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Introduction

Let p be a rational prime and set A Zp [[T]]. We define a functor a on
the category of noetherian torsion A-modules. This map associates to each
module X its adjoint a(X) which has no non-trivial finite A-submodules.
There exist A-module homomorphisms x ---> a(x) and a(x) x, each having
finite kernel and cokemel. These maps are not canonical but there is a
canonical homomorphism from x to a(a(x)), again having finite kernel and
cokemel.

Let k, be the nth layer of the basic Zp-extension koo of a number field k.
Fix disjoint finite sets S and R of places of k with S containing all the
nonarchimedian places and R containing no primes above p. By A we signify
the p-part of the R-generalized S-class group of kn. Set

H Homz,(liA,,,Q,/Z,)
where the limit is with respect to the natural maps induced by extension of
S-ideals. H has a natural structure as Z,[G(koo/k)]-module and we identify
Z,[G(koo/k)]-modules and A-modules by requiting that (T + 1) act as a
topological generator , of G(koo/k). Thus H is a A-module. We show that H
may be interpreted as an adjoint. In particular, it is noetherian.

Let A liman where the limit is with respect to the norm maps. We show

that A is pseudo-isomorphic to H and interpret A as a Galois group. Our
study of H and A depends on class field theory and the results may be
thought of as analogs of the Artin isomorphism for A,.
The exposition of this paper is based on Iwasawa’s presentation in a course

at Princeton during Spring, 1980. It seemed useful for us to present it here
since the results are discussed only briefly in the extant literature. Our new
contribution is to work with R-generalized S-class groups. Iwasawa only
considered the usual class groups.
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It is a pleasure to thank Kenkichi Iwasawa for sharing his beautiful
presentation with me.

1. Noetherian A-modules

Let A Zp[[T]] be the ring of formal power series with coefficients in Zp,
endowed with the (p, T)-adic topology. Let P denote the set of all height 1
primes of A. A height 1 prime of A is generated by the rational prime p or by
a unique irreducible, distinguished polynomial (i.e., an irreducible polynomial
Tn + alTn-1 + +an with a pZp, 1,..., n). If fl P, we define
the localization

A,= {a/,81a,//e A,/3 /}.

Let X be a noetherian A-module. If fi P, set

X X (R) h,--- {x (R) 1/lx X, e A, }.

Note that x (R) 1/fl is the zero dement of X precisely when ax 0 for some
a A, a . It is a standard algebraic exercise [1] using this observation to
prove:

PROPOSITION (1.1). (i) If X is not torsion, then Xp q 0 V P.
(ii) If X is torsion, then X 0 for almost all fl P.
(iJi) X is finite if and only if X 0 /fl - P.

If : X Y is a homomorphism of noetherian A-modules, we define the
localization

x (R) 1/fl ok(x) (R) l/ft.

The operation of localization is exact [1]. The homomorphism is said to be a
pseudo-isomorphism if is an isomorphism Vfl P. By (1.1) (iii) and the
exactness of localization, this is equivalent with having finite kernel and
cokemel. We write X- Y if there exists a pseudo-isomorphism X Y. In
general X- Y does not imply Y- X. For example, we have (p, T) A (by
the inclusion map) but A - (p, T) since A is regular of dimension 2.

PROPOSITION (1.2) [3]. Pseudo-isomorphism is an equivalence relation on the
category of noetherian, torsion A-modules.

Noetherian A-modules are characterized up to pseudo-isomorphism by the
following well-known structure theorem:
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THEOREM (1.3) [3]. If X is a noetherian, torsion A-module, there exists a
unique A-module of the form

g(x) Ae) fiA/te.i
i=1

(fli P,s, eo non-negative integers, el,...,e positive integers) with X--
E( X). X is torsion precisely when eo O.

Modules of the form E(X) are called elementary. In the notation of (1.3),
the divisor of X (in the divisor group of A) is div X

2. Adjoints

For the remainder of this paper we assume that the noetherian A-module X
is torsion. Therefore, by (1.1)(ii), I-I eX is a finite product. In fact, X 4:0
precisely for those fl which divide div X. We have a natural A-module
homomorphism

(2.1) qx"X 1-I X, x (x (R) 1},.

THEOREM (2.2). Ker d/x is the maximal finite A-submodule of X.

Proof. Let Y be a A-submodule of S and " Y X the natural inclusion.
The commutativity of

yields the following stnng of equivalences and hence our assertion:

qx[ ,, is the zero map

Px q is the the zero map

I-I q q v is the zero map
pep
q r is the zero map (by the exactness of localization)

r =0v  e
Y is finite (by (2.1)(iii)).
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COROLLARY (2.3). If E is elementary, then e is injectioe.

The cokernel of qx is also of interest. Its Pontryagin dual, denoted a(X), is
called the adjoint of X:

a(X) Homzp(coker bx, Qp/Zp).

Recalling (1.1)(iii), the following is immediate from the definition of a(X).:

PROPOSITION (2.4). If X is finite, a( X) O.

If X and Y are both noetherian torsion A-modules, so is X + Y and
a(X 3 Y) = a(x) a(Y).

If f: X Y is a homomorphism of A-modules, we define the adjoint map
a(f): a(r) - a(X) by

a(f )(G)((x (R) 1/fl}emodlm(6x))
G((f(x) (R) 1/fl }#emodIm(y)) VG a(Y).

PROPOSITION (2.5). Let 1--. Z X- Y 1 be an exact sequence of
noetherian, torsion A-modules. Then 1 a(Y) --. a(X) --. a(Z) is exact and

(coker(a(X) a(Z))) <

Proof. Apply the snake lemma to the commutative diagram

to obtain the exactness of

ker y -+ coker kz - coker x - coker q y -- 1.

Taking Pontryagin duals yields our assertion since ker q y is finite by (2.2).

To see the explicit structure of a(X), we introduce the notion of X-admissi-
ble sequence. A sequence ( on } 0 of elements of A will be called X-admissible
provided that o0 (p, T)A, % : 0 Vn >> 0, %+ on(P, T)A ’n > 0, and
the % are all disjoint from div X. Given X, there always exists such a
sequence. Theorem (2.7) will give us a useful realization of a(x) in terms of an
X-admissible sequence. First we need:
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LEMMA (2.6). Suppose { o, }, o is X-admissible. Then the map

n > 0 #/div X

x (R) 1/on -, { x (R) 1/% } embedded diagonally

is an isomorphism of A-modules. Moreover, the diagram

is commutative.

Proof Commutativity is immediate from the definitions of the maps
involved.

(i) lnjectivity of d#x.

qx(x (R) l/%) O x (R) l/%= O in X, X/fi P

x (R) 1 =Oin X, Vfl P

x ker x.
Therefore, since ker x is finite by (2.2), if x (R) 1/o kerq,x, we may choose
a positive integer a with (p, T)aA 0. By the definition of an X-admissible
sequence, (On+a/On) (p, T)aA so

( On+a/On)X O.

Consequently,

(x (R) 1/o,,) ((On+a/On)X (R) l/On+a) 0 in X (R). { 0 1/o.A}.
n>_O

(ii) Surjectivity of Cx. It suffices to show that if x X, P, rl A, and
rl ,, then

(0,..., 0,x (R) 1/, 0,..., 0) Im Cx.

-th place

Since P, ? f(T)A where f(T) p or f(T) is irreducible distinguished.
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Choose a non-zero , H A with ,x 0. We can do this because X is a
noetherian torsion A-module. We write h fb,, where ,’ H A is prime to f.
Set Y t’X/,’2IX; Y has been chosen so that Y 0 V: H P.

f

Therefore Y is finite by (1.1)(iii) so we may choose a positive integer c with
(p, T)cAy 0. This implies that there exists y H Y with Och’X h’2,1y.

[,’(y(R)l/oc) H,’X=0 inX if ,h,
X,y 1/% ,nly (R) I/flock; o; (R) 1/,lOch’ x (R) 1/1 in X

Therefore

O(h’y (R) 1/Oc) (0,..., O, x (R) 1/rl, 0... O)

f, -th place

THEOREM (2.7). Let ( on } o be X-admissible. Then

= Homz( liX/o,X, Q,/z,)
lim Homz,( X/o,X, Q,/Z,)

where the direct limit is with respect to the maps

X/o.X --" X/OmX,

X mod onX (Om/’On)X modomX, m>n>0

and the inverse limit is with respect to the induced maps.

Proofi From the exactness of
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and the commutativity of the diagram of (2.6), we see that the isomorphism x
induces X (R)A (((-J 01/A)/A) coker qx. Therefore

Observe that (On>ol/o.A)/A (3.>o(1/oA)/A lim(1/oA)/A. But the

natural diagram

(1/o,,A)/A (1/omA)/A

A/o.A A/omA, mod a,,A "(Om/an) mod areA (m > n)

is commutative, whence (O.01/o.A)A limA/o.A and

lira (A/o.A (R) X)

lim (X/o,,X).

Hence

a(x) Homz,,(limX/o,,X, Qp/Zp) limHomz,(X/o,,X, Qp/Zp) I

COROLLARY (2.8).

Proofi The first isomorphism follows from the isomorphism

of (2.7) by basic commutative algebra. We now calculate
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by embedding A in Q,((T)) {Y’.__laiTilN . Z, a Q,}. Using this em-
bedding we have

U 0/ohI= U (/r)A
n>0 n>0

arlN e Z, a e
i--1

and

( (1/"A))/A=
Let w Qp[[T]], Zp((T)). Then w Qp((T)). Let res(w) be the

coefficient of T-1 in the power series w. Set ’w()= res(w)modZe
Qo/Z,. Then w" Z((T)) - Q,/Z, is a Ze-homomorphism and A c ker ’w-
Therefore ffw induces a Z,-homomorphism

g)-w" Z,((T))/A ((U,,>_o(I/o.)A)/A) --) q/z.

We thus have a A-homomorphism

and this induces a A-isomorphism

Therefore a(x) = HomA(X, Q,[[T]]/A ). m

Using Corollary (2.8) it is not difficult to prove that elementary torsion
A-modules are self-adjoint.

THEOREM (2.9). If E is an elementary torsion A-module, then E a(E).

Proof Since the adjoint respects direct sums, it suffices to verify that
A/;e ot(A/;e) I P and for all positive integers e.

Case (i) p TA. Let o, T ". Then { o } is (A/,e)-admissible. According
to (2.8),
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On the other hand, since fi =/= TA we have a bilinear pairing

A/)e X A/)e -- Qp[[T]]/A,

(X mod )e, Xt mod e) 7moa A

where fi fA and f =p or f is a distinguished irreducible polynomial not
equal to T. This pairing induces an isomorphism

A/fie HomA(A/fie, Q,[[T]]/A).
Case (ii). fi TA. There exists a (unique) topological automorphism of A

mapping T to T + , and fixing Z,. This allows us to reduce to case (i). m

COROLLARY (2.10). Let X be a noetherian, torsion A-module. Then:
(i) a( X)- X. In particular a(X) is a noetherian, torsion A-module.
(ii) The A-module a(X) has no non-trivial finite A-submodules.

Proof By (1.2) and (1.3), there is an exact sequence

where A and B are finite and E(X) is elementary. Since E(X) has no finite
A-submodules, A 0 and

is exact. Taking adjoints and recalling (2.4) and (2.5), we obtain an injective
pseudo-isomorphism et(X) ’-, a(E). Therefore a(X) a(E) E X and
Ker (x) Ker k(E) 0. Recalling (2.2), we are done. m

Corollary (2.10)(ii) asserts that X and a(X) are pseudo-isomorphic but does
not give a canonical pseudo-isomorphism. On the other hand, Iwasawa has
remarked that using (2.7) one may prove that there is a canonical pseudo-
isomorphism from X to a(a(x)). We now explain this. Applying (2.8) twice
we obtain an isomorphism

Which depends only upon choice of an X-admissible sequence. But we have a
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natural map

g: X HomA

Homz.( (
n>0

where Px(J)=j(x)Vj HomA(X, Hom((U1/o,A), Q//Zp)). The map

h-to g: X a(a(X))

is a pseudo-isomorphism and one may check that it is independent of choice
of X-admissible sequence.

3. lwasawa theory and Galois groups

Let Qoo denote the unique Zp-extension of Q and set koo kQoo. Define k,
to be the unique intermediate field k

_
k

_
koo satisfying [k, :k] p. Set

F G(koo/k) and fix a topological generator 3’ of F. We will identify
Z,[F]-modules and A-modules by requiting that 3’ act as T + 1.

PROPOSITION (3.1). A prime of k is ramified in koo precisely when it lies
above the rationalprime p. The decomposition group in koo of each finite prime
of k is equal to G(koo/k,,) for some integer n o, 0 <_ n o < .
The proof of the first claim (which is well known) depends on the multi-

plicative ramification index. The second does not appear to have been pub-
lished but Iwasawa included it in his 1971 course [2]. Its proof is similar to
that of the first but depends on analysis of residue degrees rather than
ramification indices.

Fix disjoint finite sets S and R of places of k with S containing all the
nonarchimedean places and R containing no primes above p. By (3.1), there
are only finitely many primes of koo lying above p or S.

Let s denote the number of primes of koo lying above p or primes of S and
let n(S)= max(n[ S or /p}--with n 0 as in (3.1). (Note that when
S (p[p/p or p/o}, s is Iwasawa’s "s" and n(S) is his "no" (see [3]).)

Let Moo denote the maximal abelian p-extension of koo which is unramified
outside R. Iwasawa [3] has shown that G(Moo/koo) is a noetherian Zp[F]-
module where the action of F on G(Moo/koo) is by inner automorphisms.

Let L, denote the maximal abelian p-extension of k which is unramified
outside R and in which every prime above S is completely decomposed, and
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let N be the maximal abelian extension of kn contained in Loo. Then

Moo _D Loo

_
N, D_ L, for all n > n (S)

and

U v.=
n>0 n>0

Consider the following result.

THEORtM (3.2). G(Loo/koo) is a noetherian, torsion Zp[F]-module.
Since G(Loo/koo ) is isomorphic to a quotient of G(Moo/koo), it is a

noetherian Zp[F]-module. Therefore standard techniques in Iwasawa theory
[3] show that it suffices to prove that the essential rank of

G(Loo/koo)/(’gp"- 1)G(Loo/koo)

is bounded as n oo. (The essential rank of a Zp-module X is dimQpX (R) zp
Qp.) But

(/P"- 1)G(Loo/koo) G(Loo/N,,) Vn > n(s)

so the following lemma suffices to complete the proof of (3.2).

LEMM (3.3). The essential rank of G(N/koo) is at most s.

Proof. Fix n > n(S). Denote the finite primes of Nn lying above S or p by
1,.-- ct s- The canonical map

G(N,,/k.) G(N,,/k.)/G(N,,/koo) G(koo/k.),
0 OIk

maps the inertia group T(n) of cti in k onto the inertia group of clilkoo in k
which is G(koo/kn). However, since we have chosen n > n(S), the extension
N/koo is unramified at all places not lying above R and hence T(n)C3
G(N/koo) 1. It follows that we have a direct product decomposition

(3.4) G(N,,Ik.) T(n) x G(N,,Ikoo).

We let T(n) Tl(n)... Ts(n) (semidirect product). Recalling the definition of
L, we see that T(n)= G(Nn/L).
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By class field theory (see (4.1)), G(Ln/k,) is finite. Consequently,

ess rank G (N./k.) ess rank G (L./k.)
ess rank Tl(n)... Ts(n )

< ess rank T,.(n)
i=1

ess rankZp
i=1

---So

We next use the field N, to show that G(L/koLn) is the image of

G(L/kLn(s)) under the natural map

v.(s,,. (’ 1)/(’/P’(*) 1)

THEOREM (3.5). For n > n(S),

G(L/kooL. ) (e’_ 1)/(,e"(s) 1)G(Loc/kLn(s))"

Proof. Fix n > n(S). Denote the primes of L lying above S or p by
1,--., s- Let T denote the inertia group of O in k(s). Reasoning as in the
proof of (3.3) we find

(3.6)

Hence there is a canonical isomorphism

(3.7) T/_r_) G(L/k,(s))/G(L/k) G(k/k,(s)), i= 1,..., s.

Let gj Tj denote the inverse image of ,’ fp,(s) under (3.6), j 1,..., s.
By ((3.6) with i= 1), there exists xj G(L/k) and hj T such that
gj xjhj. We observe that hj is mapped to ’ under ((3.7) with i= 1).
Therefore, hj gx- It follows that the inertia group of O j in k, is topologi-
cally generated by

pn-n(S) -n(S)

g) (Xjgl) p" /j(.X+gl+ .--+gtpn-n(S)-l))gn-n(S)
-n(S)- 1)) pn-n(S)X +, + + yt(pn

gl

pn-n(S)-(1 + r’+ "’(pn-n(S)--l))Xjg
pn-n(S)

n(S), nxjgl
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Let T"(j) denote the inertia group of Olin k,. Since the restriction map
from G(L/k,) to G(N,/k,) maps inertia groups of i surjectively, this

n pn-n(S)implies that T (j) is topologically eenerated by (v,.s. ,x.IN g- Note that
pn- n(S )’ J

(’-s),,xj)lv. G(N,/koo), gl T(n), and we have the direct product
decomposition (3.4):

Let
G(Nn/k,) Tl(n ) G(Nn/k).

T(n) T(n)... T(n)= Tl(n ) R,
R T(n) N G(N,/k) G(N,/kL,).

From the above analysis of T.(n) we see that R is the closed subgroup of
G(N,/k) generated by (,,s),,xj)lvn, j 1,..., s and is congruent to the
closed subgroup of G(Loo/k)/(pn 1)G(L/k) generated by

(,<s),,x2)l mod( 1)G(Loo/koo) j 1 s.

(For the second equality we use the fact that restriction to N. maps G(Loo/koo)
canonically to G(N./koo) G(Loo/koo)/(V 1)G(L/koo)). Therefore

(3.8) G(L/kL,) is the closed subgroup of G(L/k) generated by
,ns),x2, j 1,..., s, and (,’ 1)G(L/k).

The x2 were chosen independently of n and (3.8) holds for all n > n(S). In
particular

(3.9) G(L/kL,I)s is the closed subgroup of G(L/k) generated by

x2, j 1,... s, and ( 1)G(L/k).

Combining (3.8) and (3.9) we obtain the desired equality"

) 1

Since k koo
q L,, Galois theory yields the following corollary.

COROLLARY (3.10). Given n >_ n(S), we have a canonical isomorphism"

G(Loo/koo)/V.(s),.G(Loo/kooL.(s) ) - G(kooL./koo ) G(L./k).

4. R-generalized S-class groups and A-modules

Let 0, (ala k,, al < 1 V S }, the ring of S-integers of k,. Let I,
be the invertible 0,-submodules of k, which are prime to R (the "S-ideals"
prime to R) and let P, { aO, la 1 mod ’ R }. The R-generalized
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S-class group is I,/P, and we write A, for the Sylow p-subgroup of In/P.. At
each finite level, the Artin map of class field theory gives us a classical
isomorphism

(4.1) amodP. <,

Combining this with (3.10) we obtain:

PROPOSITION (4.2). Given n > n(S), we have a canonical isomorphism

a mod P. o mod V.(s) .G (L/kL.(s))
where < a, L./k ) O lk..
The isomorphisms of (4.2) are useful for studying limA,, where the limit is

with respect to the maps induced by extension of ideals, because they piece
together nicely. More precisely:

PROPOSITION (4.3). Given rn > n > n(S), we have the commutative diagram

A. -% G(Loo/k)/V.(s) .G(Loo/k

hm -% G(Loo/koo)/,.(S),mG(Loo/kL.(s) )

where the isomorph&ms are as in (4.2), the map on the left is the natural map
induced by extension of S-ideals, and the righthand map is

o mod V.(s),.G(L/kL.(s)) ’.,mo mod V.(S),mG(Lo/kL.(s) )

Proof Argue as in [3, Theorem 7].

TI-IEORM (4.4).

limA.= lim A.
n>_O n>_n(S)

lim G(L/k)/V.(s),.G(L/kLn(s) )
n>n(S)

lirn G(L/kLn(s))/,n(S),nG(Lo/kLn(s) )
n>n(S)

(as Zp[F]-modules) where the limits are with respect to the maps of (4.3).
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Proof The first isomorphism is clear by the definition of direct limits and
the second is immediate from Proposition (4.3). The last isomorphism follows
from the exact sequence

1 G(L/kLn(s))/G(L/kLn(s) )
G(L/koo)/Vn(s),G(L/kL(s))- G(Loo/koo)/G(Loo/koL(s) ) 1

by taking direct limits with respect to the map of (4.3). This is because
G(Loo/k)/G(Loo/kLs)) is finite so

lim (G(L/k)/G(Loo/kLn(s)))
n>n(S)

is trivial. I
We identify Zp[F]-modules and A-modules by requiting that -/ act as

T + 1. Note that this identifies Vns),,s)+ with

)1,.+ )p(S) 1)((1 + T .,s_ 1)/((1 + T

n(S)+n

1-I ((1 + T)p’- 1)/((1 + T)p’-- 1)
i=n(S)+l

n(S)+n ( p-1 )1-I E (1 + T) jp’-I A.
i---n(S)+l j=O

THEOREM (4.5). As A-modules,

Proof. The first isomorphism follows directly from (4.4) and the second
from (2.7) since {Vns,s+)_>0 is G(L/kL(s)-admissible. The first
pseudo-isomorphism follows from (2.10)(i) and the second is obvious from
(2.4) and (2.5). I



NOETHERIAN Zp[[T]]-MODULES 651

Theorem (4.5) may be regarded as the result for k corresponding to the
isomorphism A G(Ln/kn) for finite n. However, one has a second analog
based on the following lemma.

LEMMA (4.6). Gioen m > n > n(S), we have the commutative diagram

norm

An

G(Loo/koo)/Vn(s mG(Loo/kooLn(s )

G(Loo/k)/Vn(s),nG(Loo/koLn(s)

where the isomorphisms are as in (4.2) and the map on the right is the canonical
surjection

Proof. Argue as in [3, Theorem 7]. m

The commutativity of (4.6) may be extended to the larger commutative
diagram

A --% G(Loo/koo)/V(s) mG(Lo/k

A G(L/k)/Vn(s) nG(L/kLn(s))

Galois theory

.a(tm/km)

Galois theory

restriction

The diagram induces an isomorphism of indirect limits:

lim A,, - lim G (L,,/k,,)
n>_n(S) n>_n(S)

where the limit of class groups is with respect to norm maps and the limit of
Galois groups is with respect to restriction maps. On the other hand,

n >_ (s)Ln L so

lim G ( L./k. ) - G ( Lo/koo )
n>n(S)

We therefore have proved:

THEOREM (4.7). We have a canonical A-module isomorphism

A =deflimAn G(Loo/koo )

where the inverse limit is with respect to norm maps.
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Recalling (4.5) we have;

COROLLARY (4.8). H and A are pseudo-isomorphic A-modules.
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