A SEVEN CONNECTED FINITE H-SPACE IS FOURTEEN CONNECTED

BY
James P. Lin ${ }^{1}$

0. Introduction

In this note, the action of the Steenrod algebra on the mod 2 cohomology of a finite H-space is studied. One interesting question is to determine the first nonvanishing homotopy group for a finite H-space. Work of the author [4] showed that any 3 -connected finite H-space is 6 -connected. In this note we show that any 7 -connected finite H -space is in fact 14 -connected. The arguments are related to secondary cohomology operations and can be considered a continuation of the work done to prove the loop space conjecture [2], [5].

The original motivation for this work goes back to papers of Browder, Thomas and Zabrodsky [1], [7], [9]. Browder used the fact that $S q^{1}$ maps even degree cohomology classes to decomposables for a finite H-space X. Using this observation he was able to prove a 1 -connected H-space is 2 -connected. Thomas [8] restricted himself to a smaller class of finite H -spaces, namely those with primitively generated mod 2 cohomology to prove a $2^{i}-1$ connected, primitively generated finite H-space was in fact $2^{i+1}-2$ connected. This result was quite spectacular, because it also described the action of the Steenrod algebra in quite simple terms. He was finally able to show that mod 2 primitively generated H-spaces have first nonvanishing homotopy in degrees 1 , 3,7 or 15 [7]. The only drawback was that not all finite H-spaces admit primitively generated mod 2 cohomology rings. In fact the exceptional group E_{8} has $H^{*}\left(E_{8} ; \mathbf{Z}_{2}\right)$ not primitively generated and the formulas given by Thomas for the action of the Steenrod algebra do not hold for E_{8}.

The present task, therefore, is to devise a more general method to attack finite H-spaces which do not have primitively generated mod 2 cohomology. Some of Thomas' results are still valid. For example we showed $S q^{2}$ of a $4 l+1$ dimensional cohomology class is decomposable [4]. In this note we prove $S q^{4}$ of an $8 l+3$ dimensional cohomology class is decomposable. These

[^0]results appear to be the beginning of a pattern of the form
$$
S q^{2} Q H^{2^{i}+2^{i+1} k-1}\left(X ; \mathbf{Z}_{2}\right)=0
$$
for X a finite H-space, $k>0$.
We also prove
$$
\boldsymbol{\sigma}^{*}\left(Q H^{8 l+3}\left(X ; \mathbf{Z}_{2}\right)\right) \subseteq \operatorname{im} S q^{4} .
$$

In a previous paper [4] we showed

$$
\sigma^{*}\left(Q H^{4 l+1}\left(X ; \mathbf{Z}_{2}\right)\right) \subseteq \operatorname{im} S q^{2} .
$$

This may be part of a pattern of the form

$$
\sigma^{*}\left(Q H^{2^{i}+2^{i+1} k-1}\left(X ; \mathbf{Z}_{2}\right)\right) \subseteq \operatorname{im} S q^{2^{i}} \quad \text { for } k>0
$$

The results in this paper are by no means exhaustive, but hopefully serve to illustrate the methods used. In a later paper, the author will derive further primary results.

I wish to thank the Institute for Advanced Study in Jerusalem for its hospitality. I also appreciate the many conversations with Frank Williams, Alex Zabrodsky, and John Moore which helped to organize my thoughts.

1. Primary results and secondary operations

In this section results of some other papers are gathered here for later use. A secondary operation ψ_{2} is defined here. Its main memorable characteristic is that it suspends to $S q^{4}$ of a transpotence element. $S q^{4} \psi_{2}$ will be related to other secondary operations. This will be a key element in our proof.

Unless otherwise noted all cohomology and homology will be understood to have \mathbf{Z}_{2} coefficients.

We begin by reserving the symbol X for a simply connected H-space with the following properties:

Property 1. $\quad Q H^{\text {even }}(X)=0$.
Property 2. For $k>0, Q H^{4 k+1}(X)=S q^{2 k} Q H^{2 k+1}(X)$.
Property 3. $\sum_{R>0} Q H^{4 k+1}(X)+\sum_{k>0} Q H^{8 k+3}(X)$ is a finite dimensional vector space.

These properties hold for all finite simply connected H-spaces as has been shown in [2], [5], [4].

The following notational conventions will be used throughout the paper:

$$
\begin{array}{ll}
Q^{*}=Q H^{*}\left(X ; \mathbf{Z}_{2}\right) & Q_{*}=Q H_{*}\left(X ; \mathbf{Z}_{2}\right) \\
P^{*}=P H^{*}\left(X ; \mathbf{Z}_{2}\right) & P^{*}=P H_{*}\left(X ; \mathbf{Z}_{2}\right) \\
H^{*}=H^{*}\left(X ; \mathbf{Z}_{2}\right) & H_{*}=H_{*}\left(X ; \mathbf{Z}_{2}\right)
\end{array}
$$

Note that H^{*} is a Hopf algebra over the Steenrod algebra. Define

$$
Q_{2}=I H^{*} /\left(I H^{*}\right)^{3}
$$

Then the reduced coproduct induces a map of Steenrod modules

$$
d: Q_{2} \rightarrow Q^{*} \otimes Q^{*}
$$

If $x \in H^{*}$, denote the projection of x to Q_{2} by $\{x\}$. We have the following lemma.

Lemma 1.1. (a) If $\bar{x} \in Q^{\text {odd }}$ then \bar{x} has representative x with $d\{x\}=0$.
(b) Suppose x is decomposable and has degree not congruent to two mod four. Then if $d\{x\}=0$ then x is three fold decomposable. If $d\{x\} \neq 0$ then $d\{x\}$ lies in $\operatorname{im}(1+T)$ where T is the twist map.

Proof. By property $1 Q^{\text {even }}=0$. Therefore if $x \in H^{\text {odd }}$,

$$
\bar{\Delta} x \in D \otimes H^{*}+H^{*} \otimes D
$$

where D is the module of decomposables. This implies $d\{x\}=0$ which proves (a).

To prove (b) note that if degree x is not congruent to two mod four then x is not a cup product square of a generator. Therefore modulo three fold decomposables x is a sum of terms $x_{i}^{\prime} x_{i}^{\prime \prime}$ where $x_{i}^{\prime}, x_{i}^{\prime \prime}$ are odd degree generators. But

$$
d\left\{x_{i}^{\prime} x_{i}^{\prime \prime}\right\}=\bar{x}_{i}^{\prime} \otimes \bar{x}_{i}^{\prime \prime}+\bar{x}_{i}^{\prime \prime} \otimes \bar{x}_{i}^{\prime} \in \operatorname{im}(1+T)
$$

So either $d\{x\}=0$ and x is three fold decomposable or $d\{x\} \in \operatorname{im}(1+T)$.
Q.E.D.

We also would like to bring to the reader's attention the relationship between Q^{*} and the primitives of $H^{*}(\Omega X)$. Recall there is an Eilenberg Moore spectral sequence relating $H^{*}(X)$ and $H^{*}(\Omega X)$. We have

$$
E_{2}=\operatorname{Tor}_{H^{*}(X)}\left(\mathbf{Z}_{2}, \mathbf{Z}_{2}\right) \quad \text { and } \quad E_{\infty}=\operatorname{Gr} H^{*}(X)
$$

According to [3], E_{∞} is isomorphic as coalgebras to $H^{*}(\Omega X)$. But in our case $E_{2}=E_{\infty}$ because $Q^{\text {even }}=0$ so $H^{*}(X)$ is a tensor product of truncated polynomial and exterior algebras on generators of odd degree.

It follows that $\operatorname{Tor}_{H^{*}(X)}\left(\mathbf{Z}_{2}, \mathbf{Z}_{2}\right)$ is a tensor product of divided power and exterior coalgebras on primitives that are suspension or transpotence elements. We easily derive the following:

Lemma 1.2. (a) All primitives of $H^{*}(\Omega X)$ are either suspension or transpotence elements on generators of odd degree.
(b) $\sigma^{*}: Q^{2 l+1} \rightarrow \operatorname{PH}^{2^{l}}(\Omega X)$ is an isomorphism if l is even and is a monomorphism if l is odd.
(c) If $y \in P H^{4 m-2}(\Omega X)$ is a transpotence element then express m as $m=2^{i} n$ where n is odd. Then $y=\varphi_{2^{i+2}}(x)$ where $\operatorname{deg} x$ is n and x has height 2^{i+2}.

We now build the universal example for a tertiary operation which will be used in Section 2. We first build the universal example for a certain transpotence element.

Our universal example will eventually be used to prove

$$
\sigma^{*} Q^{8 k+3} \subseteq S q^{4} P H^{8 k-2}(\Omega X)
$$

Express $k=2^{i} l$ where l is odd. Let $w_{0}: K\left(\mathbf{Z}_{2}, l\right) \rightarrow K\left(\mathbf{Z}_{2}, 16 k\right)$ be defined by $w_{0}^{*}\left(i_{16 k}\right)=\left(i_{l}\right)^{2^{i+4}}$. Then w_{0} is an infinite loop map. Let $B E_{0}$ be the fibre of $B w_{0}$. Let $\bar{w}_{0}: K\left(\mathbf{Z}_{2}, 2 k\right) \rightarrow K\left(\mathbf{Z}_{2}, 16 k\right)$ be defined by

$$
\bar{w}_{0}^{*}\left(i_{16 k}\right)=i_{2 k}^{8} .
$$

Let $B \bar{E}_{0}$ be the fibre of $B \bar{w}_{0}$. We have a commutative diagram

We have $B \bar{w}_{0}^{*}\left(i_{16 k+1}\right)=S q^{8 k} S q^{4 k} S q^{2 k} i_{2 k+1}$. There exist elements

$$
\bar{u}_{0} \in H^{16 k+5}\left(B \bar{E}_{0}\right), \quad \bar{u}_{1} \in H^{16 k+2}\left(B \bar{E}_{0}\right), \quad \bar{u}_{2} \in H^{16 k+4}\left(B \bar{E}_{0}\right)
$$

with

$$
B j_{0}^{*}\left(\bar{u}_{0}\right)=S q^{4} S q^{1} i_{16 k}, \quad B j_{0}^{*}\left(\bar{u}_{1}\right)=S q^{2} i_{16 k}, \quad B j_{0}^{*}\left(\bar{u}_{2}\right)=S q^{4} i_{16 k}
$$

We have

$$
\bar{\Delta} \bar{u}_{1}=S q^{4 k} S q^{2 k} B \bar{p}_{0}^{*}\left(i_{2 k+1}\right) \otimes S q^{4 k} S q^{2 k} B \bar{p}_{0}^{*}\left(i_{2 k+1}\right)
$$

where \bar{u}_{0}, \bar{u}_{2} are primitive. Hence $S q^{4} \bar{u}_{2}+S q^{6} \bar{u}_{1}+S q^{3} \bar{u}_{0}$ is primitive and in the kernel of $B j_{0}^{*}$. We have

$$
\Omega \bar{E}_{0} \simeq K\left(\mathbf{Z}_{2}, 2 k-1\right) \times K\left(\mathbf{Z}_{2}, 16 k-2\right)
$$

and

$$
\begin{aligned}
& \left(\sigma^{*}\right)^{2}\left(\bar{u}_{0}\right)=\alpha_{0} i_{2 k-1} \otimes 1+1 \otimes S q^{4} S q^{1} i_{16 k-2} \\
& \left(\sigma^{*}\right)^{2}\left(\bar{u}_{1}\right)=\alpha_{1} i_{2 k-1} \otimes 1+1 \otimes S q^{2} i_{16 k-2} \\
& \left(\sigma^{*}\right)^{2}\left(\bar{u}_{2}\right)=\alpha_{2} i_{2 k-1} \otimes 1+1 \otimes S q^{4} i_{16 k-2}
\end{aligned}
$$

Changing \bar{u}_{i} by $B \bar{p}_{0}^{*}\left(\alpha_{i} i_{2 k+1}\right)$ we may assume

$$
\begin{aligned}
& \left(\sigma^{*}\right)^{2}\left(\bar{u}_{0}\right)=1 \otimes S q^{4} S q^{1} i_{16 k-2} \\
& \left(\sigma^{*}\right)^{2}\left(\bar{u}_{1}\right)=1 \otimes S q^{2} i_{16 k-2} \\
& \left(\sigma^{*}\right)^{2}\left(\bar{u}_{2}\right)=1 \otimes S q^{4} i_{16 k-2}
\end{aligned}
$$

Then

$$
\left(\sigma^{*}\right)^{2}\left[S q^{3} \bar{u}_{0}+S q^{6} \bar{u}_{1}+S q^{4} \bar{u}_{2}\right]=0
$$

Hence since $\sigma^{\prime}: Q H^{\text {odd }}\left(\bar{E}_{0}\right) \rightarrow P H^{\text {even }}\left(\Omega \bar{E}_{0}\right)$ is monic,

$$
\sigma^{*}\left[S q^{3} \bar{u}_{0}+S q^{6} \bar{u}_{1}+S q^{4} \bar{u}_{2}\right]=0
$$

since it's odd degree decomposable. Now since $\sigma^{*}: Q H^{16 k+8}\left(B \bar{E}_{0}\right) \rightarrow$ $P H^{16 k+7}\left(\overline{E_{0}}\right)$ is monic it follows that

$$
S q^{3} \bar{u}_{0}+S q^{6} \bar{u}_{1}+S q^{4} \bar{u}_{2}=S q^{8 k+4} B \bar{p}_{0}^{*}\left(\alpha i_{2 k+1}\right)=\left[B \bar{p}_{0}^{*}\left(\alpha i_{2 k+1}\right)\right]^{2}
$$

where $\alpha \in \mathscr{A}(2)$.

Define $u_{i}=\bar{h}^{*}\left(\bar{u}_{i}\right), v_{i}=\sigma^{*}\left(u_{i}\right)$. Let ψ_{i} be the secondary operations defined by the v_{i}. We have proved:

Proposition 1.3. There exist elements $v_{0}, v_{1}, v_{2} \in H^{*}\left(E_{0}\right)$ that are suspensions of elements u_{0}, u_{1}, u_{2} with the following properties.
(1) $S q^{3} v_{0}+S q^{6} v_{1}+S q^{4} v_{2}=0$.
(2) $\quad \sigma^{*}\left(v_{2}\right)=S q^{4} \varphi_{2^{i+4}}\left(p_{0}^{*}\left(i_{l}\right)\right)$.
(3) $S q^{3} u_{0}+S q^{6} u_{1}+S q^{4} u_{2}$ is a fourth power.

Proof. Property 3 implies property 1. $\sigma^{*}\left(v_{2}\right)=1 \otimes S q^{4} i_{16 k-2}$ and $1 \otimes$ $i_{16 k-2}$ represents $\varphi_{2^{i+4}}\left(p_{0}^{*}\left(i_{l}\right)\right)$. Hence property 2 is satisfied.

Finally

$$
S q^{3} \bar{u}_{0}+S q^{6} \bar{u}_{1}+S q^{4} \bar{u}_{2}=\left[B \bar{p}_{0}^{*}\left(\alpha i_{2 k+1}\right)\right]^{2}
$$

and since α has odd degree,

$$
\alpha h^{*}\left(i_{2 k+1}\right) \in \alpha S q^{k} H^{k+1}\left(K\left(\mathbf{Z}_{2}, l+1\right)\right) \subseteq \xi H^{*}\left(K\left(\mathbf{Z}_{2}, l+1\right)\right)
$$

Hence $S q^{3} u_{0}+S q^{6} u_{1}+S q^{4} u_{2}$ is a fourth power. Q.E.D.
We now build the third stage of our Postnikov system. The Adem relations imply

$$
\begin{align*}
& S q^{8 k+4}=S q^{4} S q^{8 k}+S q^{8 k+2} S q^{2}+S q^{8 k+3} S q^{1} \tag{1.1}\\
& S q^{8 k+2}=S q^{4} S q^{8 k-2}+S q^{8 k} S q^{2} \\
& S q^{2} S q^{2}=S q^{3} S q^{1}
\end{align*}
$$

Combining the above equations we obtain

$$
\begin{equation*}
S q^{8 k+4}=S q^{4}\left[S q^{8 k}+S q^{8 k-2} S q^{2}\right]+\left[S q^{8 k+3}+S q^{8 k} S q^{3}\right] S q^{1} \tag{1.2}
\end{equation*}
$$

For convenience let $\theta=S q^{8 k}+S q^{8 k-2} S q^{2}$. Then we have

$$
S q^{8 k+4}=S q^{4} \theta+\left[S q^{8 k+3}+S q^{8 k} S q^{3}\right] S q^{1}
$$

Let

$$
\begin{aligned}
K & =E_{0} \times K\left(\mathbf{Z}_{2}, 8 k+3,8 k+1\right) \\
K_{0} & =K\left(\mathbf{Z}_{2}, 16 k+3,16 k+1,16 k+4,8 k+4,8 k+4\right)
\end{aligned}
$$

Let $w: K \rightarrow K_{0}$ be defined by

$$
\begin{aligned}
w^{*}\left(i_{16 k+3}\right) & =\theta i_{8 k+3}-v_{2} \\
w^{*}\left(i_{16 k+1}\right) & =v_{1}-S q^{8 k} i_{8 k+1} \\
w^{*}\left(i_{16 k+4}\right) & =v_{0} \\
w^{*}\left(i_{8 k+4}\right) & =S q^{1} i_{8 k+3} \\
w^{*}\left(i_{8 k+4}^{\prime}\right) & =S q^{3} i_{8 k+1}
\end{aligned}
$$

Then w is a loop map. Let E be the fibre of w :

Consider the element $z \in H^{*}\left(B K_{0}\right)$,

$$
\begin{aligned}
z= & S q^{4} i_{16 k+4}+S q^{6} i_{16 k+2}+S q^{3} i_{16 k+5} \\
& +\left(S q^{8 k+3}+S q^{8 k} S q^{3}\right) i_{8 k+5}+S q^{8 k+3} i_{8 k+5}^{\prime}
\end{aligned}
$$

Then

$$
\begin{aligned}
(B w)^{*}(z)= & S q^{4}\left[\theta i_{8 k+4}-u_{2}\right]+S q^{6}\left[u_{1}-S q^{8 k} i_{8 k+2}\right] \\
& +S q^{3} u_{0}+\left[S q^{8 k+3}+S q^{8 k} S q^{3}\right] S q^{1} i_{8 k+4} \\
& +S q^{8 k+3} S q^{3} i_{8 k+2} \\
= & {\left[S q^{4} \theta+\left(S q^{8 k+3}+S q^{8 k} S q^{3}\right) S q^{1}\right] i_{8 k+4} } \\
& +S q^{4} u_{2}+S q^{6} u_{1}+S q^{3} u_{0} \\
& +\left(S q^{6} S q^{8 k}+S q^{8 k+3} S q^{3}\right) i_{8 k+2} \\
= & S q^{8 k+4} i_{8 k+4}+\text { a fourth power (by Proposition 1.3). }
\end{aligned}
$$

Therefore in the projective plane of $E, P_{2} E$, the inclusion

$$
i_{2}: P_{2} E \rightarrow B E
$$

takes $B p^{*}\left(i_{8 k+4}\right)$ to an element truncated at height two. Hence by [5, Prop.
3.1], there exists a $v \in H^{*}(E)$ with $\bar{\Delta} v=u \otimes u$ where $u=p^{*}\left(i_{8 k+3}\right)$ and

$$
\begin{aligned}
j^{*}(v)= & S q^{4} i_{16 k+2}+S q^{6} i_{16 k}+S q^{3} i_{16 k+3} \\
& +\left(S q^{8 k+3}+S q^{8 k} S q^{3}\right) i_{8 k+3}+S q^{8 k+3} i_{8 k+3}^{\prime}
\end{aligned}
$$

By [9] we have:
Proposition 1.4. There exists an element $\sigma^{*} v \in P H^{16 k+5}\left(\Omega E_{0}\right)$ with

$$
c\left(\sigma^{*} v\right)=\sigma^{*} u \otimes \sigma^{*} u
$$

and

$$
\Omega j^{*}\left(\sigma^{*} v\right)=S q^{4} i_{16 k+1}+S q^{6} i_{16 k-1}+S q^{3} i_{16 k+2}+\left(S q^{8 k} S q^{3}\right) i_{8 k+2}
$$

2. Applications of the \boldsymbol{c}_{2}-invariant

In this chapter, the three stage system E is used to prove

$$
\sigma^{*} Q^{8 k+3} \subseteq \operatorname{im} S q^{4}
$$

By property $3, \Sigma_{l>0} Q^{8 l+3}$ is a finite dimensional vector space. Therefore, we may use downward induction. Assume that for $k^{\prime}>k, \sigma^{*} Q^{8 k^{\prime}+3} \subseteq \operatorname{im} S q^{4}$. Let $\bar{x} \in Q^{8 k+3}$ have representative x with $d\{x\}=0$. Then if $\theta \bar{x}$ is nontrivial, by induction

$$
\sigma^{*}(\theta \bar{x})=S q^{4} y
$$

Since degree $\sigma^{*}(\theta \bar{x})=16 k+2$ it is primitive indecomposable. Hence y may be chosen primitive indecomposable. It follows that y is either a suspension or transpotence element. In either case y is realizable by a map

and

$$
\left(\Omega \tilde{f_{0}}\right)^{*}\left(\sigma^{*} v_{2}\right)=S q^{4} y
$$

by Proposition 1.3. Therefore $\tilde{f}_{0}^{*}\left(v_{2}\right)$ and $\theta \bar{x}$ suspend to the same element. Since $\sigma^{*}: Q^{\text {odd }} \rightarrow P H^{\text {even }}(\Omega X)$ is monic, $\tilde{f_{0}^{*}}\left(v_{2}\right)-\theta x$ is three-fold decomposable.

Similarly, if $\tilde{f_{0}} *\left(v_{1}\right)$ is indecomposable, by Property 2 ,

$$
\tilde{f}_{0}^{*}\left(v_{1}\right)=S q^{8 k} x_{8 k+1}+\text { three-fold decomposables }
$$

By Lemma 1.1, $S q^{1} x$ and $S q^{3} x_{8 k+1}$ are three-fold decomposable. Finally, the Cartan formula for $\bar{\Delta} \tilde{f}_{0}^{*}\left(v_{0}\right)$ (see [5]) implies that if D is the module of decomposables, then

$$
\bar{\Delta} \tilde{f}_{0}^{*}\left(v_{0}\right) \in D \otimes H^{*}+H^{*} \otimes D+\operatorname{im} S q^{4} S q^{1}
$$

since $\bar{\Delta} \tilde{f}_{0}^{*}\left(i_{l}\right) \in D \otimes H^{*}+H^{*} \otimes D$. But $S q^{1} H^{*} \subseteq D$.
We conclude $d\left\{\tilde{f_{0}^{*}}\left(v_{0}\right)\right\}=0$. By Lemma 1.1, $\tilde{f_{0}}{ }^{*}\left(v_{0}\right)$ is also three-fold decomposable.

If $P_{2} \Omega X$ is the projective plane of ΩX, since all three-fold products vanish on $H^{*}\left(P_{2} \Omega X\right)$ it follows that there is a commutative diagram

where $f^{*}\left(i_{8 k+3}\right)=x, f^{*}\left(i_{8 k+1}\right)=x_{8 k+1}$. This yields a diagram:

By [4, equation 2.2], we have $\sigma^{*} x \otimes \sigma^{*} x \in\left(S q^{4}+S q^{6}+S q^{3}+S q^{8 k} S q^{3}\right)\left[F_{2}^{\prime}\right.$ $\left.\otimes \operatorname{im} \sigma^{*}+\mathrm{im} \sigma^{*} \otimes F_{2}^{\prime}+P H^{*}(\Omega X) \otimes P H^{*}(\Omega X)\right]$ where F_{2}^{\prime} is a submodule of im $\sigma^{*}+2$-fold products of elements of im σ^{*}. Since $\sigma^{*} x$ is indecomposable and $H^{*}(\Omega X)$ is even dimensional this implies

$$
\sigma^{*} x \otimes \sigma^{*} x \in\left[S q^{4}+S q^{6}\right]\left(P H^{*}(\Omega X) \otimes P H^{*}(\Omega X)\right)
$$

Since $\bar{x} \notin \operatorname{im~} S q^{2}$ and $P H^{4 l}(\Omega X)=\sigma * Q^{4 l+1}$ by Lemma 1.2, it follows that $\sigma^{*} x \in S q^{4} P H^{*}(\Omega X)$. This completes the inductive step and proves:

Theorem 2.1. $\quad \sigma^{*} Q^{8 k+3} \subseteq S q^{4} P H^{*}(\Omega X)$.
Corollary 2.2. $\quad S q^{4} Q^{8 k+3}=0$.
Proof.

$$
\begin{aligned}
\sigma^{*} S q^{4} Q^{8 k+3} & \subseteq S q^{4} S q^{4} P H^{8 k-2}(\Omega X) \\
& \subseteq S q^{6} S q^{2} P H^{8 k-2}(\Omega X) \\
& =0
\end{aligned}
$$

since $S q^{2} P H^{4 l}(\Omega X)=0$. Q.E.D.

Theorem 2.3. If X is 7 -connected then X is 14 -connected.
Proof. By [2], [5] the first nonvanishing homotopy group is torsion free of odd degree. By the Hurewicz theorem if $0<l$ is the lowest degree where $\pi_{l}(X)$ is nontrivial, then $H^{l}(X)$ is nontrivial. If $14>l>7$ then by properties 1 and $2, l=11$. By Theorem 2.1, $\sigma^{*} Q^{11}=S q^{4} P H^{6}(\Omega X)$. But ΩX is 6-connected so $Q^{11}=0$. We conclude that if $l>7$ then $l \geq 14$. Q.E.D.

Proposition 2.4. $Q^{11}=S q^{4} Q^{7}$ and $Q^{19}=S q^{4} Q^{15}$.
Proof. Since X is two connected, the first transpotence element in $H^{*}(\Omega X)$ of degree $8 k-2$ is in degree greater than or equal to 22 . Hence

$$
\sigma^{*} Q^{11}=S q^{4} P H^{6}(\Omega X)=S q^{4} \sigma^{*} Q^{7}
$$

and

$$
Q^{11}=S q^{4} Q^{7}
$$

Similarly,

$$
\sigma^{*} Q^{19}=S q^{4} P H^{14}(\Omega X)=S q^{4} \sigma^{*} Q^{15}
$$

and

$$
Q^{19}=S q^{4} Q^{15} . \quad \text { Q.E.D. }
$$

References

. W. Browder, Torsion in H-spaces, Ann. of Math., vol. 74 (1961), 24-51.
2. R. Kane, Implications in Morava k-theory, to appear.
3. \qquad , On loop spaces without p-torsions, Pacific J. Math., vol. 60 (1975), pp. 189-201.
. J. Lin, $4 k+1$ dimensional generators of finite H-spaces, to appear.
5. \qquad , Two torsion and the loop space conjecture, Ann. of Math., vol. 115 (1982), pp. 35-91.
6. J. Lin and F. Williams, Primitivity of the c_{2}-invariant, to appear.
7. E. Thomas, On the mod 2 cohomology of certain H-spaces, Comment. Math. Helv., 37 (1962), pp. 132-140.
8. \qquad , Steenrod squares and H-spaces, I, II, Ann. of Math., vol. 77 (1963), pp. 306-317; vol. 81 (1965), pp. 473-495.
9. A. Zabrodsky, "Cohomology operations and homotopy communitative H-spaces" in The Steenrod Algebra and Its Applications, Lecture Notes in Math., Springer Verlag, vol. 168, (1970), pp. 308-317.

University of California, San Diego
la Jolla, California

[^0]: Received December 12, 1983.
 ${ }^{1}$ Partially supported by the National Science Foundation and the Institute for Advanced Study, Hebrew University, Jerusalem.

