ORIENTATION REVERSING AUTOMORPHISMS OF RIEMANN SURFACES

Emilio Bujalance ${ }^{1}$ and Antonio F. Costa ${ }^{1}$

It was shown by Jakob Nielsen [N] that the fixed point data determines an orientation preserving automorphism of prime order on a given compact Riemann surface up to topological conjugacy. In this paper we classify up to topological conjugation the orientation reversing automorphisms of order $2 p$, for p prime, on compact Riemann surfaces of genus $g_{0} \geq 2$. In 1979, Robert Zarrow studied this classification (see [Z1] and [Z2]). However we have found some errors in his works.

We separate our study in two cases: when the automorphisms have order 4 and when the automorphisms have order $2 p$, with p an odd prime. In the first case we have proved the following theorem:

Theorem 1. Let X be a Riemann surface, suppose that ϕ_{1} and ϕ_{2} are two orientation reversing automorphisms of X such that ϕ_{1}^{2} and ϕ_{2}^{2} have order 2 and they have fixed points. Then ϕ_{1} and ϕ_{2} are conjugate if and only if ϕ_{1}^{2} and ϕ_{2}^{2} have the same number of fixed points.

The above theorem agrees with Theorem 1.1 of [Z1] but if the considered automorphisms have fixed point free squares and $g_{0} \equiv 1(\bmod 4)$ then we find two conjugacy classes instead of one as Zarrow claimed (see Theorem 2).

For the automorphisms of order $2 p$ with p an odd prime we have established the following result:

Theorem 3. Let X be a Riemann surface and suppose that ϕ_{1} and ϕ_{2} are two orientation reversing automorphisms of order $2 p$ where p is an odd prime. Then ϕ_{1} and ϕ_{2} are conjugate if and only if (1) $X /\left\langle\phi_{1}\right\rangle$ and $X /\left\langle\phi_{2}\right\rangle$ are homeomorphic, (2) ϕ_{1}^{2} and ϕ_{2}^{2} are conjugate and (3) the action of ϕ_{1}^{2} on Fix ϕ_{1}^{p} (fixed point set of ϕ_{1}^{p}) is conjugate to the action of ϕ_{2}^{2} on Fix ϕ_{2}^{p}.

The conditions of this theorem are different to those proposed in [Z2]. However in the example in Section 3 we show that the conditions of Zarrow's statement are not sufficient.

[^0]
1. NEC groups and automorphisms of NEC groups

A non-euclidean crystallographic group (NEC group) is a discrete subgroup Γ of the group of isometries of the hyperbolic plane H^{2} (including the orientation reversing isometries, namely reflections and glide reflections) with compact quotient space.
NEC groups may be classified according to their signatures [M]. The signature of an NEC group Γ is a symbol of the form

$$
\left(g, \pm,\left[m_{1}, \ldots, m_{t}\right],\left\{\left(n_{i_{1}}, \ldots, n_{i_{s}}\right), i=1, \ldots, k\right\}\right)
$$

where g is the genus of the surface H^{2} / Γ, the sign + or - indicates whether the surface is orientable or non-orientable, the $m_{i} \geq 0$ (proper periods) represent the branching indices over the interior points of H^{2} / Γ by the projection $p: H^{2} \rightarrow H^{2} / \Gamma$, the $n_{i j} \geq 2$ (linked periods) represent the branching indices over the points of the boundary of the surface under the projection p, and k is the number of boundary components of H^{2} / Γ. If $s_{i}=0$ then the i th bracket is called empty and denoted by ().

The groups Γ with sign + in the signature have a canonical presentation given by generators (canonical system of generators):

$$
\begin{aligned}
x_{i}, i & =1, \ldots, t & & \text { (elliptic generators) } \\
e_{i}, i & =1, \ldots, k & & \text { (boundary generators) } \\
c_{i j}, i & =1, \ldots, k, j=0, \ldots, s_{i} & & \text { (reflection generators) } \\
a_{j}, b_{j} & =1, \ldots, g & & \text { (hyperbolic generators) }
\end{aligned}
$$

and relations

$$
\begin{aligned}
& x_{i}^{m_{i}}=1, i=1, \ldots, t \\
& c_{i s_{i}}=e_{i}^{-1} c_{i 0} e_{i}, \quad i=1, \ldots, k \\
& c_{i j-1}^{2}=c_{i j}^{2}=\left(c_{i j-1} c_{i j}\right)^{n_{i j}}=1, \quad i=1, \ldots, k, \quad j=1, \ldots, s_{i} \\
& e_{1} \ldots e_{k} x_{1} \ldots x_{t} a_{1} b_{1} a_{1}^{-1} b_{1}^{-1} \ldots a_{g} b_{g} a_{g}^{-1} b_{g}^{-1}=1 \quad \text { (long relation) }
\end{aligned}
$$

If the group Γ has sign - in its signature it has the same presentation replacing the hyperbolic generators by the glide-reflections $d_{j}, j=1 \ldots g$ and the long relation by

$$
e_{1} \ldots e_{k} x_{1} \ldots x_{t} d_{1}^{2} \ldots d_{g}^{2}=1
$$

From the results of Singerman [S] if ϕ is an automorphism of the surface H^{2} / Γ then there exists an NEC group Γ^{\prime} such that $\Gamma \triangleleft \Gamma^{\prime}$, and $\Gamma^{\prime} / \Gamma \approx\langle\phi\rangle$.

In our study, the knowledge of some special types of automorphisms of NEC groups will be important.

Let Γ be an NEC group with sign + in its signature and $x_{i}, e_{i}, c_{i j}, a_{j}, b_{j}$ be a canonical system of generators then the automorphisms to be used are:
ω defined by $\omega\left(a_{1}\right)=a_{1} b_{1}$ and $\omega(y)=y$ for every canonical generator y different from a_{1}.
ξ defined by $\xi\left(a_{1}\right)=a_{1} b_{1}, \xi\left(b_{1}\right)=a_{1}^{-1}$ and $\xi(y)=y$ for every canonical generator different from a_{1} and b_{1}.
ν_{j} defined by $\nu_{j}\left(a_{j}\right)=a_{j+1}, \quad \nu_{j}\left(b_{j}\right)=b_{j+1}, \quad \nu_{j}\left(a_{j+1}\right)=c_{j+1}^{-1} a_{j} c_{j+1}$, $\nu_{j}\left(b_{j+1}\right)=c_{j+1}^{-1} b_{j} c_{j+1}$, where $c_{j+1}=\left[a_{j+1}, b_{j+1}\right]$ and $\nu_{j}(y)=y$ for every canonical generator y different from a_{j}, b_{j}, a_{j+1} and b_{j+1}.
μ defined by $\mu\left(a_{1}\right)=a_{2} a_{1}, \quad \mu\left(a_{2}\right)=b_{1} a_{2} b_{1}^{-1}, \quad \mu\left(b_{1}\right)=b_{1}, \quad \mu\left(b_{2}\right)=$ $a_{2} b_{2} a_{2}^{-1} b_{1}^{-1}, \mu(y)=a_{2} y a_{2}^{-1}$ where y is an elliptic, reflection, boundary or hyperbolic generator different from $a_{1}, b_{1}, a_{2}, b_{2}$.
σ defined by $\sigma\left(x_{t}\right)=a_{1}^{-1} x_{t} a_{1}, \sigma\left(a_{1}\right)=\left[a_{1}^{-1}, x_{t}^{-1}\right] a_{1}, \sigma\left(b_{1}\right)=b_{1} a_{1}^{-1} x_{t} a_{1}$, $\sigma(y)=y$ for every canonical generator different from x_{t}, a_{1} and b_{1}.

If $s_{i}=s_{i+1}=0$, then we define λ_{i} by $\lambda_{i}\left(e_{i}\right)=e_{i} e_{i+1} e_{i}^{-1}, \lambda_{i}\left(e_{i+1}\right)=e_{i}$, $\lambda_{i}\left(c_{i 0}\right)=e_{i} c_{(i+1) 0} e_{i}^{-1}, \lambda_{i}\left(c_{(i+1) 0}\right)=c_{i 0}, \lambda_{i}(y)=y$ for every canonical generator y different from $c_{i 0}, c_{(i+1) 0}, e_{i}$ and e_{i+1}.

Assume that $t=0$; then we can define the automorphism π, by

$$
\begin{aligned}
& \pi\left(e_{k}\right)=a_{1}^{-1} e_{k} a_{1}, \quad \pi\left(c_{k i}\right)=a_{1}^{-1} c_{k i} a_{1} \\
& \pi\left(a_{1}\right)=\left[a_{1}^{-1}, e_{k}^{-1}\right] a_{1}, \quad \pi\left(b_{1}\right)=b_{1} a_{1}^{-1} e_{k}, a_{1}
\end{aligned}
$$

$\pi(y)=y$ for every canonical generator y different from $e_{k}, c_{k i}, a_{1}$ and b_{1}.
If the sign in the signature of Γ is - and $x_{i}, e_{i}, c_{i j}, d_{j}$ is a canonical system of generators then the automorphisms to be used are:
α_{j} defined by $\alpha_{j}\left(d_{j}\right)=d_{j}^{2} d_{j+1} d_{j}^{-2}, \alpha_{j}\left(d_{j+1}\right)=d_{j}, \alpha_{j}(y)=y$ for every canonical generator y different from d_{j} and d_{j+1}.
β_{j} defined by $\beta_{j}\left(d_{j}\right)=d_{j} d_{j+1}^{-1} d_{j}^{-1}, \beta_{j}\left(d_{j+1}\right)=d_{j} d_{j+1}^{2}, \beta_{j}(y)=y$ for every canonical generator y different from d_{j} and d_{j+1}.
γ defined by $\gamma\left(d_{1}\right)=x_{t} d_{1}, \gamma\left(x_{t}\right)=x_{t} d_{1} x_{t}^{-1} d_{1}^{-1} x_{t}^{-1}, \gamma(y)=y$ for every canonical generator y different from d_{1} and x_{t}.

Assume that $s_{i}=s_{i+1}=0$, then we can define the automorphism δ_{i} by

$$
\begin{array}{ll}
\delta_{i}\left(e_{i}\right)=e_{i} e_{i+1} e_{i}^{-1}, & \delta_{i}\left(e_{i+1}\right)=e_{i}, \quad \delta_{i}\left(c_{i 0}\right)=e_{i} c_{(i+1) 0} e_{i}^{-1} \\
& \delta_{i}\left(c_{(i+1) 0}\right)=c_{i 0}
\end{array}
$$

$\delta_{i}(y)=y$ for every canonical generator y different from $c_{i 0}, c_{(i+1) 0}, e_{i}$ and e_{i+1}.

Assume that $t=0$ and $s_{k}=0$; then we can consider the automorphism ε defined by

$$
\varepsilon\left(d_{1}\right)=e_{k} d_{1}, \quad \varepsilon\left(e_{k}\right)=e_{k} d_{1} e_{k}^{-1} d_{1}^{-1} e_{k}^{-1}, \quad \varepsilon\left(c_{k 0}\right)=e_{k} d_{1} c_{k 0} d_{1}^{-1} e_{k}^{-1},
$$

$\varepsilon(y)=y$ for every canonical generator y different from $d_{1}, c_{k 0}$ and e_{k}.

2. Orientation reversing automorphisms of order 4

First let us prove Theorem 1 of the introduction.
Proof of Theorem 1. It is clear that if ϕ_{1} is conjugate to ϕ_{2} then ϕ_{1}^{2} and ϕ_{2}^{2} have the same number of fixed points.
Suppose now that \#Fix $\phi_{1}^{2}=\#$ Fix ϕ_{2}^{2}. Assume $X=H^{2} / \Gamma$, and that Γ_{1}, Γ_{2} are NEC groups such that $\Gamma_{1} / \Gamma \approx\left\langle\phi_{1}\right\rangle, \Gamma_{2} / \Gamma \approx\left\langle\phi_{2}\right\rangle$ then the signatures of Γ_{1} and Γ_{2} are

$$
\left(g_{i}, \pm,\left[(2)^{r_{i}}(4)^{q_{i}}\right],\left\{()^{t_{i j}}\right\}\right), \quad j=1 \ldots t, \quad i=1,2
$$

(see Chapter II of [BEGG]).
Let $\theta_{i}: \Gamma_{i} \rightarrow Z_{4} \approx\left\langle\phi_{i}\right\rangle \approx \Gamma_{i} / \Gamma$ be the natural epimorphism and let $x_{i}, e_{i}, c_{j}, a_{i}, b_{i}$ (or d_{i} according to the sign in the signature) be a canonical system of generators of Γ_{i}.
Let us prove that $t_{i j}$ must be 0 . If $t_{i j} \neq 0$ then the reflection generators $c_{j 0}$ satisfy $\theta_{i}\left(c_{j 0}\right)=\overline{2}$. If $r_{i} \neq 0, \theta_{i}\left(x_{j}\right)=\overline{2}$ for x_{j} some elliptic canonical generator and this contradicts the orientability character of X (see [HS]) and if $r_{i}=0$ then some generator d_{i}, a_{i}, b_{i} or x_{i} must be mapped on $\overline{1}$ by θ_{i} (because θ_{i} is an epimorphism) and this also contradicts the fact that X is orientable. Then $t_{1 j}=t_{2 j}=0 j=1 \ldots t$. By the orientability of X, since ϕ_{2} is orientation reversing, the sign in the signature must be - and each $q_{i}=0$. Since ϕ_{1}^{2} and ϕ_{2}^{2} have the same number of fixed points, $r_{1}=r_{2}$ and by Riemann-Hurwitz formulae $g_{1}=g_{2}$. Then the signature of Γ_{1} and Γ_{2} is

$$
\left(g,-,\left[(2)^{r}\right]\right) \text { with } r \neq 0 .
$$

The epimorphisms θ_{i} necessarily satisfy $\theta_{i}\left(d_{j}\right)=\overline{1}$ or $\overline{3}$ for every glide reflection generator of Γ_{i} and $\theta_{i}\left(x_{j}\right)=\overline{2}$ for the elliptic generators. Using the α_{j} automorphisms of Γ_{i} defined in $\S 1$, we can order the generators d_{j} in such $\frac{a}{2}$ way that: $\theta_{i}\left(d_{j}\right)=\overline{3}, j=1, \ldots, m_{i}, \theta_{i}\left(d_{j}\right)=\overline{1}, j=m_{i}+1, \ldots, g, \theta_{i}\left(x_{j}\right)=$ $\overline{2}, j=1, \ldots, r$.

If $m_{i}=0$ or g, then by an automorphism of $Z_{4}, \theta_{i}\left(d_{j}\right)=\overline{3}$ for every j.

If $m_{i} \neq 0, g$ then, since $r \neq 0$, using automorphisms γ, α_{j} of $\S 1$ we can construct a new system of generators of Γ_{i} such that $m_{i}=g$. Thus we can find an isomorphism $\psi: \Gamma_{1} \rightarrow \Gamma_{2}$ such that $\theta_{1}=\theta_{2} \psi$ and ϕ_{1} is conjugated to ϕ_{2} (see Theorem 3 of $[M]$).

Theorem 2. Let X be a Riemann surface of genus $g_{0} \geq 2$. If $g_{0} \equiv 1$ $(\bmod 4)$ there are two conjugacy classes of orientation reversing automorphisms of order 4 having squares that are fixed point free automorphisms of X; if g_{0} is not congruent to 1 modulo 4 then there are no such automorphisms.

Proof. Let X be H^{2} / Γ and ϕ an orientation reversing automorphism of order 4 of X and such that ϕ^{2} does not have fixed points. If $\Gamma^{\prime} / \Gamma \approx\langle\phi\rangle$ then by the same reason as in the proof of Theorem 1 the signature of Γ^{\prime} is ($g,-,[-],\{-\})$. Let $\theta: \Gamma^{\prime} \rightarrow Z_{4} \approx\langle\phi\rangle \approx \Gamma^{\prime} / \Gamma$ be the natural epimorphism. Since $\theta\left(d_{i}\right)=\overline{1}$ or $\overline{3}$ for $i=1, \ldots, g$ then g must be even and so g_{0} is congruent to 1 modulo 4.
Assume that $\theta\left(d_{j}\right)=\overline{1}$ and $\theta\left(d_{j+1}\right)=\overline{1}$, with $0<j<g-1$. Then using the automorphism β_{j} of $\Gamma^{\prime}($ see $\S 1)$ we have $\theta\left(\beta_{j}\left(d_{j}\right)\right)=\theta\left(\beta_{j}\left(d_{j+1}\right)\right)=\overline{3}$. If there is an even number of generators d_{i} sent by θ to $\overline{1}$ then using the automorphisms α_{j} of $\S 1$ and the β_{j} we can obtain a new system of generators of Γ^{\prime} such that $\theta\left(d_{j}^{\prime}\right)=\overline{3}$ for $j=1, \ldots, g$. If there is an odd number of d_{i} sent to $\overline{1}$ by the same method we can obtain $d_{j}^{\prime}, j=1, \ldots, g$ such that $\theta\left(d_{j}^{\prime}\right)=\overline{3} j=1, \ldots, g-1$ and $\theta\left(d_{g}\right)=\overline{1}$.

Then there are at most two conjugacy classes of automorphisms satisfying the conditions of the theorem.

In order to finish the proof let us take two automorphisms ϕ_{1}, ϕ_{2} satisfying the conditions of the theorem. Let θ_{1} and θ_{2} be the epimorphisms defined by ϕ_{1} and ϕ_{2} and assume that $\theta_{1}\left(d_{j}\right)=\overline{3}$ for $j=1, \ldots, g$ and $\theta_{2}\left(d_{j}\right)=\overline{3}$ for $j=1, \ldots, g-1, \theta_{2}\left(d_{g}\right)=\overline{1}$.

Then θ_{2} can be defined by $\theta_{2}(y)=\overline{3}\left\langle d_{1} \ldots d_{g}, y\right\rangle+\overline{2}\left\langle d_{g}, y\right\rangle ; y \in \Gamma_{1}$, where \langle,$\rangle is the intersection number modulo 2$. If there is an isomorphism $\psi: \Gamma_{1} \rightarrow \Gamma_{2}$ such that $\theta_{1}=\theta_{2} \psi$ then $\psi\left(d_{1}\right), \ldots, \psi\left(d_{g}\right)$ will be a system of generators of Γ_{2} and $\theta_{2}\left(\psi\left(d_{j}\right)\right)=\overline{3}$ for $j=1, \ldots, g$. Then $\left\langle d_{g}, \psi\left(d_{j}\right)\right\rangle=0$ for every j, which is impossible. Therefore ϕ_{1} and ϕ_{2} are not conjugate.

3. Orientation reversing automorphisms of order $2 p$, for p an odd prime

Let X be a Riemann surface and ϕ an orientation reversing automorphism of order $2 p$ with p an odd prime. The set of fixed points of ϕ^{p}, Fix ϕ^{p}, consists of finitely many disjoint closed curves and the orientation preserving automorphism ϕ^{2} of order p acts on Fix ϕ^{p}.

Proof of Theorem 3. If ϕ_{1} is a conjugate to ϕ_{2} then it is clear that $X /\left\langle\phi_{1}\right\rangle$ is homeomorphic to $X /\left\langle\phi_{2}\right\rangle, \phi_{1}^{2}$ and ϕ_{2}^{2} are conjugate and $\left.\phi_{1}^{2}\right|_{\text {Fix } \phi_{1}^{p}}$ is also conjugate to $\left.\phi_{2}^{2}\right|_{\text {Fix } \phi_{2}}$.

Let ϕ be an automorphism of X of order $2 p$. If $X=H^{2} / \Gamma$, let Γ_{1} be an NEC group such that $\langle\phi\rangle \approx \Gamma_{1} / \Gamma$ and $\theta: \Gamma_{1} \rightarrow Z_{2 p} \approx\langle\phi\rangle \approx \Gamma_{1} / \Gamma$ be the natural projection. To prove the converse of Theorem 3 it is enough to show that θ is completely determined by the topological type of $X /\langle\phi\rangle$, the conjugation class of ϕ^{2} and the action of ϕ^{2} on Fix ϕ^{p}.

By the results in Chapter 2 of [BEGG] the signature of Γ_{1} is

$$
\left(g, \pm,\left[(2)^{r},(p)^{s},(2 p)^{q}\right],\left\{(\quad)^{v}\right\}\right)
$$

Since ϕ is orientation reversing there exists an orientation reversing element in Γ_{1} and the image under θ of such an element must be a generator of $Z_{2 p}$ or $\bar{p} \in Z_{2 p}$ because X is orientable. Using the above orientation reversing element, the results of [HS] and the orientability of X it is easy to obtain that $r=q=0$.

Case 1. $\quad s>0$. In this case the signature of Γ_{1} is $\left(g, \pm,\left[(p)^{s}\right],\left\{()^{v}\right\}\right)$.
Subcase 1. The sign in the signature of Γ_{1} is - . In other words the signature of Γ_{1} is $\left.\left(g,-,\left[(p)^{s}\right],(\quad)^{v}\right\}\right)$. Let $d_{i}, i=1, \ldots, g, x_{i}, i=1, \ldots, s$, $e_{i}, i=1, \ldots, v$ be a canonical system of generators of the NEC group Γ_{1}. Then

$$
\begin{aligned}
\theta\left(d_{i}\right) & =r_{i} \in Z_{2 p}, \text { with } r_{i} \text { odd, } i=1, \ldots, g \\
\theta\left(x_{i}\right) & =\overline{1}_{i} \in Z_{2 p}, \text { with } \overline{1}_{i} \text { even, } i=1, \ldots, s, \\
\theta\left(e_{i}\right) & =\bar{k}_{i} \in Z_{2 p}, \text { with } \bar{k}_{i} \text { even, } i=1, \ldots, v, \\
\theta\left(c_{i}\right) & =\bar{p} \in Z_{2 p}, i=1, \ldots, v
\end{aligned}
$$

The conjugacy class of ϕ^{2} completely determines $\theta\left(x_{i}\right)$ for $i=1, \ldots, s$ (up to order) and the action of ϕ^{2} on Fix ϕ^{p} determines $\theta\left(e_{i}\right)$ up the order of e_{1}, \ldots, e_{v} but the automorphism δ_{i} tells us that such order is not important. In order to finish this case we will find a new set of glide reflection generators for Γ_{1} such that the image under θ is completely determined by the data. Using the automorphisms α_{i} of $\S 1$ we can change the order of the d_{i} 's to obtain $\theta\left(d_{j}\right)=\overline{1}, j=m, \ldots, g$ and $\theta\left(d_{j}\right) \neq \overline{1}$ for each j from 1 to $m-1$. Assume $m \neq 1$. Since $s>0$ there is an $e>0$ such that $\theta\left(x_{s}\right)^{e} \theta\left(d_{1}\right)=\overline{1}$. With the automorphism $\left(\gamma \alpha_{1} \gamma \alpha_{1}\right)^{e}$ we obtain a new system of generators $d_{1}^{\prime}, \ldots, d_{g}^{\prime}$ such that $\theta\left(d_{j}^{\prime}\right)=\theta\left(d_{j}\right), j=m, \ldots, g$ and $\theta\left(d_{1}^{\prime}\right)=\overline{1}$. Reordering the d_{j}^{\prime} we have a new system of generators such that $\theta\left(d_{m-1}^{\prime}\right)=\cdots=$ $\theta\left(d_{g}^{\prime}\right)=\overline{1}$. Repeating this process we can arrive at a new system d_{1}, \ldots, d_{g}
such that $\theta\left(d_{2}\right)=\cdots=\theta\left(d_{g}\right)=\overline{1}$ and $\theta\left(d_{1}\right)$ is determined by the relation

$$
e_{1} \ldots e_{v} x_{1} \ldots x_{s} d_{1}^{2} \ldots d_{g}^{2}=1
$$

and by the fact that $\theta\left(d_{1}\right)=\bar{f}$ with f odd.
Subcase 2. Signature with sign + . In this case the signature is $\left(g ;+;\left[(p)^{s}\right] ;\left\{(\quad)^{\nu}\right\}\right)$. Let $a_{i}, b_{i}, i=1, \ldots, g, x_{i}, i=1, \ldots, s, e_{i}, i=1, \ldots, v$ be a canonical system of generators of Γ_{1}. As in subcase $1, \theta\left(x_{i}\right)$ and $\theta\left(e_{i}\right)$ are determined by the conjugation class of ϕ^{2} and the action of ϕ^{2} on Fix ϕ^{p}. Using the automorphisms $\omega, \xi, \nu_{j}, \mu$ and σ we can choose the generators a_{i}, b_{i} in order to obtain $\theta\left(a_{j}\right)=\theta\left(b_{i}\right)=\overline{1}$ (compare with [H]).

Case 1. $\quad s=0$
Subcase 1. $v>0$ and there exists a generator e_{i} of Γ_{1} such that $\theta\left(e_{i}\right) \neq \overline{0}$. Using the automorphisms λ_{i} and δ_{i} we can assume $\theta\left(e_{t}\right) \neq \overline{0}$. Then the proof of the two subcases of case 1 can be modified for this subcase replacing the automorphism σ by π if the sign is + in the signature of Γ_{1} and the automorphism γ by ε if the sign is - .

Subcase 2. $v=0$ or $\theta\left(e_{i}\right)=\overline{0}$ for every generator e_{i} of Γ_{1}. Since ϕ is orientation reversing the sign in the signature of Γ_{1} must be - in order for θ to be an epimorphism. Then the signature of Γ_{1} is $\left(g,-,[],\left\{()^{\nu}\right\}\right)$. Let $d_{1}, \ldots, d_{g}, e_{1}, \ldots, e_{v}$ be a system of generators. In this case we have $\theta\left(e_{1}\right)=$ $\cdots=\theta\left(e_{v}\right)=\overline{0}$. If $g=2, \theta\left(d_{1}\right)$ and $\theta\left(d_{2}\right)$ are completely determined by the long relation and the fact that $\theta\left(d_{i}\right)=e$ with e odd, up automorphism in $Z_{2 p}$. Assume now that $g \geq 3$. Since θ is an epimorphism there is a d_{i} such that $\theta\left(d_{i}\right)$ is a generator of $Z_{2 p}$ and by automorphism of $Z_{2 p}$ we can assume that $\theta\left(d_{i}\right)=\overline{1}$. After use of the automorphisms α_{i} we can assume $\theta\left(d_{m}\right)=$ $\cdots=\theta\left(d_{g}\right)=\overline{1}$ and $\theta\left(d_{j}\right) \neq \overline{1}$ for every j from 1 to $m-1$. There exists $e \in\{1, \ldots,(p-1)\}$ such that $\theta\left(d_{m-1}\right)+\overline{2 e}=\overline{1}$; then the automorphism $\left(\beta_{m-1} \cdot \beta_{m-2} \cdot \alpha_{m-2} \cdot \alpha_{m-1}\right)^{e}$ gives us a new system of generators $d_{1}, \ldots, d_{g}, e_{1}, \ldots, e_{v}$ such that $\theta\left(d_{m-1}\right)=\cdots=\theta\left(d_{g}\right)=\overline{1}$. Repeating the process we obtain a system of generators such that $\theta\left(e_{1}\right)=\cdots=\theta\left(e_{v}\right)=\overline{0}$, $\theta\left(d_{2}\right)=\cdots=\theta\left(d_{g}\right)=\overline{1}$ and $\theta\left(d_{1}\right)$ is determined by the long relation and the fact that $\theta\left(d_{1}\right)=\bar{e}$ where e is odd.

In Zarrow's paper [Z2] the condition 3 of Theorem 3 is replaced by ϕ_{1}^{p} and ϕ_{2}^{p} are conjugate. The next example shows the problems of his condition:

Example. Let Γ be an NEC group of signature ($\left.0,+,[\quad],\left\{()^{3}\right\}\right)$ and let $e_{1}, e_{2}, e_{3}, c_{10}, c_{20}, c_{30}$ be a canonical system of generators for Γ. Consider the epimorphism $\theta_{1}: \Gamma \rightarrow Z_{10}$ defined by $\theta_{1}\left(e_{1}\right)=\overline{0}, \theta_{1}\left(e_{2}\right)=\overline{2}, \theta_{1}\left(e_{3}\right)=\overline{8}$, $\theta_{1}\left(c_{i 0}\right)=\overline{5}, i=1,2,3$, and $\theta_{2}: \Gamma \rightarrow Z_{10}$ defined by $\theta_{2}\left(e_{1}\right)=\overline{0}, \theta_{2}\left(e_{2}\right)=\overline{4}$, $\theta_{2}\left(e_{3}\right)=\overline{6}, \theta_{2}\left(c_{i 0}\right)=\overline{5}, i=1,2,3$. Then $\operatorname{ker} \theta_{1}=\operatorname{ker} \theta_{2}$ and let X be $H^{2} / \operatorname{ker} \theta_{1}=H^{2} / \operatorname{ker} \theta_{2}$. The epimorphisms θ_{1} and θ_{2} define two orientation reversing automorphisms ϕ_{1} and ϕ_{2} of order 10 on X. The automorphisms
ϕ_{1} and ϕ_{2} satisfy $X /\left\langle\phi_{1}\right\rangle \approx X /\left\langle\phi_{2}\right\rangle \approx H^{2} / \Gamma_{1}$ (sphere with three holes), ϕ_{1}^{2} and ϕ_{2}^{2} are conjugate (they are two fixed point free automorphisms of order five on X) and ϕ_{1}^{5} and ϕ_{2}^{5} are conjugate because they are two orientation reversing involutions on X with seven fixed curves; i.e. ϕ_{1} and ϕ_{2} satisfy the condition of Zarrow. The action of ϕ_{1} on Fix ϕ_{1}^{5} permutes cyclically five fixed curves of ϕ_{1}^{5}, there is a fixed curve of ϕ_{1}^{5} rotating $2 \pi / 5$ and the other one rotating $-2 \pi / 5$. The action of ϕ_{2} on Fix ϕ_{2}^{5} permutes cyclically five curves, there is a curve of Fix ϕ_{2}^{5} rotating $4 \pi / 5$ and the other one rotating $-4 \pi / 5$. Then the action of ϕ_{1} on Fix ϕ_{1}^{5} is not conjugate to the action of ϕ_{2} on Fix ϕ_{2}^{5} and ϕ_{1} is not conjugate to ϕ_{2}.

References

[BEGG] E. Bujalance, J.J. Etayo, J.M. Gamboa and G. Gromadzki, Automorphism groups of compact bordered Klein surfaces. Lecture Notes in Mathematics 1439, SpringerVerlag, Berlin, 1990.
[H] W.J. Harvey, On branch loci in Teichmüller space, Trans. Amer. Math. Soc. 153 (1971), 387-399.
[HS] H. Hoare and D. Singerman, "The orientability of subgroups of plane groups" in Groups, St Andrews 1981, London Math. Soc. lecture Notes 71, pp. 221-227.
[M] A.M. Macbeath, The classification of non-Euclidean plane crystallographic groups, Canad. J. Math 19 (1967), 1192-1205.
[N] J. Nielsen, Die Struktur periodischer Transformationen von Flächen, Danske Vid Selsk. Mat-Fys. Medd. 1 (1937), 1-77.
[Z1] R. Zarrow, Orientation reversing square roots of involutions, Illinois J. Math., 23 (1979), 71-80.
[Z2] ___, Orientation reversing maps of surfaces, Illinois J. Math., 23 (1979), 82-92.

Universidad Nacional de Educacion a Distancia Madrid, Spain

[^0]: Received February 10, 1992; received in revised form February 2, 1993.
 1991 Mathematics Subject Classification. Primary 30F10; Secondary 57M60.
 ${ }^{1}$ Partially supported by DGICYT PB89-0201 and Science Program C.E.E.

