.0)(a) to get a contradiction. Since in our situation now n, 1,
we get no contradiction but with the same argument as in (4.4) that Q1 is
special and that Q1/ZI is direct sum of natural modules. Since
IQo/Zo 2"4, we get no 2 from (1.2), and assertion (c) follows with (1.1)
and (1.5).

6. The case [G,[ 0 (2)

(6.0) Hypothesis and notation. Hypothesis (3.0) and notation (3.3) hold in
this section. Additionally we choose 0 fi/O and assume:

(a) IG l =-0(2).

(b) s 1(2) ands_> 5.

(c) Zo : Z.

(d) max{no, n,I > 1.

(e) (0... r) is a maximal regular subarc of T.

Note that maximal regular subarcs of T have length s- or are in (,2m)
(see (2.6)).

(6.1) For Q 02(GT) and 3’ (012) the following hold:

(a) Q : 1 and GT OK.
(b) Q S..

Proof. For the definition of S,.c see (2.9). By (3.2)(c), Gto is 2-closed,
hence (a) holds.

Set M Na(Q). There is a finite subarc - in T of maximal length such that
G, : G (see (2.10)). is a maximal regular subarc of T, and Q is a normal
subgroup of G,; thus G. M. We may assume that (0...2m) and
2m _> s- 1 (see (2.6)). Hence o"s 2m and <Mr, Mm> is transitive on
A(2m). Conjugation with impIies that Mo and M2 are transitive on A(0) and
A(2) respectively.
Next we shall prove that there is an element x EM s.uch that 0 2. Asser-

tion (3.1)(b) implies that it suffices to show NM(K)

__
Mo U M,_. Pick

x’ NMo(K) and x" Nu(K)

such that (- 1)x’ and 3x" 1. Then

0"-ix’ (-2)x’ 0, 2"x" 4x" : 2 and "-’’’ 1""= 1.
Since < ,-’x’ -x"> <_ N,,(K), we have N,,(K) . Mo U M.
To prove assertion (b) it remains to show that M, normalizes [0,2]. Assume

not; then (3.1) implies that Mx is transitive on A(1). Hence, by (2.1), M is edge-
transitive on I" and Q 1, a contradiction to (a).
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Notation. Q O2(Gr), "y (0 2), M= No(Q). For X, YES,j we
define X < < Y, if No(X)o <- No(Y)o. Let S*x be the set of < <-maximal
elements in S,.

(6.2) Suppose that X S, and M No(X). Then the following hold:

(a) 37Ix normalizes [0,2} and if/Ix " hTIo.
(b) Q 117Io Syl(ff/lo) fq Syl(7l).

Suppose that X S.r*; then no non-trivial characteristic subgroup of
Qx fq Mo is normal in Mo.

Proof. Assertion (a) follows from the definition of S,, and (b) is a conse-
quence of (a), (3.1) and (3.2).
Assume that X S**., and that C : is a characteristic subgroup of

QI f’l ro, which is normal in .ro. From (a) and (b), it follows that C is also nor-
mal in .q and Ar2. Hence C (E S,.r and 3ro _< No(C)o. The maximality of X
implies ro No(C)o. Thus Qx N hTIo Syl2(Go), and (b) implies that Gx is
2-closed, a contradiction to the hypothesis.

(6 3) Suppose that X S* and hTI No(X). Define with respect to"oK

as in (2.9), and let A be the connected component of I" containing O. Then the
following hold:

(a) .r _< QoK.

(b) h71/37I is vertex-transitive on z, and 0 has the same valency in A as in

2kno k 2 3 or 4.

(d) O,(Aro) is elementary abelian.

(e) If k <_ 2, then Sylow 2-subgroups of 371o are elementary abelian.

(f) If k > 2, then 02(371o)/Z(O2’(o)) is a natural module for
o’(o/o(o)).

(g) Maximal regular arcs in have length k.

Proof. Since r, fixes A(0) pointwise, we get (a) from (3.2).
Set T Qx fq .ro, w 2r/2r and B TJf,l/ffl. Then (6.2)(b) implies

B Syt(Wo) Syt(W,),

and from (2.9) we get assertion (b). Now (2.1) yields that no non-trivial normal
subgroup of O’-’(W,) is normal in 02’(Wj) for [i,j] 10,2l. Thus we can apply
(1.10) and get:

(1) B is elementary abelian of order _9.kn, k _< 2, or

(2) 02(Wi) is elementary abelian of order 22n or 2a, and
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O(W,) /Z(O’-’(W3) is a natural module for O’(W/O,(W3).
It is now easy to verify (c) and (g), and (e) and (f) follow, if we have proved

(d). Hence it remains to prove (d).
Set Y O’(O’(/ro)); then/0to rKT. If [Y, O,.(/Qo)] 1, then O(T) is

characteristic in T and normal in/Qo, and by (6.2)(c), 0(7) 1. Thus we may
assume V [Y, O,_(]ro)] : 1 and Z _< O,(1o), and again by (6.2)(c) we can
apply (1.6). Since (2.1) implies [Z, Y] : 1, we get V [Z, Y] and
v <_ Z(O(Mo)).

If T , then, by (1.7), there exists a non-trivial subgroup A in which
is normal in O(O,) and/ro. Since/ro is transitive on h(0) and O-(OJ on h(1),
(2.1) contradicts A : 1. Hence T < ,, and we can choose t’ . N,(T) \ T
such that t"- T. From (6.2)(a) we have t Nt,(K) \ 1C4o such that t T.
Thus, in addition, we may choose t’ such that [t,t’] E T. Note that <t’,K>
normalizes O2(/Oro), since < t’, K> _< Go and O2(/ro) Qo N T.

First assume that [O2’(2Q), Y] ,: 1. Then (1.6) yields

v [o’-’(.,,,), YI s o’(,).
Set R <(VV’) <’’,>>. As shown above, R < O(/Qo) and
JR, Y] _< V <_ R. Hence R is normal in 2Qo. On the other hand < t, t’, K>
normalizes R, so R E S,. and t’ . No(R)o \ 21710. This contradicts the maxi-
mality of X. Thus we have shown:

(3) [O2’(2Qr), Y] 1.

Now assume that H : $(O(2Qo)) ,: 1. Then (2) and (3) implyH _< /Or and
[H, Y] 1. Sincet normalizes O2(/Qo), it also normalizes H. Thus HH’ is
normalized by < t, t’,/Qo, K>, and HH’ . S,.r. Again, t’
contradicting the maximality of X.

(6.4)

(a)

(b)

(c)

There exists {4,5} such that thefollowing hold:

O(Mo) is elementary abelian.

O(Mo)/Z(O’(Mo)) is a natural modulefor 02’(Mo/O(Mo)).

(d) Maximal regular subarcs of T have length 2- 2.

(e) s <_ 2-3.

Proof. (6.1)(b) yields Q 6 S,.. Choose XE S,*. such that Q << X. Set
371 Na(X). Then, by definition, Mo 2Qo, and an application of (6.3)(d)
yields Mo 2Vro and, without loss, Q x, since Q 02(/ro). Thus we may
apply (6.3) to Mo. Let k and A be as in (6.3). Define k+ 1. Then

2,3,4 or 5, and maximal regular arcs in a have length k.
Let . be a maximal regular subarc of T of length r. Then we may assume

37 6 (, r) and r 0 (2) (see (2.6)) and, by (6.0)(e), q (0... r). The restric-
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tion of q to A is again a maximal regular arc, since Q is normal in G;. Hence
r 2k 2g- 2. It remains to show (e), since then s > 5 implies g 4 or 5.
Assume that s 2 1. Then 3’1 (1... (2g 1)) is also a maximal regular

subarc of T, and Q is normal in G,I. Pick r* E < r> such that

I* (-(2g- 3)...1).

Then < G,,G> is a subgroup of M, and (3.1) implies that < G.I G> is
transitive on A(1). This contradicts (6.2)(a).

(6.5) QnZ, lforiE T.

Proof. It suffices to show ZoO Q Zt tq Q 1. Assume that
R Zi f3 Q for some [0,1 }. Then (6.4) yields [R, O2’(Mo)] 1.

If 1, then R C S.x and Q <_ No(R)I, and (6.1)(b) implies

Q, Syl,(N(R )o).

If 0, then R _< Z(Lo), and (6.2)(b) implies R Z,. Thus we may assume
1, R C S.r and Qt Syl2(No(R)o). But now (6.2) implies that R E S*.x and

that no non-trivial characteristic subgroup of Q is normal in No(R)o. Hence
(6.4)(c) and (1.7) yield a contradiction to (2.1), as in (6.3).

Note that (6.4), (6.5) and (2.10) imply that b, (for C T) is an integer.

(6.6) Suppose that there exists T such that Q_, tq Q+I is normal in G,.
Then Q, [Q,, Q,-,][Q,, Q,+,](Q,-, tq Q,+,), and Q,/Q,_, tq Q,+, is elementary
abelian of order 22n’-.
The proof is the same as in (4.1).

(6.7) bo> 2.

Proof. In the following we apply (6.4) without reference. Suppose that
bo 2. We get [O’(Mo),O,(Mo)] <_ Zo, and Zo/Zo tq Z(O’’(Mo)) is a natural
module. In particular ZZo is normal in Mo and thus also normal in Go.

First assume that C,.(Z) Q. Then Qo tq Q Co(ZZo), and Qo tq Q is
normal in Go. Hence Qo Q Q f3 Q_,, and (- 0 2) is left singular. This
contradicts (2.6) and s > 5.
Assume now C,.(Z) :/: QI. Then Z Z(LO <- Zo, and (3.2)(e) implies

Z(Lo) 1. Hence by (1.3):

(1) b, 3, [S, Zo] Z,, and Zo is a natural module for Z-o.
Set V <Z’>, A Vtq Qo and B V"-1 tq Qo, then [V, Q,] z, and

S VQo (since bo 2). In particular we get [Q tq Q_,, < v, v’-’>] Zo,
and Q f3 Q_ is normal in Go. Together with (6.6) and (1.3) we have shown:

(2)(a) [Q,, V] Z,,



248 BERND STELLMACHER

(b) (20 ,4(Q, o Q_,),

(c) Qo/Q, f3 Q_, is direct sum of natural modules for o,
(d) [Qo/QI f) Q-ll 22"1 and n _> no.
Suppose that no and pick q E Q #. Then (1) and (2)(a) imply Zo 4,

Zll 2and[q,V] _< Zi. Hence:

(3) V/Cv(q)l .< 2.

Set X C(q), and note that BQ1 S SyI2(L1). Since O’-’(Mo) .< X, Xo
is transitive on Zi(0). Thus, by (2.1), X1 is not transitive on A(1). There exists
y Xo with ly 1 and Ay B, hence, by (3), IB/Cn(q) .< 2. Now, (2)
implies

]Cn(q)Q1/Q11 >- 2"1-1.

Thus Xo O X1 and X, t’) Z, generate a subgroup of with Sylow 2-subgroups
of order at least T-’. Since <Xof3X,X,f)X> is not transitive on A(1),
from [6, II 81 we have nl 2 and [Cn(q)Q/QI 2 is the only possibility.

Let N be a normal subgroup of G1 such that Z1 .< N .< V and N/Z1 is a
minimal normal subgroup of GI/Z. We want to show N V, so assume
N : V. From (2)(a) and (b) we have [N t’) Q_, Qo] .< N Zo Z and hence

[(NO Q-x)Zo, Qo] - z,.

But (N N Q-1)Zo is normal in < V, V’-I> and < V, V’-I> oo. Thus (1) im-
plies [N N Q-l, Qo] 1 and N Q_, z,. Now the order of N/Z1 is at most
2 ((2)(d)), and (1.2) yields IN 2 and [N,K] 1. On the other hand,
NQo g Q-1 and K K1 K-l, since NNQ_, Z, and no 1. This
contradicts (3.1)(b) and (c). We have shown:

(4) V/Z1 is an irreducible module for LI.
Since the orthogonal and the natural module are the only irreducible

GF(2)-modules for L,(4) (see (1.12)), we get VI 25. We conclude that
V Q-I Zo and, by (6.5), Q f3 v 1.
On the other hand [Q, v-1] _< Z-1 -< Zo and [Q, V’] <_ z3 <_ Z2,

and it follows that [Q, <B,A’>] _< V. Since K normalizes <B,A’> and
<B,A’> Ll, wehaveK<_ <B,A’> and[Q,K] _< Qf) V= 1. Butnow
K _< XI, and (3.1)(0 implies that XI is transitive on A(1), a contradiction. We
have shown:

(5) no > 1.

Choose t

_
NM.I(K) \ Mo with t QI. Note that by (3.2)(b), (1.3) and (1),

K K x Ko, since Z Z(LI). If [Ko, t] 1, then the structure of
Aut(L2(2"l)) implies [Ko, Ld -< Q, in particular [Ko, B] .< Q (3 Q_. This
contradicts (2)(c) and (1.3). Hence [Ko, t] q: and R KoWo (3 KI : 1. Note
that R centralizes Q.
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Since (2)(a) yields [,A] <_ Zt, with the 3-subgroup-lemma we get
[A,R,] 1. Thus [A,R] _< O2(Mo) < -t, and it follows that
[L-t, R] <_ Q-t, since AQ_t E SyI2(L-1). On the other hand
since bt 3, and [L_2,R] _< -2. Therefore Ci(R) is transitive on A(i) for

1, 2, and (2.1) implies R 1, a contradiction.

(6.8) There exists no pair (G, F) which satisfies (6.0).

Proof. Let (G, F) be a counterexample, and let be the integer defined in
(6.4). If Zo . Z(O2’(Mo)), then (6.4) implies bo 2 which contradicts (6.7).
Hence:

(1) Zo <- Z(O2’(Mo)).

Now (6.4) and (6.5) yield:

(2) (a) 5, s 5 or 7, and maximal regular subarcs of T have length 8.

(b) Zo Z(Lo), bo 4 and Zol 2.
In addition (6.2)(b) implies Zt <_ Z(S Mo) and Zt Zo Z2. Thus with

(1.2) and (1.3)"

(3) bt 3, Zt 22, and Zt is direct sum of natural modules for Z-t, in
particular no -> nt.

LO V.Set V <Zt > and V2 Then (6.4)implies

V _< O2(Mo) and ZtZ-t <- V <_ ZtZ_tQ..

According to (6.1)(b) and (6.2) there exists t Nut(K) \ Mo. Since Ko cen-
tralizes Z(O2’(Mo)) and K, centralizes Z(O2’(M2)) Z(O2’(M’o)) and

Z(O2’(Mo)) Z(O2’(M2)) .,
by (1.3) and (6.4)(c) we have Ko K, 1. Since (3.2)(b) and (c) and (3) imply
K KoKt and K[ _< Ko12, we derive:

(4) K KoK’oandno
In particular we have ( <_ Co(K) and ( Co(K) by (3.4).
Hence

" [o(mo),K] <_ ZZ_,,

and (2)(b) implies Z402(Mo) 8yl2(Mo). Now the structure of Aut(L2(2"))
yields

[K4,mol < O,(Mo).

Thus I is normal in Mo and |O(Mo),Mol <- ’. It follows that
Z, V Z,Z_,. Conjugation with yields:

() V Z,Z_, and V,_ Z,Z.
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We have Lo <Z-4, Z4)Qo, since bo 4, and get the following com-
mutator relations:

[Q, Q-,, Z,l [z_,(Q Q.,), Z,l [z_, ZlZ,

since b, 3 and [V,, Q] z,, and

[Q, n. Oo, z,] _< v, n Qo z,
by (5).
Thus we have [Q, n Q_,, z,] _< Q, (’1 Q_,, and Q, ( Q_, is normal in Lo. From
(6.6), (5), the second commutator relation and (1.3), Qo/Q, n Q_, is a natural
module for Lo.
Next we show Q,Q-, QV. As shown above, [<z,,z_,>,Q, nQ_,]

<_ V, hence

Q, Q-, Co(Ko) V,

since Ko operates fixed-point-freely on Qo/Qt Q-t (note that Ko q: 1 by
hypothesis and (4)).

Set D Co(Ko). Assume D- Q2. Then the structure of Aut(L(2")) yields

[Ko, L] < Q, and L, C,.(Ko)Q
which implies [Ko, V] _< Z, since Zt ZoZ and [Zo, Ko] 1. But then

[Ko, L] < Z, < Qo and [Ko, Lo] < Qo

a contradiction.
Now assume D Q; then [Ko, L] < Q and L C,,(Ko)Q. On the

other hand bo 4 and ZoQ4Syl,_(La), hence [Ko, L] _< Qa and
La Ca(Ko)Qa. Thus C(Ko), is transitive on A(i) for 3,4. Now (2.1)
yields Ko 1, a contradiction.
We have shown that D _< Q and therefore D _< L. Since bo 4, we get

D Zo(DtQ) and ZoQ 1.

IfDQ : Q, then N,ca(Q) > Q and N,c4(Q) " QZo, but

No4(Q) _< O(Mo)

and QZo is the centralizer of Ko in O(Mo) (see (6.4) and (3)). This contradic-
tion shows D Q Q and D QZo, in particular Q, f) Q_t Qv.
Now we apply (1.5) and (6.4) to Qo/v and o and get that Qo/v is elemen-

tary abelian, in particular [Qo, Q] < v. On the other hand

[Q, Q,] [Q, Z4(Q, cI Qo)] [Q, z_(Q, t"l Q)] [Q, Q, cI Qo]
[Q,Q,(’IQ,] < VV Z, (see(5)).

Now let K* be the subgroup of maximal order in K such that [K*, Ld -< Q.
From (4) we get IK*I ]Kol q: 1. This yields

[L,,K*, Q] < [Q,, Q] <_ Z and [K*,Q, Ld 1,

hence, with the 3-subgroup-lemma, [Q,L,K*] < Z; in particular
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[Q, Q2,K*] <-zl. Since [Q, Q2] is a module for M2, by (6.5) either
[Q, Q2] <_ z2 or [Q,Q]Z2 v2. In the first case, [Q,Q,K] and
[K2, Q, Q] and hence, as above, [Q2, K2, Q] 1. Conjugation with r-1

yields [Qo, Ko, Q] 1. But, as we have seen, Qo [Qo, Ko](Q t3 Q_x)and
QI Q-1 QV; thus [Qo, Q] which contradicts (6.5).
Assume [Q, Q]Z v2. Then [V,K*] _< Z1 and [Z4,K*] <_ ZI Qo,

and we get

[K*,Lol-< Qo and Lo C,.o(K*)Qo.
But now Co(K*), is transitive on A(i) for 0,1, and (2.1) yields K* 1, a
contradiction.

7. Some small cases

(7.0) Hypothesis and notation. Hypothesis (3.0) and notation (3.3) hold in
this section. In addition we assume that (0...s) is right singular. Note that by
(3.5), O,_(Go ,) -<

(7.1) s _> 3, or Go G1 L2(2") and no > 1.

Proof. Assume s _< 2. Let S be a Sylow 2-subgroup of Lo O L1. If s 1,
then S Q1, and L1 is 2-closed, a contradiction.

If s 2, then QI -< Q, and (3.2)(e) yields QI < Q, or Q1 Q 1. In
the first case the operation of K implies Q E SyI2(L) and L is 2-closed, a
contradiction. In the second case (after conjugation with r"1) we find that
Lo L1 L2(2"), and S has order 2". The operation ofK KoK1 and (3.2)
yieldK Ko Kl, no nl > 1, Lo Go and

(7.2)

(a)

(al)

(a2)

(a3)

(b)

(bl)

(b2)

Suppose that s 3. Then one of the following holds.

no 1, nl > land:

O(Lo) c;
Q1 is elementary abelian and C,I(QI) Q1;

There exist arcs of length s with stabilizers of even order.

no > 1, nl > and:

O’(Lo) L2(2n) and O(LI) L(2"1);

Sylow 2-subgroups of Go are elementary abelian of order 2"/"1.

Proof. Set R QI N Q, then R is in Q3. Since QI N Q and Q Q3 are
L,,conjugates, we get R Q Q, and R is normal in < QI, Q>Q L;
in particular

L,_/R L2(2") x Q/R and Q1 Syl(< QI, Q>).
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If C<QI.Q3>(R) <- R, we apply (1.7) and get a contradiction to (3.2)(e).
Thus we may assume C<Q,.3>(R) :g R. From (1.9) we get:

(1) O2(Lx) L2(2nx) and O2(Lo) L2(2n) ’, and Sylow 2-subgroups of
Go are elementary abelian of order 2n or 2n/nx; or

(2) no 1. O2(Lo) C3 and C,,(Q,) <_ Q,, and Q, is elementary abelian.

In case (1) we get Go [. 2"/" since s 3, and (3.2)(b) yields assertion
(b).

In case (2), again, (3.2)(b) implies n > and assertion (a).

(7.3) Suppose that Zo or Z 1.
L(2), no > 1.

Then s 2 and Go = G

Proof. If Z, for someiE[0,1},thenQ, and ]L,I,. 2n’. This
implies s 2, and the assertion follows from (7.1).

(7.4) Suppopse that s is even and s > 2. Then s 4, and Q, is elementary
abelian and a natural modulefor L, (i 0,1).

Proof. Let 3’ (0...s) be a subarc of length s in T, and set Q 02(G,).
From (2.6)(a) we get that all arcs of length greater than s- 1 are singular.
Hence (3.5) and (2.10) imply Q O,(Gr).
Assume Q ,: 1. Then there exists/i E I’ of minimal distance from 0 such

that Q G. Let , (6o.../L), 6o 0 and 6n /i, be the arc joining 0 and
i. The minimality of n yields Q _< G for < n. Now define , to be the arc

(_-,... _)

if n-1 >_ s, and

(s- (n- 1)...o...

if n- < s, such that , has length s. Then , is a subarc of T, for some
G-conjugate of the K-track (T, z,K) (see (2.6)). In particular <K,, Q> _< G,
and (3.5) and (2.10) imply Q _< G, a contradiction.
We have shown that G, is a 2’-group. Now (2.7) implies s 4.
Pick S SyI2(Lo t Lt). The transitivity of Lo (3 L N,o(S) on the arcs

(0 1 /i2 3 4) and (1 0 _/L,_ _4)

(see (2.6)) yields

ISl 2’"t/nt 22"/nx.

This implies n no and [S[ 23n; in particular Qo[ [Qt 22".
Assume first that C,,(Q) <_ Q for 0,1. Then we apply (1.11) and get

either the assertion or Zj Z(Lj) for some j [0,1]. In the second case
[Q/Z[ < 22", and (1.2) yields a contradiction.
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We may assume now without loss that Co(Qo) :g Qo. Applying (1.9) we get
no 1 and Lt E4. But now (3.2) implies

a contradiction.

s (s o(Lo))(s O(L,)) Q,,

8. The stabilizer of

(8.0) Hypothesis and notation. In this section we assume Hypothesis B
and use notation (3.3) as far as it suits this hypothesis. In addition,

X, ’ X,,

for I’ and X _< G.

(8.1) Suppose that Y is a tree. ThenG is solvable and O(Ga) for
E Y, and one of the following holds.

(a) There exists an edge-transitive normal subgroup E of G such that:

(al) O2’(E,)/O2(E,) =- L2(2"*), or n and O2(E) Syl(E,);

(a2) no proper normal subgroup ofE is edge-transitive on Y;

(a3) C(Q) <_ Q, if and only if Ca(Qa) <_ Qa.

(b) s 3, and [G, Ga} is parabolic of type

Aut(La(2"a)) Aut(L2(2")) or Aut(L2(2")) Aut(L2(2"a)).

(c) (possibly after changing notion) na ands 3, Q is elementary
abelian,

G/Q H <_ Aut(La(2")),

Q is isomorphic to a submodule of the naturalpermutation GF(2)-modulefor
G/Q,Ga GaW, W ,3, and W is normal in

Proof. The first property is obvious:

(1) G,/Gt, is isomorphic to a subgroup of Aut(L2(2"*)) which contains
L2(2"*) r.

Since O(Gt) is normal in Ga, we get [O(Gt),Ga]
<_ O(Gat) <- O(Ga). Hence (1) and the structure of Aut(L2(2na)) yield
O(Gt) <-O(Gta). The same argument applied to O(Gt) shows
O(Gt) O(Ga). Hence O(Gt) is normal in < G, Ga> G. We get:

(2) O(G) O(G) 1.

Let H be the largest perfect normal subgroup in G. Again the structure
of Aut(L2(2")) yields H He and:
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(3) Ha H 1, in particular G,, is solvable for 8 F.

If Q <_ G, and Q _< G,, then the above argument shows
Q Q 1, and (2) and (3) imply G, G# 1, and (a) holds.
Thus we may assume, without loss, Q G,. Since Q is normal in Q,

we get:

(4) [Q,G#,] QG#, Q.

Set w < > Q. Then (4) implies that every chief factor of W which
is in W G,# but not in Q# is central. Hence, [6, V 25.7] and the structure of
Aut(L(2")) yield WG, Q and W/Q L(2.
Assume that Q G. Then we define W <Q >Q and, as

above, get

W G, Q and W/Q L(2").
Set

E < O(W)(O(W,) G), O(W)(O(WO G)>
and T, C,(Q,) for a,. Then (2.3) and (2.4) imply that (al) and (a2)
hold in E, and (3) and (4) yield T, G(, Z(Q,). Hence T, Q, if and on-
lyif Cw,(Q,) Q,.
Thus either case (a) holds for E, or we have one of the following:

(I) Q G(,, Cw(Q) Q and Cw.(Q.) Q,

(II) Q G., Cw(Q) Q. and Cw(Q) Q,

(III) Q G(.

Since (I) and (II) only differ in notation, we may assume without loss of
generality that we are in case (I) or (III).
Assume (III). This implies Q $ Q. and Q Syl(W). By (2.1),

< Wa,O(G.)Q> is edge-transitive on r. Thus no non-trivial subgroup of W
is normalized by O(G.)Q.. Hence (1.7) implies C(Q) Q. So we have
shown in both cases (I) and (III):

(5) c.(Q) Q.

Then W QC(Q), and (Q) is normal in the edge-transitive subgroup
< W, G.>. This implies:

(6) W QW}, w} L(2", and Q. is elementary abelian.

Set R O,,(G,. The subgroup ,(G(, is normal in
< G., W>. Hence, as above,

G(, RGa(.

For subsets ...
i i
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Assume first that R 1. Since [QaK] Ro it follows that K 1 and
2n 2. We know that Z(Q,Qa) <a,> is cyclic of order 2, since, by
(3.2)(e), Z(Q,Q.) t Q 1 for i : j.

If k k-III,a, l, then a I’I.a Q and thus k- 0 (2). On the other
hand, if k < 2 + I, then a,... ,a Q \ Q/ yields k 0 (2), a contra-
diction. This shows that Q is isomorphic to the non-trivial submodule of a
natural permutation GF(2)-module for G,/Q,.
Now assume that R I, and let k be maximal such that

I7k X Re, and ITNY
and assume that there exists fl/, A(c0 \ [fl,,..., fl]. Then R+, < Y and
hence I7/1 X /1o By the maximality of k there exists=1 81"

for r Ra+ and y . Then

Y Gatak+ and r

which contradicts Rek/1 N G,te/l) 1.
We have shown that there exists a normal subgroup W Xe,

and Re is a subgroup of Aut(W) containing the normalizer of a Sylow
2-subgroup of W. In particular, (Ra N Qo)w’ L2(2n), and (Ra N Qa)w"
is normal in Ge, since G,e normalizes Ra. According to (6) we may choose
W# (ReN Q.)W’.
There exists an involution t E We with c’= c’ for t c’E A(). Set

X G. N GeN Ga,. Then [X,t] <_ WeN G, N G., 1. Hence a subgroup
Xo in X is transitive on A(c0 \ [/], if and only if it is also transitive on
A(c’) \ 1/$]. This shows that s > 3 and that there exists no regular arc
(a/a’ ’) of length 3, and since Q, Ga( we get s 3.
Assume that ne > 1. Then C.(W) and Ga _< Aut(W) (here and in the

following we interpret the natural monomorphism into the automorphism
group as inclusion). Set

Wo Aut(R,).

As Gt) fixes every/’ C A(ta) and Aut(W) Aut(Re) Ilt,l, we get

Gt WoN
On the other hand GWo/Wo = H Aut(L,(2")), and Go operates in its

natural permutation representation on IRe,//’ A(t)}. But then G,Wo is con-
jugate in Aut(W) to Am(Re) H. Hence we may assume

R L(2") G. _< Aut(Ra) Aut(L(2"-)).
It is easy to see with Schur’s lemma that Aut(Re) is a subgroup of

Aut(L(2)), hence

Ga Aut(Re) Aut(L(2")) < Aut(L(2")) Aut(L(2"))
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With the same argument we get

G _< Aut((

Set

Wo X Aut(Lz(2"’)).

Then GatW _< fro, and G/G f3 I’P’o is isomorphic to a subgroup of the
normalizer of a Sylow 2-subgroup in Aut(L2(2")). In particular the permuta-
tion representation of G/G, Wo on IR, / ’ E A(c01 is unique, and G,

Bis in Aut(X,eatL2(2 )) conjugate to a subgroup of

Aut(L(2")) t Aut(L(2"))

This shows assertion (b), if n > 1.
Assume n# 1. Then W is elementary abelian of order 2’/1, and Gz is.no

longer a subgroup of Aut(W). But now O(G,,{,) is normal in < G, Gz>
G. Hence G,{,} Q, w, and assertion (c) follows.

9. Finite graphs

(9.0) Hypothesis and notation. In this section we assume Hypothesis (3.0)
and use notation (3.3). In addition:

(1) max{no, n} > 1,

(2) s > 3,

(3) arcs of length s have stabilizers of odd order in G.

It follows from (3) and (3.1)(e) that there are involutions

to E N,.o(K) \ L, and t N,(K) \ Lo.
Hence we may assume , toh (see (2.8)); then ,’ - and k’ k and
kq 2- k for k E T. Furthermore

Aut(F) <x E Aut() / 0" 0>,

X NA.,O{r}(G) 3f’ IT’/g X] and

A,{_ {7/7 arc of length 2(s 1) and 7 C_._ T E };

7(6, &) denotes the unique arc starting at $, which joins the two vertices and
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(9.1) Suppose that 3‘ is an arc of length s. Then 3‘ is contained in a unique
element

Proof. Since 3’ is conjugate to (0...s) or (1...s + 1) (see (2.6)), 3’ is con-
tained in some element of
Now assume that 3’ is a counterexample. Then 3’ C__ T N T for some g E X

and T Te, and without loss of generality we may assume

Tf’)T (0...w), w _> s.

In particular Gto K Ke, since G, has odd order. Thus

(0...w) and (0e...w
are both subarcs of Te.

First suppose that w =- (2). Then A(0) or A(w) contains more than three
elements which contradicts K Ke and (3.1)(b). Hence w -= 0 (2), and there
exists ,* E < re> such that

0*= 0 and we*= w
or

0e’*= w and we’*= 0.

In the first case gz* Gto Ke, and gz* and ,* normalize Te. It follows
that <g> normalizes T

In the second case there exists a reflection t’ on T such that

gr*t’

Thus as above, t’, * and g normalize T, a contradiction.

(9.2) LetX O2’(<Gto...s_l, Gts-1...2ts->). Then:

(a) x/x Q_x (2-).

(b) K normalizes X.

(c) X Qs_ is a natural modulefor X/X f3 Q_, or x Q_ 1.

Proof. We define

TI O(Go -), T. O2(G.I...)),

K* C,,(T) and R < T,, T> Q_,. Since K operates on T, and T and
arcs of length s have stabilizers of odd order, we get together with [6, I 14.4]:

(1)

(2)

(3)

(4)

Tt is elementary abelian of order 2"s-1 and Ti :3 Q_ 1, 1,2.

TQs_I SyI2(L_I), 1,2, and < T, T2>/R L2(2"s-).

K* centralizes < T, T2 >.

There exists a complement X L2(2"-) in < TI, T2 > which contains
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Hence it suffices to show that R is a natural module or R 1.
If s 3, we apply (7.2) and get <T,, T2> $O2(L,-) and R 1, since

[T,,K] T, for 1,2.
If s 0 (2), we apply (7.3) and get that R or R Q_ is a natural
module.
Hence we may assume s> 5 and s 1 (2), in particular # (s 1)/2 is an

integer and a vertex in T.
Suppose first that K* 1. If C_(K*) .g Q., then the operation ofK on

C._,(K*) yields Q_C,_(K*)Syh_(L,_) and [L,_2,K*] < Q,_. Together
with (2) and (3) this contradicts (2.1).
We have shown:

<

Since < T, T> operates transitively on A(s- I), we get

R C,(K*) (’

Now, an application of (4.6), (4.8) and (5.2) yields one of the following
cases:

(i) H 1.

(ii) H Z,_ Z(L_,)and H < G.
(iii) s 7, H TsZ,_, where Ts O(G...,/_)), and Z,_, is a natural

module for ’-_.

In case (i) we get R 1. In case (ii), R < Z(< T, T>), and (4) and the
operation of K imply R 1.
Assume now case (iii). With the help of (4.8) and (5.2) it is easy to check that

[T, K] 1 and hence K < K*. On the other hand,/t 3 and s- 1 6,
and (3.2) implies K K*. Since T stabilizes the maximal regular arc
(#...s+#-l), we get Tsf3 Q 1 and Cs(K,)= or K, K*. So
C(K,) 1 and R 1 or R Z,_z, and the assertion holds.

Suppose now that K* I. Then we are in case (5.2)(a) or (b) and K K,_,.
If s 5, then C,.a(K) Zs. x < Zz, Zs > and [Z 2 and <Z, Zs >
If s 7, then C,.s(K) < Z,Zs> = 4. Let d be an element of order 3 in
C,.,_(K), and let fl be the set of all elementary abelian subgroups F in Q,_ such
that F f3 Q,_ f3 Q_ 1, IFI 2"i- and [K,F] F. If (5:2)(a) holds, it is
easy to check that fl ITz, T, T" }. We want to show the same, if (5.2)(b)
holds.

Define ’:_2 Q,_/Q.,f3Q,_, and -= [/r/F6fl}. Clearly I 3,
since , and T-’ are contained in . Assume ]-[ > 3, then the opera-
tion of d implies Iirl 6, and there are at least 42 images of involutions and
at most 21 images of 4-elements in )’_. We now take a factor group of Qo.
which is a non-abelian extension of )’:. of order 2. All such possible exten-
sions contain more than 21 4-elements. Hence we have shown:
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Now let T O2(G{2...}). Then Q4 N Q TZs, and there exists a reflec-
tion t on T in L4 which inverts the elements of K and interchanges TI and T3.
Since IKI > 3, there are only two K-modules of order 2 in TIT3Zs/Zs, name-
ly TZs/Zs and T3Zs /Zs. On the other hand

Zs Z,Z < Cs(K) and fir3 TZs {T,};

thus we have shown for s 5 and 7, fl {T,, , T’}. One of these three
elements in fl, say T,, is contained in Q,_, and since d < Z,, Z,_,, >, there ex-
ists z Z, such that T,- T. Hence we have shown:

(7) T, and T are the only complements for Q,_, in T,Q,_ which are nor-
malized by K.

Now reflecting T with t yields:

(8) T and Ti arc the only complements for Q,_, in T,Q,_ ( Z,_,) which
are normalized by K.

If we now take Y as described in (4), we can fine x < Z,_,,, Z,> such that
Y <T,,T>.

(9.3) Suppose that c1, c, c3 I’, :(c, c3) ,_<,- and

d(c, c3) 2(s I).

Then ,(, c3) :g,.,- .
Proof. We use the following notation: 7, 7(ct,ck) for
[1,2,3},

{i,j,k}

L < TI, T2>, & is a reflection on 3 contained in O2(G( ...*s-) for some
arc ()il... 8,_J of length s- 1.
By (9.2), L/O(L) = L(2"), and O(L) is a natural module or O(L) 1.

It is easy to check that T n T2 : 1 (v E L) implies T T.
There exists t E T which interchanges the two vertices in A0)n .
and have an arc of length s in common. It follows from (9.1) that,_ . The structure of L(2") yields the existence of t’ tE T,_ such that

<t,t>Q/Q = 3, and the structure of L implies <t,t’> = 3. Note
that the relation ’’ t’ holds.
$t v t’, then t E T N T and T T. On the other hand T’ Tz,

thus v& normalizes TI and T.. From the structure ofL andL we conclude that
[L, v&] 1. By (7.4), this is only possible if s 1 (2). Hence y& stabilizes the
arc (h...)... )) of length s 1 where ) is the midpoint in (,)). $o & has
order 1 or 2, and and & commute. Therefore 0,3) and 0... 8,_J have an
arc 0... )3) of length (s 1)/2 in common. Since both v and & fix two vertices
in A(,3), we get v, t Q3, and v and t fix the elements in A0) n ,2. Thus vt
stabilizes 0,...)...)3g) where g A(,3) f3 and
has length s, it follows that v& 1 and v &. Hence a ix’, a2 and
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T, and we have shownsince v t"ET2

(9.4) There exists an equivalence relation -- on I’ such that:

(a) F I’/= is an (s- i)-gon (where two equivalence classes are adja-
cent, iff they contain some pair of adjacent vertices).

(b) X operates on I.
(c) Xo and X1 operatefaithfully on

Moreover, for ,P, X, one of thefollowing holds:

(1) s 3, L2(2n)xL2(2n’), R Aut(L(2")xL(2’’)), and
[Xo, X1] is parabolic of type L(2") x L2(2").

(2) s 4, t L3(2n), ," <- Aut(L3(2")) and [Xo, XI} is parabolic of
type L(2").

(3) s 5, t = Sp4(2") orU4(2), , <_ Aut(Sp4)2n)) (resp. Aut(U4(2"))),
and [Xo, X} is parabolic of type Sp4(2) (resp. U4(2)).

(4) s 7, G(2) or 3D4(2n), ., < Aut(G(2")) (resp.
Aut (D4(2))), and [Xo, X} is parabolic of type G(2") (resp. 3D4(2")).

Proof. For 8 E F we define:

F Ix E 1"/(/i,X) =(_,)} U IS}.

Note that (8,,) EX’2(._I) implies (X,8) (.-t), since the elements in
allow reflections. X operates on the graph [’ with vertex set {I’/8
where two vertices I’ and Is, are adjacent iff 8 , 8’ and [8,8’I C__. I’, I’,.
Now we define an equivalence relation on I:

8 -- 8’ for 8,8’ I’ iff I’ is in I’ in the same connected component as I’,.

Set~ I’ / -- and denote by the equivalence.class of 8 E I’. Two vertices
G,/ are adjacent iff there exist x’ and ’ / such that ’ A(c’).

It is easy to see that X operates on I’. We want to show first that I is non-
trivial:

(I) If 8 has distance less than 2(s- I) from 0 (resp. I), then , (resp.
8, l) or8 0(resp. 8 I).

Let 8, 0 be of distance less than 2(s- l) from 0. Assume that 8 0. Then
there exist elements 8o, 8,..., 8 such that 8o 0 and 8. 8 and I’,, is adja-
cent to I’,,/, in I’ for 0,...,n- I, which means

Let n be minimal with these properties.
There exists 8, 0 < k< n, such that d(o, 6) is maximal. Set
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-, .(8,8/,) -(8,8_,) (8,...x),

,2 (X...8,/x) and

Since is contained in at least two different elements of, it has length less
than s. On the other hand d(6o, X) + 7, d(6o, 6) for 2,3. Hence the
length of 7, is s- for 1,2,3, and we can apply (9.3) to get

8-, 8+ F_ +.
But now 8o,..., 8_,, 8+,,..., 8, have the same properties as 8o,..., ,, contra-
dicting the minimality of n.
The same argument holds for I in place of 0.

(2) Suppose that and are adjacent in . Then for every 8 ] there exists
such that 8 ().

By definition, there exist 8o 8 and o X such that 8o (o). Assume that
8 8 and (8o, 8).,.. It suffies to show (2) for all such vertices 8.

Let * be the vertex of distance s from 8o and 8 in (8o, 8). Then (,*)
has length s, and (9. l) implies that there is a unique element T* in containing
(o,X*). Pick , T* of distance 2(s- l) from
and 8, T* (,) of distance 2(s-I) from 8o. Note that o ], and
o .

If 8 T*, then 8 8, and d(8, ,) I. So assume 8 T*. Then we can ap-
ply (9.3), and get (8 ,8) T**.
Hence there exists (8) T** of distance 2(s- l) from , and since

T** it follows that .
(3) For 8, the following hold:

(a) d() min{d(8’ ,’) 8’ ,’ }.

(c) is a generalized (s- 1)-gon; in particular is finite.

Parts (a) and (b) are easy consequences of (2). By (1), has diameter s- 1,
and the classes of vertices in T form a circuit of length 2(s 1). Again by (1),
2(s- 1) is the girth of .

Set . In the following we use convention for subgroups and
subsets of and .

(4) Any arc of length s in is contained in a unique element of

Since the elements of are circuits of length 2(s- 1), this follows im-
mediately from (2.6) and (3)(c).

(5) Xo and X operate faithfully on .
Suppose that x Xg fixes every 8 in . Then we can choose such that x
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fixes ’ for "t(0,6) (0... ’ ) but not 6. Hence d(6,6) 2 and 6 C which
contradicts (1). The same argument shows that Xt operates faithfully on .

(6) Suppose that s 4. Then assertion (9.4)(2) holds.

If s 4, then is a generalized 3-gon. It follows that P is the incidence
graph of a projective plane # of order qo. Hence operates as a group of col-
lineations on #, and the elements in Z(i T) induce elations on #. Since 0 is
transitive on the points and lines of #, the assertion follows from [13, 13.11].
From now on we assume s , 4 and refer to Sections 4 and 5, where the

structure of Lo and Lt is described, and (6.8) and (7.2) as (.). Set
(s-l)/2, W= <to, t> andq, 2’.

(7) K, K,+ for i T.

We apply (.). Then s 3, 5 or 7, and in all but one case there exists a
subgroup D, such that [D, K,] 1,

C(D,) (i- ,... ,i + ) and D,Q, SyI2(L,).

In the remaining case ((4.8)(a), resp. (5.2)(a)) we have K, KxK with
IK, q- 1, IKTI q- and [Kl q + 1, and get [D, KT] 1, where
D has all the other above properties. In addition,

KI <q 1)(q 1),

and is the unique subgroup in K of order q + 1. Hence +, and it is
easy to apply the following argument to K7 instead of K to get K K+2.
Thus we assume [D, K] 1. This implies [K,, +] and with the same

argument [K,+,L] 1. If K C+) and K,+2 C+), then
K, K+2. Hence we may assume K CL+). Since K K+t (by (3.2)),
it follows that + and q, < q+. Hence we are in case (4.8)(a) (resp.
(5.2)(a)), IKI (q,- 1)2(q, + 1) and [CR+)[ q- 1. But then there is a
unique subgroup of order q,- in CR+) and again K, K,+2.

(8) r X7 and # = D4.
Since W is an infinite dihedral group and r XF for 0 < k 2 by

(1), it suffices to show r XF.
We define t td and t+t t for Z. Note that t inverts the elements

in K and r tot2 ttt+t. From (7) we know that tot2 centralizes Ko and
that ttt2+t centralizes Kt. Hence r centralizes K.

Set A < r2>, and suppose that , 1. If we are in cases (4.8)(a) (resp.
(5.2)(a))-we shall call this the U4-case-we choose notation such that
qo = q. The elements in g are inverted by and , thus

ng gong
and, by (.), go n 1. Hence we get a direct product x g, (i 0,1), and
since g operates transitively on A( (see (3)(b)), there eMsts

x akxg,, <a> andkg,,
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which fixes every element in A(i’) and in . Thus x also fixes

A(’ A(i + 2#)

by (4). Hence x and x’ ak are in C(i + 2#)). Now (7) implies

k-’k CA(i + 2)) g,+, 1,

and k k". It follows that k’’+. k" k-, since tt,+,. If we are not in
the U,-case or if 1, then by (.), g g,+, 1. On the other hand,

thus we have k 1.
If 0 and we are in the U-case, it follows that go g , where g: is

the unique subgroup of order q + in g, and k .
The operation of 7 on implies that we have to treat the following two

cases:

(i) C() for all ,
(ii) the U4-case holds, and C(i) for all odd

Assume (ii). Then k , and k fixes every element in ( for m 1 (2).
Hence x fixes every element in (, - (2), A() and (]). Pick

A(]) and A() .
For 3,5 and A(), (,) denotes the ar

0 ... 3 ) eresp. 0 ... 5 )).

By (4), V( ,) is contained in a unique element (,,) of, andx fixes all of
these (, ,). Hence agai by (4), x fixes every element in
A(), A(), and ( ] ) is a -conjugate of (... ]).
Thus, in both cas (i) and (ii) it suffies to prove (**) to get a ontradition:

(**) Let x be an element in which fixes the elements in

),...,s).
Then x 1.

By (4), x stabilizes every vertex in . Pik , s k - 3, and

Then ( k... k- (s- 1)) is an ar of length s ontained in a unique el
ment * of . Sine x stabilizes...1))
and the vertices in

it follows from (4) that x stabilizes * and hence . Thus we have shown that
fixes the elements in A( for .
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Now let g be any vertex in , and choose c E 7 such that d(g,) is minimal.
By induction we may assume that x fixes every vertex in 1 which has distance
less than d(’, ) from some vertex in . Let (o,...,n), o , g, , be
the arc joining and g. Then n _< s- 1 ((3)(c)) and

(k + (s- n + 1)... c... g,-1)
is an arc of length s contained in some ’ .. As above x stabilizes and
therefore

(9) Set N ff’I and B Go. Then (B, N) is a BN-pair of
For the definition of a BN-pair see [11]. It suffices to show:

(***) t-Bw C__. BwB t.J BwB for 0,1 and w E if’.

Every w C Wcan be written as :(r or " for some 0 _< m s 1. We shall
show (***) for 0 and w .’. The other cases follow with the same argu-
ment. For x C Go1 we get

(0 1)’x’’m (2 1’")"m (2 + 2m
Pick 2k(s- 1) + T such that d(2 + 2m, 2k(s- 1) + 1) is minimal. Then

d(2+2m,2k(s-1)+l) <_ s -1

and there exists y G2k,- N G2k,-1/1 such that

(0 1)‘xqrm’(- T and (0 1)‘xqrmyr-m-1 (01)

or

(0 1)’*’lrmy’-m- lto (01).

Hence toXtlrmyr’m-E Go1 or toXtlzmyr-’-to Go1, and from

we get

t-ogt’mBt-om+lB U B+B BwB U BtowB.
Note that B S/ for S Syl(B) by (3.2)(c). Hence we can apply (9) and

[11] to get the assertion.

10. Proofs of Theorems 1 and 2 and Corollary 1

Proof of Theorem 2. Let G be a counterexample. Suppose first that F is a
tree and that G is not vertex.transitive. We apply (8.1) and conclude that
(8.1)(a) holds for some normal subgroup E in G.
Assume that Hypothesis (3.0) holds in E. Then it follows from Sections

4,5,6,7 and 9 that E is no counterexample. Since G < Aut(E) and G is a
counterexample, the singularity sE of cannot be the singularity of G. Hence
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there exists an arc "r (X... 6) of length s which is regular under the opera-
tion of G. By (2.6) we may assume additionally ,}, C__. T for some K-track
(T, z,K) defined in (3.3) with respect to E. Again by the above mentioned sec-
tions we get E, I or 2 and s -= 1 (2) or n nz > 1. Thus without loss
of generality we may assume nx > 1, and the choice of K assures that K does
not fix every vertex in A()). But [K, G,] _< E,, and the structure of Gx and the
transitivity of G, on A()0 \ 3’ imply 2n I[K, Gd], a contradiction.
Now assume that Hypothesis (3.0) does not hold in E. By (8.1)(a) we may

assume that n 1 and E is 2-closed. Pick So E SyI2(E). Then So is normal
in E and [So, E] <_ So. The structure of Aut(L,(2n)) and (2.1) imply
Es/O(E) L2(2) and E < O(E),Es>. Hence no non-trivial charac-
teristic subgroup of So is normal in Es. From (1.7) we get

C.a(O.(E,)) O.(Ea)

and thus, by (8.1), CE(O(E,)) :g O(E). Again, (2.1) implies

E < C.a(O2(En)), C.,(O(E,)) >.
Therefore O(En) N O(E,) 1, E O(E,) x A3, [O2(E)[ 2" and
Ea L(2").It is now easy to check that s 3 and [G, Ga} is parabolic of
type L2(2") x L(2)’, and G is not a counterexample.
Now assume that 1" is not a tree, and let G* be the amalgamated product of

G, and Ga with respect to G, Ga. We identify G and Ga with the cor-
responding subgroups in G*. There exists a normal subgroup N in G* such
that G*/N G. Let be the natural homomorphism from G* to G.
G* operates by right multiplication on the graph 1* with vertex set

[Gx/x G*} U [Gx/x G*}

where two vertices are adjacent iff they have non-empty intersection.
According to [4, (2.4) and (2.5)], G* and I* fulfill Hypothesis B, I’* is a

tree, and the vertex stabilizers are conjugate to G or G. What we have
already proved shows that G* is not a counterexample to Theorem 2.

Let = be the equivalence relation on 1"* induced by N (i.e., 6’ -- 6 for
6’, 6 E I* iff 6’ 6 and define 6’ N to be adjacent to 6N iff there exist 61 6
and &_ C 6’ such that 61 C A(62). As the vertices of 1"* are the cosets of G and
G, the vertices in 1"* / -- are the cosets ofGand GN. If G is not vertex-
transitive on 1,

(GJVx) x, x G and {a,fl},

defines an isomorphism from I’*/= to I. This isomorphism is compatible
with . Hence G operates in the same way on I’ as on I’*/=, and G is no
counterexample.
Now assume that G is vertex-transitive. Then n n > 1, and G is con-

jugate to G in G. From the structure of G* we see that {G, G} is parabolic of
type L(2) x L(2"), L3(2") or Sp(2n"). It is now easy to check that s 3,4
or 5 respectively. This shows that G is not a counterexample.
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Proof of Theorem 1. Let G* be the amalgamated product of MI and M2
with respect to MI f M2. We define the graph F* as in the proof of Theorem 2.
As we have shown there, Hypothesis B holds in G* with respect to P*, and
vertex-stabilizers in G* are conjugate to M or M. Hence Theorem 2 implies
Theorem 1.

Proofof Corollary 1. Let G be a counterexample. Then either (c) or (d) in
Theorem 1 holds.
Assume case (d). Then O(MOI 2n/ and nl > 1. Now an easy applica-

tion of [3, Corollary 4] and the Main Theorem in [3] shows G M,O(G).
Now assume case (c). We choose notation such that n > 1. Since maximal

elementary abelian subgroups of O(MO have order 23, it is easy to see thatM
has sectional 2-rank 4 and that O2(MO is weakly closed in a Sylow 2-subgroup
S of MI. Hence S is a Sylow 2-subgroup of G, and G has sectional 2-rank 4.
Now [12] implies that {M,M} is parabolic of type J.
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