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A CLASS OF EXTREME L.CONTRACTIONS, p #= 1, 2, o,
AND REAL 2 x 2EXTREME MATRICES

BY

CHARN-HUEN KAN

1. Introduction

For any two Banach spaces E, F, denote by .L,e(E, F) the Banach space of all
bounded linear operators from E to F. The scalar field may be the reals or the
complex numbers. An operator T .’(E,F) is a contraction if it is in the
dosed unit ball q/(E,F) of Z’(E,F); it is an extreme contraction if it is an
extreme point of q/(E, F). The set (E, F) of extreme contractions in q/(E, F)
has been identified in the cases where E and F are both (a) Hilbert spaces [9],
(b) Lo spaces over t-finite measure spaces [4], [8], [23] or (c) L spaces [8,
Theorem 2]. For related results, see [1], [5], [6], [7], [15], [19], [20], [23], [24],
[25]. In case (a), (E,F) consists of isometries and coisometries (adjoints of
isometries from the dual F’ to the dual E’). In the case where E and F are
both Lp space, p : 1, 2, o, it follows from strict convexity of the unit balls of
F and E’ that isometries and coisometries are still extreme, but the complete
description of 6(E, F) is yet unresolved. In this article, starting with a simple
inequality (Lemma 2.1), we establish (in Theorem 2.8) a sufficient condition
for extremeness of an operator T from an Lp space E to an Lq space F in
terms of the isometric vectors of T and of T*, illustrated with examples. We
then use this and the apparatus developed in [10] to generalize (in Theorem
3.8) a recent result of R. Grzolewicz [6] which characterizes, in the case
1 < p q < o, p : 2, those extreme contractions belonging to a subset of
.L’(E,F) consisting of, in our terminology, semidisjunctive operators. ([6]
considers only 1 spaces.) We observe with interest that in cases (b) and (c),
the extreme contractions are semidisjunctive. We prove (in Theorem 4.4) that
operators in the weak* dosed convex hull of semidisjunctive extreme contrac-
tions have contractive linear moduli. Using results on real 2 2 extreme
matrices derived in Section 5, we extend the characterization in Theorem 3.8
to a larger class of contractions (Theorem 6.4). Finally we construct extreme
contractions not of one of the two main types established in Proposition 2.6
and Theorem 2.8.
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2. A sufficient condition for extreme contractions

613

LEMMA 2.1. Let u and v 4 0 be scalars. If 2 < q < , then

(2.1) lu 4- vl q 4- lu vl q > 2lul q 4- qlulq-9-lv] 2.

If 0 < q < 2 and u 4: 0, the reverse inequality holds.

Proof By homogeneity, we need only consider the case ul 1.

L.H.S. (1 + c + t)q/2 4- (1 + c- t)q/2

where 2 Re u6 and c vl z. Hence tl -< 2v’--.
If 2 < q < , sf’(s) > 0 for Isl < 2-, and so

=-f(t),

L.H.S. > f(0) 2(1 + c)q/2= 2 + qc(1 + Oc)q/2-1 >. 2 + qc R.H.S.

for some real number 0 < 0 < 1, by the mean value theorem.
If 0 < q < 2, the inequalities are reversed.

Let 1 _< p, q < c be fixed and let E L,(X, -,/) and F Lq(Y, , v) be
the usual Lebesgue spaces over arbitrary measure spaces. For each A -,
define E, to be the subspace of all f E with support supp f ( f : 0} c A.
Define FB for B similarly. EA is identified with Lp(A, q A, IlN A).
For p < m, write (EA)’ (E’)A as El. The norms in E,F, etc., will all be
denoted by II II, as no confusion seems likely.

TEOREM2.2. Let 2 < p < oo and 2 < q < oo, and04: T L’(E,F) be
such that II Tfll II TII" Ilfll for some 0 4: f E. Then, with A supp f and
B supp Tf, (i) TEAc c FBc ifp < q, and (ii) TE.c {0} /fp > q.

Proof Let 0 4: g Eac, if that exists, and h be any positive number. Then

qX2h <_ Zf 4- XZgl q 4- Zf kTg Iq 21Zfl q,

where h= Zflq-2lTgl 2 if 2<q< oo, by Lemma 2.1, and h= Tgl 2 if
q 2, by the parallelogram law (with equality holding). Integrating (2.2) we
get

(2.3) qX2fhdv <_ 211TIIq(llf +_ Xgll q Ilfllq).

When 2 < p < oo, the right-hand side of (2.3) is, as X 0, of the order of

(llfll + Xllgll) q/P Ilfll q O(kp),
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and when p o, it is 0 for X Ilfll/llgll- Hence in either case, h 0.
Further, when p > q > 2, comparing II Tf / Tgll and IIf / hgll for small
enough X > 0, we infer that Tg 0. The conclusions follow.

COROLLARY 2.3. If 2 < p q < 0, and T: E - F is an isometry, then
Tf.Tg 0 a.e. iff.g 0 a.e.

Remark 2.4. (i) In the case of a matrix operator on real lp, (2 < p q <
o), a special case of Theorem 2.2, namely when f is a coordinate vector, was
proved by Hennefeld [7, Lemma 2.2] 2 using an inequality resembling (2.1).
Grzolewicz [5, Lemma 1] essentially reproved this by a different method,
which can be adapted to the complex case.

(ii) In Theorem 2.2 (i), in general we may not have TEA c FB. See (2.12).
(iii) Lemma 2.1 remains valid if u and v are vectors in a Hilbert space,

with ul and Iol taken as Hilbert space norms, and u6 in the proof as an inner
product { u, v). Similarly Theorem 2.2 and Corollary 2.3 are still valid if E is a
Bochner Lp space of Banach-valued functions and F a Bochner Lq space of
Hilbert-valued ones.

(iv) Corollary 2.3 was proved by Lamperti more generally for 0 < p q <
o, p : 2 [18, Theorem 3.1], using a case of Lemma 3.2. See Remark 3.3.

Denote by Cg(lp) the set of compact operators on real or complex sequence
space lp. Thanks to Theorem 2.2, the following proposition, which Hennefeld
[7, Theorem 2.4] proved for real lp, is true also for complex le, by the same
method used in [7]. (The case p 1 can be treated directly.)

PROPOSITION 2.5. For 1 < p < and p 2, the unit ball of C(ll) is the
norm closed convex hull of its extreme points.

For a contraction T" E F, define

4r(T) ( f E" II Zfll Ilfll ),

and

(2.5) span4/’(T) weakly closed (= norm closed)linear span of 4/’(T).

PROPOSITION 2.6. Let 1 <_ p <_ and 1 < q < o. Let T q/(E, F).
(a) If R .(E, F), T + R oy(E, F) and 0 =/= f (T), then Rf O.
(b) If spant/’(T)= E, then T is extreme.

2I am grateful to Dr. M. Feder for drawing my attention to this work.
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Part (a) follows from strict convexity of F, and (b) follows from (a).

For any A ’, and any --measurable function f, define

(2.6) fA { f on A0 on Ac,

and similarly gs, for any B f and any -measurable function g. For any
operator T Za(E, F), and any pair EA and Fs, define TBA .’(E, F) by

TB,f ( TfA ) for all f E.

Ts, is also regarded as an operator in La(Ea, Fs). This does not affect its
norm. (Ts)* (T*)B, which we shall write simply as T*s.
An arbitrary measure space (X, ’, g) can be reconstituted as a direct union

of finite ones, without altering the Lp spaces over it, for all 1 < p < o.
Indeed, let (A } be a maximal family of mutually disjoint (modulo null sets)
subsets of X of positive finite measures. Let (X’, -’,/’) be the disjoint direct
union of all

Then Lp(X, -, ) can be identified with Lp(X’, ,’, I’) isometrically and
lattice isomorphically. (Cf. [17, {}15, corollary to Theorem 3]). We shall assume
in the sequel that such reconstitution has been made for the underlying
measure spaces of E and F. This done, (X, -, g) retains most of the nice
properties of the o-finite case. Mostly, every subfamily of - has a supremum.
This will be used in Theorem 2.8 and Section 3. From this also, each projection
band of E, i.e., each closed linear subspace E of E such that f E1 implies
Esuppf c E, is of the form E for some A -, and, of course, conversely, so
that some of the concepts used here, e.g., fA, Ea, Ts, can be expressed in the
lattice theoretic language in terms of projection bands.

By .the following result, we need only consider extreme contractions in the
case p > 2.

If 1 < p, q< , then T d(E,F) if and only if T*

Proof. This follows from the reflexibility of both E and F.

We now present our first main result. An analogous one can be formulated
for the q 2.
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THEOREM 2.8. Let 2 < p < q < . Suppose that T ’(E, F) is such that
for some A ’, (which may be ; ),

(i) span{ f," f .A/’(T)) EA,

and
(ii) span(gBc" g V’(T*)) Fc,

where B sup(supp Tf: f ./if(T) EA).
Then T is extreme, and TBA O.

Proof Let RZa(E,F) be such that T___R0k’(E,F). If fEatq
V’(T), then by Proposition 2.6(a), Rf= 0 and so f I/’(T + R). By Theo-
rem 2.2, we must have

Tsupp Tf A Rsupp Tf.A O.

Consequently by definition of B,

(2.8) TnA RBA O.

If now f (T), then Rf 0. So 0 Rnxf RnfA, in view of (2.8). By
(i), we conclude that

(2.9) Rn O.

Similarly if g V’(T*), then R*g 0. So R*xBcg 0, because of (2.8)
and (2.9). By (ii), R,nc 0 and so

(2.10) Rncx O.

Summing up (2.8)-(2.10), R O. Thus T is extreme and by (2.8), TnA O.

Remark 2.9. It can be shown that Proposition 2.6 and Theorem 2.8 remain
valid if E and F are Bochner Lp and Lq spaces of Hilbert-valued functions.

For any scalar a, define ap-1 sgn a.la[-1 if p > 1. This will be used on
Lp vectors. By the following lemma, the conditions in Theorem 2.8 can be
expressed solely in terms of ’(T).

LMMA 2.10.
and only if

Let 1 < p, q < o and T 0k’(E, F). Then 0 4 f V’(T) if

(2.11) T*(f) q-1 [ifllq_pfp_,,

in which case (--f) q
_
j(T * ).

Proof (2.11) implies f V’(T) by duality action on f. The converse
follows from the fact that Ilfllq-Pf- is the unique element of E’ of norm
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Ilfll q-x, which value it assumes on f/llfll, while T*(’’-j0q-1 has the same
property if f vV’(T), in which case II(-f)q-lll II Tfll q-1 Ilfll q-l, so that
(-f)q-1 ./if(T*) also.

In the following, let 1 denote the v space on n unit masses. The following
example, in particular (2.12), seems to be hitherto unknown.

Example 2.11.
and

Let 2 < p q < m. Let (a, b) > (0, 0) be a unit lv2 vector

where > 0, an lr2 contraction isometric on (a, b) and in some other direction.
(See Theorem 5.1(d)(iii) for the existence of p. It has precisely two isometric

ptdirections, both real [14].) Let r, s > 0 be such that rV’+ s 1, where
p’ p/(p 1). Then

a av-1 bv-1 O)rtb rta s

is an extreme contraction from lv3 to lv2. Indeed,

[[o(x, y, z)II"-- lap-ix + bV-ly[v + rtbx + rtay + szlp

< a-x + b-lyle + (I- tbx + tay[p + [zlP)(rP’+ sP’)p-1

--II(x, Y)I( / Izl’
_< (Ixl / lyl) / Izl

II(x, y, )II,
where the first inequality (H/51der’s) becomes an equality if and only if

z (s/r)’-t(-bx + ay),

and so does the second if and only if (x, y) vl/’(p). It follows that o is a
contraction isometric only along (a, b, 0) and some (x’, y’, z’), with (x’, y’)

M/’(p) not in the direction of (a, b). By Lemma 2.10 and Theorem 2.8, o is
extreme. (Alternatively, o* satisfies the condition of Proposition 2.6(b).)
Similarly the matrix

uav-1 ubp-1 0 )vap-1 vbv-1 0
rtb rta s

(u, v) > (0,0), u*’ + vv 1,

is an extreme contraction on lv3, with ,Ae(r) ,A/’(o).
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Concrete examples for o are obtained by taking

P= 21/p-1( I 1)--1 1’

a contraction isometric in the directions of (1, + 1) only. (See Remark 3.3 and
use Lemma 2.10). Hence o is extreme and isometric in exactly two directions,
those of (1, 1, 0) and some (1, 1, z’). Take u o 2-1/p. Then

(2.12) r 1 1/2 02

-c c d

c, d > 0, 2cp’ + de’ 1,

is extreme and isometric only in the directions of (1,1, 0) and (-c, c, d) p’- 1.

Theorem 3.8 contains other examples.

3. Semidisjunctive extreme contractions

In what follows, let l<p=q< m. Let T.ga(E,F). T is said to be
disjunctioe (or Lamperti, see [10]) if it maps functions with disjoint supports to
functions with disjoint supports. T is codisjunctit)e if T* is disjunctive. If T
is such that TEa c FB and TEac c FBc, then it is a direct sum of U
and V Tcac, written T U V, subordinate to the band decompositions
E Ea Ea and F Fn Fn. (We allow in degenerate cases Ea E or
{0}, and likewise FB F or {0}.) If T U V, with U disjunctive and V
codisjunctive, then T is semidisjunctioe. The class of such operators will be
denoted by 6a(E,F). It contains isometries and coisometries, as these are
disjunctive and codisjunctive respectively [10]. T is a hemiisometry if it is
isometric on some Ea and annihilates Ea. T is coextensioe if sup(supp Tf:
f E} Y. This is equivalent to T*F =/= {0} if F =/= {0}. Dually, T is
extensioe if TEa =/= {0} for all Ea =/= {0}. For u E E’ and g F, the tensor
product T =- g (R) u E .ga(E, F) is defined by Tf (f, u )g, (f E). So

(3.1) IIg (R) nil Ilgll" Ilull.

The structure of a disjunctive T L(E, F) is described in [10, Theorems 4.1
and 4.2], when E F and the measure space is o-finite. It is still valid in
general after the reconstitution of the measure spaces has been made. Thus,

(3.2) Tf(y) h(y)tf(y) for all f E,

where h is a measurable function on Y and is a linear operator on
measurable functions induced by a Boolean o-homomorphism, denoted also
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by , from (X, -, #) to (Y, fg, ,), (see [10, Definition 4.1]), having formal
properties of composition operators and such that 1, =IA. Furthermore,
there is a bounded, non-negative measurable function D(T) on X, such that

(3.3) II Zfll flhllfl dr fD(T)lfl dlx for all f E.

Denote a multiplication operator by the measurable function that induces it.
By (3.2), if a is a bounded measurable function, then

(3.4) To a ao T.

It also follows from (3.2) that for each A o’,

(3.5) T= ToA
Define 8(T)= D(T)1/p. The next lemma is essentially contained in [10,

Theorem 4.3].

LEMM 3.1. If T L,e(E, F) is disjunctive, then

(3.6) T So 8(T)

for a disjunctive S .oq’(E,F) with /$(S)= 1suppr and the same associated
a-homomorphism.

Proof. Define S by T o((T)-l)supp(T). The results follow from (3.3).

The following lemma occurs in [6]. (See [14] for a sharper inequality.)

LEMMA 3.2. Let a, b > 0 and x, y be scalars. If 0 < p < 2, then

(3.7)
lax- al-p/2bp/2yl + Ibx + ap/2bl-/ZylP < (ap + bP)(Ixl + lylp).

Ifp >_ 2, the reverse inequality holds.

Remark 3.3. The case a b 1 is a pair of the classical Clarkson
inequalities [3, Theorem 2]. In this case, if p 2, then equality holds in (3.7) if
and only if xy 0. These follow from Lemma 2.1. See [18, Lemma 2.1] and
[21, Lemma 15.14] for other proofs.

LEMMA 3.4. T U V is a contraction if and only if so are U and V.

Proof. Suppose U TBa and V Tscao. For any f E, Ilfllp Ilf IIp +
IIfll and II Tfll -II Ufllp / II Vfll. The conclusion follows.
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COROLLARY 3.5.
and V.

If T U V is an extreme contraction, then so are U

LEMMA 3.6. Let 1 <p < 2 and let T (E,F) be disjunctive but not
codisjunctive, and annihilate some Eac {0}. Then T is not extreme.

Proof. Since T* is not disjunctive, there exist non-zero vl,/)2 F’ with
disjoint supports B, B’ respectively such that A’ supp T*Vl O supp T*o2 #:

<h. Consideration of duality action shows that A’ c A. By (3.5) and Corollary
3.5 we need only consider the case A’ A. Hence T Ts. + T,cA. There are
isometries U: EA F, and V: Ea F,c and strictly positive, measurable
functions , " on A such that

(3.8) Tsa= Uo and Tsca= VoW.

These follow from (3.3), Lemma 3.1 and the fact that T*v
T’v2 V*v2 have support A. By (3.3) again,

(3.9) + D(T) <_ 1.

U*v and

Let C Ac. Take e Ea and u E each of norm 1 and define W e (R) u.
Let

R (U l-p/2p/2 V p/2l-p/2)o W.

Then R is of rank 1 and annihilates EA. For all f E,

II(z + R)fl(

by (3.8), Lemma 3.2, (3.9) and (3.1). Thus T R qz’(E,F) and T is not
extreme.

Remark 3.7. Lemma 3.6 may not be true without disjunctiveness. Let

T= 21/p-1( 1 -1 O)1 1 O"

T* is an extreme contraction by Lemma 3.2 and Proposition 2.6(b), and so is
T by Lemma 2.7.
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THEOREM 3.8. Let E and F be Lp spaces. Consider S(E, F) g(E, F).
(a) If 2 < p, it consists of isometries and direct sums of a coextensive

hemiisometry and a coisometry.
(b) If 1 < p < 2, it consists of coisometries and direct sums of an isometry

and the adjoint of a coextensive hemiisometry.
(The direct sums in (a) and (b) may degenerate to one of the component types.)

Proof. By duality, we need only prove (a). The sufficiency part follows
from Proposition 2.6(b) and Theorem 2.8. Conversely let T 6(E,F)
g(E, F).

Case (a)(i). T disjunctive. T must be a hcmiisometry. For otherwise
/--6(T)_<1 and {0<<1}*. T=So, with S as in Lemma 3.1.
Hence

OR--So(1-/)Aa(E,F) and T+Rq/(E,F),

a contradiction. If T is neither isometric nor coextensive, then for some
EA {0} and some Fs #: {0}, T TscAc Osa. In view of (3.1), OBa is not
extreme in q/(Ea, FB) #: { O }. Neither is T, by Corollary 3.5. Thus T is either
an isometry or a coextensive hemiisometry.
Case (a)(ii). T U V, with V Tscac codisjunctive but not disjunctive,

and U TsA disjunctive. Readjusting the decomposition F Fs Fsc if
necessary, we can assume U coextensive (relative to FB, which may be {0}). By
Corollary 3.5, U and V are extreme. As in the first part of (a)(i), U and V* are
hemiisometries, since the proof there is valid for 1 < p < oo. By Lemma 3.6,
V* has to be an isometry.

Remark 3.9. z in (2.12) is an extreme 13 contraction, not semidisjunctive
and not isometric in three directions, thus not among those extreme contrac-
tions considered in Proposition 2.6(b) and Theorem 3.8. See also Section 7.

4. Linear moduli and weak* dosed convex hull of 6PJ

As F is reflexive, La(E,F)= L(E,F") G’, where G is the r-norm com-
pletion of the algebraic tensor product E (R) F’ [26, Lemma 4.1.2]. So the
E (R) F’-topology of L’(E, F) is its weak* topology. By the Banach-Alaoglu and
the Krein-Milman theorems, q/(E,F) convW*o(E,F), the weak* closed con-
vex hull of d’(E, F). This fact and a result on c0nvW75ao (Theorem 4.4) imply
that, in general,

6a’ 6a (E, F) C3 d’(E, F) = o (E, F).

S L’(E,F), necessarily positive, is said to (absolutely) majorize T
AO(E, F), or be an (absolute) majorant of T, if Tfl <- s lfl, (f E). Extending
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an idea in [2], we say that T .’(E,F) has a (bounded) linear modulus
TI *(E, F) if TI is a least majorant of T, i.e., TI majorizes T, and all
majorants of T majorize TI. Clearly TI is unique if it exists.

LEMM 4.1. Let 1 < p, q < oo and let T .’(E,F). If for a positive
constant K, any f E+ and any finite measurable partition
{, ,..., a ) of x,

(4.1) Ilf*() gllfll, wheref*(.@) ITfAil,
i=1

then T has a linear modulus IT of norm not greater than K. Furthermore, for
fE+,

rlf sup ( f *() },
and

(4.3) TIf sup{I Zgl: Igl -< f )-

Proof The construction is basically the same as in [2] for the case
p q 1. Let f E/. For q < o, there exist successively finer 1, 9.,...
such that

f *(’) T sup f * ( )

and f*(") increases to an F+ vector, designated Tlf, which majorizes all
f*() and has norm < Kllfll. This follows from the facts that f*()
increases with refinement of , and Ilgll is strictly increasing in g F /. For
q o, if Y is a direct union of (Y), ,Y < for each a, replace IIf*()ll
by (1y., f*()), etc., to get each 1y.lTlf, whence ITlf. In either case, (4.2)
follows. Linearity of TI on E/ is easy to establish for simple functions, and
its general validity follows by approximation. Similarly for the majorant
property. The supremum in (4.3) exists and is majorized by TIf since
Tgl <- TI Igl -< TIf if Igl -< f, and F is an order complete vector lattice. By
the argument in [2], (4.3) follows. Hence TI, linearly extended, is the least
majorant of T.

COROLLARY 4.2. Every T .o’(E, F) having a majorant R has TI of norm
not greater than

Proof We have f*() < R lfl for all f E. The conclusion follows.

Remark 4.3. (i) Lemma 4.1 remains valid if 0 < min{ p, q} < 1, with
"norm" defined in E as (flflp dl)/ and similarly in F. When p < min{ q, 1}
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r, (4.1) always holds with K IITII, as, by appropriate Minkowski in-
equalities,

(11 TA, II" II TII Ilfll.

Hence TI exists of norm II TII- The same is true for 0 < p <_ q o, for the
sup in (4.3) exists with norm not greater than II TII Ilfll and, as shown in [2],
majorizes all f*(). For 1 =p < q < o, TI * IT* l, as can be shown by
the use of (4.2). See also the treatment given in [22], chapter IV, for the cases
p=lorq=.

(ii) If I < p =q < o and T is a positive contraction, then (T) is a
dosed vector sublattice [12] (cf. Proposition 5.6). Such a T satisfying the
conditions of Theorem 2.8 is thus a direct sum of a coextensive hemiisometry
and a coisometry--a case of Theorem 3.8(a). This extends to a T with
contractive [T[, as the conditions imply T IT] ’ for signum functions , "[121.

THEOREM 4.4. Let 1 < p q < oo. Every T convw9od has contractive

Proof As disjunctive and codisjunctive contractions have obvious contrac-
tive moduli, so do semidisjunctive ones. Each S conv 6t’g has a contractive

w*majorant and so contractive s I, by Corollary 4.2. Let T conv . With
the notation in Lemma 4.1, there exists g (F’) / of norm 1 such that

II/*() (i*(), g) (Tf4,, g),
i=1

where i sgn TfA,. Hence there exist S1, S2,... conv S/’g such that

III*() ] lim (Ssf,, g)
i=1J

< lim sup ( Sj IfAi, g)
j--+ o i=1

lim sup {ISlf, g)
j--*m

< Ilfll" Ilgll Ilfll.
By Lemma 4.1, contractive TI e,’dsts.

Remark 4.5. If T d(E, F) is not in 5ad’, it may not have a contractive
T]. Example 2.11 contains an extreme 12 contraction 0 with Iol--
2/-(1,1) (R) (1,1), of norm 2t/’, p > 2.
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5. Real 2 2 extreme contractions

In this section, we prove some results about extreme contractions on 12,
p : 1, 2, oo, that will be used in proving Theorem 6.4 and counter-examples in
Section 7. Theorem 5.4 generalizes [5, Theorem] to both real and complex 12.
Note that even in the case of real 12, which [5] treats, our method is different,
and this case does not imply the complex 1 case, and vice versa. The proofs
are given for complex 12, with the real case following by restricting the angle
toO and r.

THEOREM 5.1. Let be a linear operator on (real or complex) 1, 1 < p <
p 2. If II 11 1, in particular if is an extreme contraction, then it is of the
form

(5.1) % (u, v) (R) (, y),-t + sei,(_g, ),-t (R) (_y, x), s > O,

where (x, y) and (u, v) are unit vectors in 1 and q is an angle. Furthermore:
(a) is an extreme contraction for exactly one value s* > 0 of s for each set

ofparameters, and s* is upper semicontinuous jointly in the parameters (x, y),
(u, v) and e i*, and continuous in e i*.

(b) s* 0 if and only if xy 0 :/: uv when p > 2 or xy :k 0 uv when
1 <p<2, with

g(R) (1,0) org(R) (0,1) whenp>2,
(5.2) 0= (1,0) (R) hor (O, 1) (R) h whenl <p < 2,

for g a unit vector in 12_ and h one in (12),, both with non-zero coordinates.
(c) Let o e’*sgn(xyuv). If (i) ul Ix I, o 1, 0, or (ii) ul lYl,

o= -1,0, then s* l and zt is

diag(et, e2) (for (i))
or

0

e 0 (for(ii)),

with let[ [ez[ 1; moreover, . is an isometry only in these cases.
(d) In all other sub-cases of o + 1, O, namely (i) ul Ix I, 1, (ii)

ul : lYl, -1, and (iJi) xy 0 uv when p > 2, or xy 0 q: uv when
1 < p < 2, %. is isometric in two directions; moreover, in case (i),

and in case (ii), the same bounds hold for s* with x and y interchanged.
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Proof. If IIll 1, which is the case if z is an extreme contraction, z maps
some unit vector (x, y) to another, (u, v). z (u, v) (R) (,)7)v- annihi-
lates (x, y) and so is of rank 1 or 0. By Lemma 2.10, its dual annihilates
(, 7)v- and is also of rank 1 or 0. It follows that z is of the form (5.1).
When xyuv O, up to isometric factors diag(sgn u, sgn v) and
diag(sgn , sgn )7), and with ei changed to ei’t’sgn(xy-), (and when xyuv O,
replace any 0 among x, y, u, v by 1 in all these expressions), we can replace
x, y, u,v by Ix I, etc. Up to n 0, 1 or 2 isometric factors "/1 10) of and with
ei changed to (-1)ei, we can assume Ixl >- lYl and lul >- Ivl. We now
need only consider the case x > y > 0 and u > v > 0.
For each r>0 and each angle to, s maps f(x,r.,to)=(x,y)+

rei’(-y, x)v-1 to f(u, rs, k + to). Define

(5.3) F(x, r, --II f(x, r, w)II
x rei’Y’-llV + lY + rei’xV-ilv
x-Vlxye-i + rxVlv + y-V xye-i,o + ryVlv

x-VG(rxv + xycos to) + y-VG(ryV- xycos to),

where G(z) Zp/2, Z z 2 q- )k2 (z real), and X xy sin w. Hence

F(x, r, to) G’(rxv + xycos to) + G’(ryV- xycos to).

Now G’(0)= 0 and G’(z)= pzZ(p-2)/2 is an odd function, positive and
strictly increasing for z > 0. (To see this when 1 < p < 2, rewrite G’(z) as
p[Zp-1 k2/zE-p]1/2.) Although derived for y > 0, (5.4) is clearly also true
for y 0. Since the two arguments for G’ in (5.4) add up to r, the numerically
larger one is positive if r > 0. It follows that (5.4) is positive for r > 0, and
F(x, r, to) is a strictly increasing function of r >_ 0. (This also follows geomet-
rically from (-y, x)v- being tangent to the unit 12 "sphere" at (x, y), even
in the complex case.) Hence

r, r(u, +

is a strictly increasing function of s > 0 for each r > 0 and each to. Therefore

F( u, rs, + to) F( x, r, to), i.e., II+,Sli Ilfll,

for s a unique s’ s’(, x, u, r, to) > 0 for each f f(x, r, to) with r > 0,
since

F(u,O, gi + to) 1 F(x,O, to) < F(x, r, to).

Further, equality in (5.5) becomes > (resp. <) if s > (resp. <) s’. Evidently
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these hold also for f (-y, X) p-1. Except for multiples of (x, y), each vector
is a multiple of one of those considered. Hence s’ induces a function s" on
the unit 1 vectors except those in the direction of f (x, y), for which (5.5)
holds for all s > 0. By the continuity of F and its strict monotonicity proved
above, s" is continuous jointly in the parameters (x, y), (u, v) and ei and
the variable f. Hence the infimum s* of s" over all f, i.e., that of s’ over all
r > 0 and 0, is an upper semicontinuous function in the parameters. With x, u
fixed, s* is a function of . Let

Define

s**() liminf s’ as rei -- O.

R* { sei" 0 _<s _<s*(q), q any angle),

and similarly R** with s* replaced by s**. Clearly R* c R**, and zs in (5.1)
is a contraction if and only if sei* R*. Evidently R* is convex and hence
s*() is continuous in e*.
By continuity, s* is equal to either (I) some s"(f) or (II) s** < oe. In case

(I), zs. is isometric in two directions, and is extreme by Proposition 2.6(b).
In case (II) if for some operator #, z,. + # are contractions, then by strict

convexity of the 1 norm, they map (x, y) to (u, v), and are of the form (5.1),
with possibly different values for se. We shall show in individual cases, that
R** is strictly convex (which is trivial in real lp), and so in case (II), . **is extreme. Indeed, s**() is characterized as the supremum of all s > 0 for
which , in (5.1) is contractive on all unit vectors dose enough to (x, y). It
follows that R** is convex, and consequently the curve s**(q)e is
continuous (where s**() < oe) and forms the boundary of R**.

If y v 0, then % diag(1, sei*). Obviously s" 1 s** s*, and 1,
an isometry, is extreme. This partly proves (c).
When y > 0, Taylor expansion gives

(5.6) F(x, r, oo) 1 + 1/2p(xy)P-2r2[1 + (p- 2)cos2co]
+ p(p 2)(xy)e-3(xe yP)r
Xcos 013 + (p 4)cos20] +""

and similarly for F(u, rs, eO + o), when v > 0.
For (b) and (d)(iii), we need only consider the case p > 2, by Lemmas 2.7

and 2.10. If y 0 < v, then comparison of F(1, r, 0) 1 + re and (5.6) for
F(u, rs, + 0) (s > 0) as r 0 shows that z is a contraction only if s 0.
Hence s*()= s**()= 0. Thus R** {0}, strictly convex. So T0 is ex-
treme. To complete the proof of (b), observe that in case (I), s* > 0, and in all
subcases of (II) except (b), s* s** > 0 (see below). Reciprocally, if v 0 <
y, then s** oo. This is case (I) and proves (d)(iii).



A CLASS OF EXTREME Lp CONTRACTIONS 627

Now suppose y, v > 0. By (5.5), rs’ --) 0 as rei ---) O. Hence by (5.5) and
using (5.6) to compare r2 terms, as r 0, s’(q), x, u, r, o) tends to

’( ),X,U,0+ ,60 H((k, 0) > 0,

where

H(+, ,) 1 + (p- 2)cos2o
1 + (p 2)cos2((/) +

p + (p 2)cos
p + (p 2)cos2( + o) > 0,

and

**() ,(, x, u,0+, ,)

where 0’ is an angle minimizing H. Now

H.(+,,) 4( p 2)sin q) ( p cos( + 2o) + ( p 2)cos (/))
[p + (p 2)cos2(q) +

Hence if sin (/) 0, H((/)) 1; and if sin (/) 4: 0,

(5.9) p cos( + 2,o,) (p 2)cos

and -(p 2)sin sin((/) + 2o’) > 0. By (5.8) and (5.9), sin((/) + 20’) 4:0
and

(5.10)
min H H(q, to’)

p[sin2(q + 2to’) + cos2( + 2to’)] + (p 2)[cos cos((/) + 2to’) + sinq sin( + 2to’)l
p[sin2( + 2to’) + cos2( + 2d)] + (p 2)[cos (/) cos((k + 2to’) sin(k sin(q) + 2to’)]

sin( + 2to’) p sin((/) + 2to’) + (p 2)sinq)
sin 4 + 2 to’ ) p sin(4 + 2 to’ ) p 2)sin

M()) -I(p- 2)sinl
M(,) +I(P- 2)sinai

where M((/)) [4(p 1) + (p 2)2sin:q)] 1/2. Hence, (even if sin (/) 0),

2p-1H1/:(q’’) M(4)) +l(p- 2)sin,/,I

From (5.7), (5.7’) and (5.10’), it is routine to show that the curve (/) --) ** (k)ei*
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has no linear part. Thus R** is strictly convex, and extremeness in case (II) is
established. This completes the proof of (a).
To complete the proof of (c), it remains to consider the case s s* s**,

y, v > 0 and <h 0 or ,r, since H in (5.8) is constant (= 1) relative to to, as
will follow if zs* is an isometry, only for these angles. Now s [xy/(uo)] p/2-1,
by (5.7). By (5.6), the Taylor expansions of F(x, r, to’) and F(u, rs, + to’) in
r are equal up to the r E term, and so contraction requirement implies that the
r 3 terms are equal. By (5.9), cos to’ 0 and so

(xy)p-3(xv yV) (uo)V-3(uv oV)s3e,
or

(uo)V/=(xV_ yV) (xy)V/=(uv vp)e,

where e 1 if 0, and e -1 if ,r. On squaring we have

uvP(1 4xPy) xVyP(1 4uVvV),

and so vV(1 vv) yV(1 yP), or (v v yP)(1 vv yP) 0, whence v
y, and s 1. Further, if rr, then in addition x y. This transforms to

the ease 0 by the method given at the beginning. For 0,

Zl (x, y) (R) (x, y)v-1 + ( -Y, x) v-1 (R) ( -Y, x) identity operator.

This proves (c).
Now if u x, vy 0 and ei 1, then we have just shown that this is case

(I) and that s* < s** [xy/(uv)] v/2-1. Let s be the minimum occurring in
(d)(i). Then > O, with exactly one matrix element equal to 0. With f
(x, y) > (0, 0), T s satisfies (2.11). By [11, Theorem 4], T is a contraction.
By Proposition 5.1 below, T has only one isometric direction. Hence T
So s < s*. This proves (d)(i). (d)(ii) is proved similarly.

COROLLARY 5.2.
then it is extreme.

If ., is a contraction (with s** as defined in the proof),

Remark 5.3. (i)

S*=0

but

For p > 2, any angle and (x, y) (1, 0),

when(u,v)= ((1-vV)1/v v) with O < v < l

s*=l when(u,o)=(1,0).

So s* is not continuous in (u, o).
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(ii) For 1 < p < 2, any angle, (x, y) (1, 0) and (u, v) > (0, 0), min s*
2 -(2-’)/’ [14]; cf. s*> (uv)x-ply, a less sharp lower bound given by

Lemma 3.2. Sup s* ( < 1) is also found [14]. Compare with (c); again s* is not
continuous in (u, v). So by (i) and duality, s* is not continuous in either
(x, y) or (u, v), if p = 2.

(iii) Theorem 5.1 is used to prove nonextremeness of some classes of
contractions. Indeed, Lemma 3.6 can be proved by using (a) and (d)(iii)
instead of Lemma 3.2. (a) and (d)(i) will be used to prove Theorem 6.2. (c)
and (d)(ii) can be used to prove [13] that a contractive projection on Lp
(1 < p < , p = 2) that is not the identity operator is not extreme.

(iv) (5.2) is the limit of . in (d)(i) or (ii).

THEOREM 5.4. Let be a real contraction on real or complex 1 (p q: 1, 2, ),
with a real isometric unit vector. Then is extreme if and only if it is of the form
(5.2) or isometric in two directions.

Proof. By the given condition, is of the form (5.1) with all parameters
real. The conclusion then follows from Theorem 5.1.

COROLLARY 5.5. (Grzc$glewicz [5]). A contraction on real 12 (p 1, 2, oo) is
extreme if and only if it is of the form (5.2) or isometric in two directions.

PROPOSITION 5.6. Let 1 < p < oo and let

a 0

where a, c, d > O. Then , as an operator on 1, is of norm 1 if and only if
a, c, d < 1 and

1(1-aP)x/-l) c cdx/-x)(5.11) c d 1 dp/fe-)
( w),

or equioalently

c= (1 aP)/(1 dP’(P-1)) 1-1/’p,

in which case is isometric solely in the direction of (1, w).

Proof. Suppose I111 1. Clearly a, c, d < 1.
(x, y) = (0, 0), which by Lemma 2.10 satisfies

has an isometric vector

aPp- + c(c + df)-1 d(c -Jr- d)p-1 yp-1.
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Obviously x : 0, or else (x, y) (0, 0). Let w y/x and solve for it. The
result is (5.11). Conversely the conditions imply that f (1, w) > (0, 0) satisfies
(2.11) in Lemma 2.10 for . By [11, Theorem 4], is a contraction isometric on
(1, w). So I111 1.

COROLLARY 5.7. If

=(ac db)
is a contraction on 12, 1 < p < , with exactly one element 0, then it is not
extreme.

Proof. We may assume b=0 and a,c,d>0 in (up to isometric
factors). For p 2, is not an isometry, and so is not extreme. For p : 2, -is not extreme if I111 < 1. If I111 1, (x, y) (1 + wp)-X/p(1, w) gives the
only isometric direction and is of the form (5.1) and, by a simple calculation,
belongs to case (d)(i) of Theorem 5.1, by which r is not extreme.

6. Extension of the characterization for

Let E and F be L, spaces, 1 < p < o, p 2. Denote by 6a,(E, F) the class
of those T L(E, F) such that

(6.1) TBAc 0 and TyA TBc are disjunctive for some A -, B .
Clearly 6a(E, F) c 6a’(E, F). We shall show (in Theorem 6.4) that Theorem 3.8
will remain true if 6a is replaced by 6a,. First we lay out the principles by
which the proof is effected.

Let A- and #:B ft. Let there be an Lp space G=
Lp(Z, ’, 3t) :/: (0) and contractions

(6.2) U:G--->F,, V:GF,c, R:G’--->E and S:G’Ec.

With these fixed, for bounded measurable functions a, fl, ,, on Z, define

(6.3) f(a fl, y 8)=( UaR* UoflS*)V vR* V S*
0(E, F),

an operator matrix relative to the decompositions E E, EA and F Fn
Fn. Considering
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as an operator on 1, define Ap(a, b, c, d) I111.
tion. We shall write A for A.

mp is a continuous func-

LEMMA 6.1. For any bounded measurable functions a, fl, l, on Z,

and equality holds if U, V, R and S are isometries.

Proof Clearly L.H.S. < R.H.S. Conversely, under the isometry assump-
tion, by Lemma 2.10, each f G has an isometric preimage by R*, namely

(/f-p-1 ’)I/(P-1) EA
and similarly one by S*. It follows, via approximation of a,/3, 3’, 8 by simple
functions, that the reverse inequality, hence the equality, holds.

PROPOSITION 6.2. If IIm(a, 0, T, llo
( a, O, T, ) is not extreme.

< 1 and a,T, 8 >0 a.e., then

Proof Let T f(a, 0, V, 8). We have 0 < A A(a, 0, T, 8) < 1 a.e.
Case (1). (A<I} 4: . Let a’=(1/A-1)a, etc. It is easy to see(cf.

proof of Theorem 3.8, case (a)(i)) that W fl(a’, 0, ,/’, i’) 4: O and T + W
ok’(E, F), by Lemma 6.1, and T is not extreme.

Case (2). A 1. Without loss of generality we may assume ct, /, 8 > 0 a.e.
(cf. proof of Theorem 5.1). By Proposition 5.6, for positive real numbers
a, c, d satisfying A(a, 0, c, d) 1, c is a continuous function of (a, d), and

(a 0)c d

as in (5.1), for unit vectors (x, y),(u, v) zs(x, y) > (0, 0), a scalar s > 0,
each depending continuously on (a, d), and 0. By Corollary 5.7 and
Theorem 5.1(a), there is s* > s, which is an upper semicontinuous func-
tion of (a, d), such that zt is a contraction. Let , )3, etc. be the functions
obtained by composing x, y, etc. with (a, i). Then they are measurable and

Further, w min{s, s)(-v, u)p- (R) (-y, x) 4:0 and , _+ 0 are a.e. lp2
contractions. As in case (1), this and Lemma 6.1 imply that T is not extreme.

Remark 6.3. (i) By the same arguments, operator (6.3) with

II A(a, B, , 11 oo -< 1 is not extreme if a, fl, ,, 8 > 0 a.e., since a strictly
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positive operator on 12 of norm 1 is isometric in only one direction [12], [16],
and so is not extreme by Theorem 5.4.

(ii) The same conclusion holds if fl 8 0, a, 3’ : 0 a.e. and 1 < p < 2.
(Modify the proof of Lemma 3.6, with e G.)

THEOREM 6.4. Let E and F be L, spaces, 1 < p < oo, p :k 2. Then

d’(E, F) t3 5a’(E, F) d (E, F) 5a (E, F).

Proof. Each contraction T in 6: ’(E, F) \6a(E, F) satisfies (6.1) with non-
zero TsA, Ts, and Ts,,. To prove the theorem, we need only show that such
a T is not extreme. We can further assume that those three sub-operators are
all extensive and coextensive. This follows from Corollary 3.5 and the fact
that, by (3.5), T decomposes into a direct sum, of which one summand has
such a triplet of sub-operators while the other is semidisjunctive. Now by
Lemma 3.1, there exist coextensive isometries

(6.2’) U:EAFs, V:EaFs, and Q:FA,E4,,

such that

Ta Uo a, T,A Vo’ and Tc Q I

for measurable functions 0 < a, 3’ < 1 on A and 0 < r/< 1 on B c. Let the
associated Boolean o-homomorphism for V be . Since Ts, is codisjunctive,
so is V. It is not hard to show that is invertible, V is coisometric, and V-1

exists with associated o-homomorphism -t (cf. [10, Proposition 4.1]). Hence

V*-t" E F, and S QV*-1" E E,

are isometries and

V-1TB,A, V-1 * rlQ* 8V-1Q*

with 8 -/, by (3.4). So with G E, and R the identity operator on G’,
T fi(a, 0, 3,, ), as defined in (6.3). By Lemma 6.1 and Proposition 6.2, T is
not extreme.

7. Counter-examples

An extreme contraction need not be of the types described in Proposition
2.6(b) (or its dual) and Theorem 2.8, at least when it is complex.
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Example 7.1. The matrices

where

1(1 1= 1 1
1 1 -1

t= { 1/v/p 1

’f-1
when 2 < p <

when I < p < 2,

are extreme 12 contractions isometric only in the direction of (1,1).
By Lemmas 2.7 and 2.10 we need only prove this for 2 < p < , and with

+ taken for + as the two cases differ by a factor ( 1) We have
0 ]"

r(1,1) I1(1,1)[[

and

(- 1,1) =/11(- 1,1) < I1(- 1, 1)II-

Fix an arbitrary r > 0. Let f(r, to)= (1,1) + rei(-1, 1). We are to prove
that for all angles to,

D(r, to) Ill(r, 0)I( -liar(r, oa)IIe

(1 + r 2 + 2rcos to) ’/2 + (1 + r2- 2rcos to) ’/2

-(1 + t2r 2 + 2tr sin to) p/2 (1 + t2r2- 2tr sin to) p/2

As D(r, to) D(r, to) D(r, r to), we need only consider 0 < to < r/2.
Now

D, -pr sin to[(1 + r2+ 2rcos to)/=- (1 + r=- 2rcos to) /2-1]
-ptrcosto[(1 + t-r9-+ 2tr sin to)/2-1 (1 + t2r- 2tr sin to) p/2-]

<0

if 0 < to < r/2. So for all 0 < to < r/2,

D(r, to) > D(r, r/2) (1 + r2)/2C(r),
where for all real z,

C(z) 2- B(z) B(-z) and B(z) [ll+tzl/vll+z]p.
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We have

where

Further

W(z) --p(1 q- Z2) -p/2-1 and A(z) (1 + tz)p-I(t- z).

A’(z) [1 + tz[p-2[(p- 1)(z- t) + (1 + tz)] --ptz[1 + tz[p-2

As c(o) o,

c(,) +
rW(l)[A(l) A(-5)]
rW(l)l[A’() + A’(-’)I
rW()ptf[(1 + t)p-2- I1 t[p-2]

>0

for some 0 < " < < r, by applying the mean value theorem twice.
Hence is a contraction isometric only in the direction of (1, 1).
Now r is of the form (5.1), with u v x =y 2 -t/p, /2 and

s t s** in the proof of Theorem 5.1, by (5.7), (5.7’) and (5.10’). By
Corolla 5.2, z is extreme.

Question. (5.2) is the limit of contractions isometric in two directions (see
Remark 5.3(iv). Is this also true of Example 7.1?

Conjecture. Every extreme contraction T between two Lp spaces (1 < p <, p 4: 2)with contractive ITI is semidisjunctive.

Note. Some of the results in this article were presented to the Second
Franco-Southeast Asian Mathematics Conference, held at Ateneo de Manila
University, Quezon City, the Philippines, May 31-June 5, 1982.
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