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THE SPLITTING THEOREM FOR ORBIFOLDS

JOSEPH E. BORZELLINO AND SHUN-HUI ZHU

Introduction

In this paper we wish to examine a generalization of the splitting theorem
of Cheeger-Gromoll [CG] to Riemannian orbifolds. Roughly speaking, a
Riemannian orbifold is a metric space locally modelled on quotients of
Riemannian manifolds by finite groups of isometries. The term orbifold was
coined by W. Thurston [T] sometime around the year 1976-77. The term is
meant to suggest the orbit space of a group action on a manifold. A similar
concept was introduced by I. Satake in 1956, where he used the term

V-manifold (see [S1]). The "V" was meant to suggest a cone-like singularity.
Since then, orbifold has become the preferred terminology.

Recall that if M is a complete connected n-dimensional Riemannian
manifold with nonnegative Ricci curvature that contains a line, then the
Cheeger-Gromoll splitting theorem [CG] states that that M is isometric to
N R. Recall that a line is a unit speed geodesic y" R --. M such that for
any s, t R, d(y(s), ,(t))= Is t[.

THEOREM 1. Let 0 be a complete n-dimensional Riemannian orbifold with
nonnegative Ricci curvature. If 0 contains a line, then 0 splits isometrically as
0 N R where N is a complete Riemannian orbifold with nonnegative Ricci
curvature.

THEOREM 2. Let 0 be a compact Riemannian orbifold with nonnegative
Ricci curvature and let denote its universal orbifold cover. Then N Rt,
where N is compact and >_ O. Also, there exists a short exact sequence

1 --) F - ’ff’rb(o) "---> C > 1

where F is a finite group and C is a discrete cocompact group of isometries
acting on Rl. That is, C is a crystallographic group.

To prove these results we will need several results about orbifolds. All of
these results can be found in the first author’s Ph.D. thesis [B1]. A basic
reference on general orbifolds is [T].
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Basic definitions

DEFINITION 3. A Riemannian orbifold is a metric space O with the
following special local structure. For every point p O, there is a neighbor-
hood U of p which is isometric to an orbit space O/F where is a convex,
open (possibly non-complete) Riemannian manifold diffeo.morphic to Rn, and
F is a finite group of isometries acting effectively on U. Recall that for a
Riemannian manifold to be convex means that there exists a unique minimal
geodesic joining any two points. The collection of such U’s is an open
cover of O, and this collection must satisfy the following coherence condi-
tion. Namely, if U, U’ are two open sets in the collection with p U f3 U’,
then there must exist an is.ometry b: U U, from some .open neighborhood
of/3 to one of/’ U’ such that f’b f, where f: U /F O and
f" ’ O’/F’ O are the natural quotient maps. In addition, the collec-
tion ’ should be maximal relative to these conditions.

Each point x U in an orbifold O is associated a group Fx, well-defined
up to isomorphism: Let U U/F be a local coordinate system. Let , 7 be
two points which project to x. Let F be the isotropy group of . Then if
3’ F is the isometry such that 3’ 7, it is not hard to see that the isotropy
group of ) must be 3’F3’ -1. Hence, the two isotropy groups are conjugate.
Thus, up to isomorphism they can be regarded as the same group. We will
denote this group by Fx. It can be shown (see [B1] or [$2]) that Fx up to
isomorphism, is also independent of coordinate system U. Let O be a

isom
Riemannian orbifold. Let p U c O, where U --- /F is an open neigh-
borhood of p. Choose / so that it projects to p. Denote the isotropy
group of / by Fp. Since F is finite, it is easy to see that there exists a

ism]p/Fpneighborhood Up c U and corresponding p c U such that Up =-
The neigh.borhood Up will be called a fundamental neighborhood of p. The
open set Up will be called a fundamental chart.

DEFINITION 4. A Riemannian orbifold O is said to have Ricci curvature
Ric(O) >_ (n 1)k, if Ric(Op) >_ (n 1)k for all fundamental charts

DEFINITION 5. The singular set ,o of an orbifold O consists of those
points x O whose isotropy subgroup Fx is non-trivial. We say that O is a
manifold when Eo . We may also, by abuse of definition, call points in
the local covering /] with non-trivial isotropy, singular points also. This
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should cause no confusion since x O is singular if and only if a correspond-
ing point U is singular.

Remark 6. Since Riemannian orbifolds are locally (open) Riemannian
manifolds modulo finite group actions, it follows that the singular set, locally,
is the image of the union of a finite number of closed totally geodesic
submanifolds of U. Since any submanifold of U has empty interior in U, we
can conclude that the singular set is closed and has empty interior.

In order to do Riemannian geometry on orbifolds we need to know how to
measure the lengths of curves. To do this, we lift curves locally, so that we
may compute their lengths locally in fundamental neighborhoods. Finally, we
add up these local lengths to get the total length of the curve. The problem
of course, is that locally these lifts are not unique. It will turn out, however,
that the length of a curve is well defined. We refer to [B1] for the details. We
are now in a position to give a length space structure to any Riemannian
orbifold O. Given any two points x, y O define the distance d(x, y)
between x and y to be

d(x, y) inf{L(y)ly is a continuous curve joining x to y}.

Then (O, d) becomes a length space. Furthermore if (O, d) is complete, any
two points can be joined by a minimal geodesic realizing the distance d(x, y).
See [G]. The following structure result for minimizing segments in orbifolds
will be of fundamental importance. A proof can be found in [B2].

PROPOSITION 7. Let 0 be a Riemannian orbifold, and let y" [a, b] - 0 be
a minimizing segment (a -, b +oo is permissible). Then the isotropy
group is constant along Tl(a,b). This means that for any s, t (a, b), F(s)=
Fv(t).

Remark 8. Intuitively, this means that a minimizing curve cannot pass
through the singular set and remain minimizing. Actually, the proposition
says more: in fact, a minimizing curve cannot change strata and still remain
minimizing. See [B2].

The following observation is clear, but we feel that it should be pointed out
explicitly since it will be used throughout the remainder of this paper.

Observation 9. Let O be a Riemannian orbifold. For p O, let Up
Up/Fp d.enote a fundamental neighborhood of p. Denote the local projection
by 7r" Up - Up. Then the map 7r is distance non-increasing.
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The following example illustrates how Observation 9 is used in the sequel.

Example 10. Let Op R2, /5 (0, 0) and let Fp be the cyclic group of
order 4, generated by rotation about/5 through an angle of 7r/2 radians. Up
is then a flat cone. Fix q Up and consider the distance function p: Up R
given by p(x) d(q, x). Choose an element 4 r-X(q). It follows that the
lifted distance function t5 =p zr: Up - R satisfies tS() _< dR(4, :). Equal-
ity will hold if ] is fixed by all of Fp, but in general inequality holds. For
instance, in the above situation, take t (1, 0), $ (0, 2), then 1 p(x)=
() < d(4, ).

The proof of the splitting theorem will use the notions of weak (super)-
harmonicity, so for completeness we recall the following definition.

DEFINITION 11. Let M be a Riemannian manifold. A continuous function
f: M - R is said to satisfy Af(weakly) _< q for some function q, if for each
p M and e > 0, there exists a support function fp, defined on a neighbor-
hood U of p with

(i) fp, (p) f(p)
(ii) f,(q) > f(q)
(iii) Afp,(q) < (q) + e where fp, is C 2 on U

DEFINITION 12. Let O be a Riemannian orbifold. A continuous function
f: O- R is said to satisfy .Af(weakly) _< q for some function q, if the
pull-back function jr= f 7r" Up - R satisfies Aj(weakly) _< q3 in the sense of
the previous definition.

In the remainder of the paper we will denote functions on the orbifold by
standard symbols: f, g. The corresponding pull-back functions will be de-
noted with tildes: f, ft.

The Laplacian comparison theorem

In this section we generalize the Laplacian Comparison theorem of Calabi
[C] to Riemannian orbifolds. Let

cot(v/-t)
Ctk(t) -x

X/-- k coth(v/- k t)

if k>0

ifk =0
if k<0

PROPOSITION 13 (Laplacian Comparison). Let 0 be a complete n-dimen-
sional Riemannian orbifold with Ric(O) >_ (n 1)k. Let p(x) be the distance
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function from any fixed point p O. Then

Ap(x)(weakly) < (n 1)Ctk( P( X))

Proof Fix xo O. Let y" [0, 1] --, O be a segment joining x0 to p in O.
Take a finite covering of 3’ by fundamental neighborhoods {U}i0 such that
U/ U/+ : and U/,n U/+ 2 . For each U/, choose a Dirichlet funda-
mental, domain /i c U/. Without loss of generality, let U0 Ux0. Now lift y
to U0, denote this lift by . If x0

, choose the lift that lies in D0. Now
construct a Riemannian manifold M as follows:

Let zri: U/- U/ denote the local projections. From the orbifold structure,
we have isometries

(i" 7/’/-+11(U/n n 6i+ __i) 7T/-I(u/n n

Now form the adjunction space

mi+ mi U ]i+

def
where M0 U0. Denote by M, the Riemannian manifold Ms.
We now lift 3’ to M. Pick t [0, 1] so that T(tl) U0 f’) U1. Then ’(t1)

defines a tangent vector in T,(tl)]o T,f,(t)l) c TM. Extend /through U by
choosing the unique geodesic in U1, with tangent vector ’(tl). Continuing
inductively defines 3 uniquely in M.

Let /5--3(1). Let dt be the distance function on M, and let pt($)=
dM(/3, ,) for $ M. Note that for $ in a neighborhood of $0, we have

Obs. 9

P( Xo) ( ’0) pM(.O) and tS($) < pM( ).

The last inequality follows from Observation 9. Now by standard Laplacian
comparison

ApM(weakly) < (n 1)Ctk(Pt) < (n 1)Ctk(t5)

This implies that

AtS( $0) (weakly) < (n- 1)ctk((;o) )

since pt is a (continuous) support function for t5 at 0. Since x0 was
arbitrary, the proof is now complete.
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The maximum principle of Calabi [C] extends to orbifolds:

PROPOSITION 14 (Maximum principle). Let f: 0 R be continuous. If
Af(weakly) <_ O, then either f is constant or attains no global minimum.

Proof. If f has a global minimum, then f= f 7r has a g.lobal minimum
on U. Thus, by standard maximum principle, f const on U which implies
f const (at least locally). A connectedness argument then gives the desired
conclusion. This completes the proof.

Busemann functions

The main result of this section is to show that Busemann functions on
orbifolds with nonnegative Ricci curvature are (weakly) superharmonic. We
first recall the relevant definitions and summarize basic facts.

Let y: [0, oo)- O be a unit speed ray. This means that )’[[0, t] is a unit
speed minimal geodesic for all t. Define br(x)= d(x,y(r))- r. It then
follows that:

(1) For fixed x, br(x) is decreasing and Ib(x)l is bounded by d(x, 3,(0)).
(2) [br(x) br(y)[ _< d(x, y) for all r, x, y.
(3) If the Ricci curvature of O is nonnegative, then Abe(weakly)_<

(n 1)/(b + r).

The first two statements are consequences of the triangle inequality, and the
third follows from the Laplacian comparison theorem of the previous section.
From these properties we see that {br} converges to a function b(x) b(x)
with [b(x) b(y)[ < d(x, y), [b(x)[ < d(x, y(0)), and b(y(r)) r for any
r. b is called the Busemann function for the ray 3’. We now construct
asymptotes for y. Fix p O, and choose unit speed segments trt: [0, ---) 0
from p to 7(t). The Arzela-Ascoli theorem implies that some subsequence
will converge to a ray : [0, oo) O starting at p. / is called an asymptote
for 3’ through p. We have the following standard results concerning the
Busemann function for :

(1)
(2)

b(x) <_ b(p) + b(x).
b(/(t)) b(p) + b(/(t)) b(p) t.

We now come to the main result of this section.

PROPOSITION 15. If 0 has nonnegative Ricci curvature, then the Busemann
function for any ray is superharmonic.
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Proof. We use the notation above. We want to show that for fixed p O,
Ab(p)(weakly) < 0. Note that by our previous considerations for p we
have

b($) =b(x) <b(p) +b(x) =b(/5) +b()

+

Hence it suffices to shpw that Ab(/)(weakly) < 0. To do this we construct
support functions for b at /5. As in the proof of the Laplacian comparison
theorem, construct a Riemannian manifold M, by lifting the asymptote /
through p, to in M, through /5. Then for in a neighborhood of /,
(namely p),

Obs. 9 def
b($) b(x) <_ d(x,/(r)) r <_ d(,(r)) r b().

Since/5 is not in the cut locus for (r), then r is C in a (possibly smaller)
neighborhood of/5. Then

0 g(i[) r()
and

b(.) < br(.)

for $ in a neighborhood of/. By Laplacian comparison, we have

n-1
Abr< 0asr.

d($, g/( r ) )
Hence

Ab(/5)(weakly) < 0

since r() is a support function for (:) at/5. This completes the proof.

The Splitting Theorem

We are now in a position to prove the splitting theorem. The proof will
touch on various ideas from [CG], [CGL], [EH] [W]. We use the notation of
the previous sections. Assume O is a complete Riemannian orbifold with
nonnegative Ricci curvature and that O contains a line 3’: R O. Define b +

as the Busemann function for /+ lt0,o and b- the Busemann function for
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3,-= 71(-oo, ol. Thus,

b+(x) limd(x,3"(t))

b-(x) limd(x,3"(-t))
t---)oo

The triangle inequality implies that (b ++ b-) > 0 for all x. Since 3’ is a line
it is easy to see that (b/+ b-)(y(t))= 0 for all t. Since b / and b- are
weakly superharmonic, it follows from the maximum principle that b ++ b-=
0 on O. In particular, b / and b- are weakly harmonic and hence by elliptic
theory b +/- are C. A standard computation as in [CG, page 121] shows that
Hess + 0.
We next show that through each point p O, there is a line passing

through p. To this end, let /+/- denote asymptotes to 3’
+/- through p, and let

/(t) +/-(+t), where + is chosen according to whether is positive or
negative. Then for any tl, 2 R we have

d(/(tl), /(t2)) > b*(7/(tl) ) b+(/(t2)) b+(7/(tl)) + b-(/(t2) )
(b+(p) tl) + (b-(p) (-t2)) t2 1.

Here we have used the identity b /+ b-= 0. This shows that / is a line
through p. Furthermore, note that for Up,

b+(2) b+(x) < b+(p) + b+/-(x) b+/-() + b+/-(2).

Thus,

-[-([) -b-(2) < --(2) [+(2) < [+() + b+(2).

From this it follows that (b++ b-) > 0. Als.o, b+(/5) + b-(/5) 0. So by the
maximum principle we can conclude that (b/+ b-) 0, and hence that b +/-

are Coo harmonic functions on Up. This implies that equality holds above and
thus

$+(2) + b+(2).

This implies that V +/-(2) V +/-(2"). Thus,

d
,=o

vb + v$ + (p) v$- (p).

We now complete the proof of the splitting theorem. Let p O be
arbitrary, and consider a fundamental neighborhood Up of p, and its local
chart /)p. Assume p b+-l(tp). Then [+-l(.tp)= lp is a totally geodesic
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submanifold of /p with unit normal V+, since Hess += 0. For each
/Qp, let e be the lift in Op passing through of the asymptotic line in O

passing through 7r(h). Then the map

(fi, t) exp,( tV+) ,(t)

is a diffeomorphism onto its image. Since V/ is parallel, it follows that is
an isometry. Since curves of the form (fi, t) for fi N, fixed, project to
asymptotes through n 7r(fi), and since these asymptotes are lines, we
conclude by Proposition 7 that Fp must fix the second factor in the local
splitting, and hence

Let Np IQp/Fp. We have shown that O splits as a local product, we now
claim that O is a global product.

Let H b / -l(0). Define a map W" H R O by W(x, t) ,x(t), where
3’x is the asymptotic line to , through x. Then W is injective since two
asymptotic lines cannot intersect, and * is surjective since every point has an
asymptote through it and IVb +1 1. It is clear that W is a homeomorphism.
We claim that W is a local (distance) isometry from which it will follow that
W is a global (distance) isometry and we will be done. Let p O, and let P0
be its projection onto H. Let 3’ be the subset of the line joining P0 to p, say
,(0) =P0, 3,(tp)=p. We can construct product neighborhood N of 3’
isometric to Hpo (-e, tp + e), where P0 H,0 c H as follows.

Partition the interval (-e, tp + e) into subintervals I such that O splits
locally along 3’It,. This gives rise to a chain of product neighborhoods
covering 3’, say N/= W Ii. Since each of these neighborhoods split off 3’
isometrically, we see that the overlap of any two such adjacent neighborhoods
is isometric to a product of the form V J where J is an open interval.
Using these overlaps we can construct the desired product neighborhood. In
particular, we have shown that O splits locally isometrically like H R.
Thus, since W is a homeomorphism and a local (distance) isometry it is easy
to see that W is a global isometry. Explicitly, let p, q H R, and let tr be
a minimizing segment joining p to q. Then W(tr) is a curve in O joining
W(p) to W(q). Since W is a local (distance) isometry, it follows that the
length of W(tr) is the same as that of tr. (We are using here of course the
standard definition of length of curve for an inner metric space). Hence we
conclude that d(p, q) > d(W(p), W(q)). The opposite inequality follows by
applying the same argument to W-1. The proof is now complete.
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The universal orbifold cover and fundamental group

We now focus our attention on Theorem 2, but first we recall the following
definitions and facts concerning the orbifold fundamental group. See [T] or
[Sc].

DEFINITION 16. If X, Y are Riemannian orbifolds, then f: X- Y is an
orbifold covering map if every point y Y has a neighborhood U such that
f-l(u) is a disjoint union of open sets V, and f[.: V U is equivalent to a
natural isometric quotient map

z /r u (r c )

Example 17. For p < q Z /, let S2,q denote a (p,q)-football. These
spaces are (topologically) 2-spheres, but whose north and south poles are
modelled metrically on quotients of the 2-disk by cyclic rotation of order p, q,
respectively. (If q > p 1, then S2 q is commonly referred to as a Zq-
teardrop.) Then S2 is a two-fold orlifold cover S2

2, 3 4, 6"

Remark 18. This example shows that even though the underlying space
(S 2, in this case) may be simply connected, there may exist proper orbifold
coverings.

Example 19. Let M be a Riemannian manifold. Let F’ be a proper
discontinuous group of isometries acting on M, and F c F’ a subgroup. Then
the natural quotient map M/F--, M/F’ is an orbifold covering map. In
particular, M---) M is an orbifold covering map, where M denotes the
universal cover of M.

As in the case of topological space.s, every connected orbifold O has a
connected universal covering orbifold O and the same uniqueness holds. It is
a regular covering, and the orbifold fundamental group.Tr’rb(o) is defined to
be the group of deck transformations of the cover p: O ---, O. It follows that
T/’rb(i[) 0, and that as orbifolds O (/r’rb(o).

Example 20. It can be shown that S22.3 has no proper orbifolds coverings,
and hence it follows that $22.3 is the universal orbifold covering of S42,6 and

orb(u2 )__ Z2that zr "’-’4, 6

We now give the proof of Theorem 2. Although the proof is more or less
the same as in the Riemannian manifold case, we give a detailed proof since
the arguments used here emphasize the length space structure rather
than the Riemannian structure and are somewhat different in flavor than the
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standard ones. This difference is most notable, in the proof that the isometry
group of the universal orbifold cover splits.

Proof of Theorem 2. Apply Theorem 1 to split the universal orbifold cover
as O N R1, where N contains no lines. Then the isometry group of 0
splits as Iso((5) Iso(N) Iso(R/). To see this, note that if y(t)
(Y l(t), 3’2(t)): R - N R is a line, then both y and y2 are lines, and hence
3’1 const. Thus all lines 3’(t) have the form 3’(t) (p, 3(t)), where p N
and q is a line in RI. Consider an isometry

q(P, Y) (Ol(P, Y),q2(P, Y))" N R ---> N

If 3’ is a line, then q 03, is a line. The first observation is that for fixed
p N, the function ql(P, ): RI ’-) N is constant. This follows by considering
two intersecting lines y, - in RI. Let 3,(0) z(0) and let q(p, y(t)) (q, y’(t))
and q(p, z(t)) (q’, -’(t)). Then y’, z’ are lines and we have

o d(( p, ,,, (o)), ( p, d(( p, ,/(o)), ( p,

d((q, y’(0)), (q’,

In particular, q q’. Since in R given any two lines there is a third line
(which may be one of the original lines) intersecting the original two, it
follows easily that ql(P, 3’(t))= q for all lines 3’ c RI. This suffices to
establish the first observation. We next observe that ql(P, Y) ql(P): N --* N
is an isometry. To see this, let 3’ be a line in Rt. Then for any p, q N,

dZ(p,q) da((p,3"(t)),(q,3"(t)))
da((p’,3"(t)),(q’,3""(t))) da(p’,q’) + da(3"(t),3""(t))

where q(p, 3’) (p’, 3") and q(q, 3’) (q’, 3’"). In particular, it follows that

d2(p, q) > de(p’, q’) d2(q:, P, qq).

Applying the same argument using q-1, p,, q, in place of q, p, q gives the
reverse inequality. Hence 1 is an isometry. Furthermore, we can now
conclude from the last series of equalities that 02(p, 3"(t)) 3"(t) 3""(t)
2(q, 3"(t)). This shows that for fixed y Rt, the function q2(’, Y): N R is
constant. Finally, since q and ql are isometries, it follows that q2(P, Y)=
tp2(y): R " R is an isometry. The totality of the previous arguments show
that all isometries q of N R are of the form q(p, y) (ql(P), q2(Y))with
ql, q2 isometries of N and R respectively. Hence there is a natural isomor-
phism Iso(0) Iso(N) Iso(R/). Let pr1, pr2 denote the respective projec-
tions.



690 JOSEPH E. BORZELLINO AND SHUN-HUI ZHU

We now show by contradiction that N is compact. The details for this part
are essentially the same as those in [P]. If N were not compact, then a
standard application of the Arzela-Ascoli theorem gives the existence of a ray
y" [0, oo) N. Regarding 7r’rb(o) c Iso(0) as a group of isometries acting
on (, we see that as Riemannian orbifolds O O/zr’rb(o). Note that
zr’rb(o) acts (properly) discontinuously on ( since O is Hausdortf. By
assumption, O is compact, so there exists a compact set/ c ( such that for
all x 0, there exists g r’r(o) so that gx /(. Let K prl(/(). Thus,
for each y(t), t > 0, there exists gt Prl(’n’rb(O)) so that gt(’Y(t)) K.
Extract a convergent subsequence gt..(T(ti)) p K N, with - oo. De-
fine )’i" [-ti, oo) --, N by yi(t) gti(/(t + ti)). The 7i’s are rays and by the
Arzela-Ascoli theorem a subsequence must converge to a line. This is a
contradiction and thus N is compact.
The desired result now follows by considering the kernel of the homomor-

phism pr2" 7r’rb(o) --* Iso(R/). The kernel F of pr2 is finite. For, if not, let (n
be a sequence of mutually distinct isometries of N such that (n, id) F. Fix
p N. Then (pn, id) (p, 0) (qn(p), 0) contains a convergent subsequence,
since N is compact. This is a contradiction since zr’rb(o) acts (properly)
discontinuously. Hence F is finite and we have the desired exact sequence:

7r)rb(o) -- C 1.IF

To verify that C is a crystallographic group, it suffices to check that C acts
(properly) discontinuously on Rt. Suppose not, then there exists y R and a
sequence of isometries (ff, q) 7r’rb(o)with the q mutually distinct and
qgn(y) Z Rl. Again, since N is compact, we may assume that n for
all n. But then, (O,qn)" (P, Y) ((p),z) contradicting the fact that
zr’rb(o) acts (properly) discontinuously. This completes the proof.

Remark 21. It is useful to note that if X is any inner metric space such
that X Y Rt, where Y contains no lines, then the argument in the proof
of Theorem 2 that the isometry group splits remains valid and thus the
isometry group of X splits as Iso(X) Iso(Y) Iso(R/).
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