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ERGODIC THEOREMS FOR CONVOLUTIONS OF A
MEASURE ON A GROUP

ROGER JONES JOSEPH ROSENBLATT AND ARKADY TEMPELMAN

Introduction

Let G be a Hausdorff locally compact group (called a group here) and let
Ix be a probability measure in M(G), the finite regular Borel measures on G.
By Iltz II , we will denote the total variation norm of Ix M(G). Suppose that
(X,/3, m) is a measure space with rn being a tr-finite positive measure. Let T
be a representation of G as invertible measure-preserving transformations of
(X,/3, rn). Then there is an operator on L2(X, , rn) associated with Ix,
denoted by T, which integrates Tg, g G, with respect to Ix. This operator
can be defined weakly by

(T.f, f) fff(Tg-X)f2(x)dm(x ) dIx(g)

for all fl, f2 L2(X, , m). In the books by Tempelman [34], [35] and in
several recent articles (see Bellow, Jones, and Rosenblatt [3], [4], [5],
Derriennic and Lin [9], and Rosenblatt [28, 29]) in the case of probability
measures Ix, the norm and almost everywhere behavior of the iterates of Tg
on Lp(X, [3, m) have been studied with some success. In this article, these
various results are extended to general locally compact groups, including a
specific discussion of the influence that the spectral behavior of Ix and Tg
have on the conclusions. Various positive results about norm and a.e.
convergence of the iterates of Tg will be obtained, and counterexamples will
be discussed which illustrate the limitations on the theorems and the tech-
niques that are used.

1. Direct integral formulas

The first issue is to clarify the definition of Tg fTg dIx(g). If dIx th dh,
where h is a right-invariant Haar measure on G, and b LI(G, h), then
this operator is the standard integration of the representation T as unitary
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operators on L2(X,,m) defined by Tgf(X)=f(Tg-lX) for all f
L2(X, , m). See Hewitt and Ross [17]. To define T more generally requires
only a use of the Fubini theorem. For this reason, we assume that G is
it-compact and that T is jointly measurable in the sense that the mapping
G X --> X by (g, x) ---> TgX, g G, x X, is measurable with respect to
the product it-algebra/3 /3 in G X, where/3 denotes the Borel sets in
G. See Rudin [30] for technical details stated here that arise in the use of
Fubini’s theorem.

It is going to be necessary at some points in the sequel to know something
about the continuity of the representation g Tg. Generally, if L2(X, fl, m)
is separable, then the measurability of this representation gives weak and
strong continuity. By approximation, it follows that T is continuous on any
L,(X,/3, m), 1 < p < . However, T is also continuous on L(X, fl, m)
because LI(X fl, m) is separable too. See Moore [24]. It is also the case that
the assumption of joint measurability of T implies that T is continuous on
each Lp(X, fl, m), 1 _< p < . In any case then, there is no harm in assuming
the continuity throughout in what follows. See Tempelman [34, 35] for
further information on these issues.
Now fix p, 1<p<o% and let q be the index conjugate to p. Let

f Lp(X, fl, m) and let f2 Lq(X, , m). Then define

(fl, f2)(g) ff(T,-x)f2(x) dm(x) for all g G.

This function is well-defined and lid’(f1, f2)ll IIf llllf211q. Thus, ’(fl, f2)
is a bounded Borel measurable function on G. Thus, we can define

I(fl, f2) f f2)(g) dix(g).

This gives a sesquilinear form I such that

II(fl, f2)l < Ilflllpllf211qlllll.

Also, this shows that the function (g, x),--> fl(Tg-lX)f:z(x) is in LI(G X,
/3G /3, Ix m) and for a.e. x X, g ,--> fl(Tg-lX)f2(x) is in LI(G, G, Ix).
Also, the function

X(fl, f2)(x) ffl(Tg-X)f2(x)d(g)
is in L (x, fl, m) with I(fl, f2) fX(fl, f2) din. Hence, I can be computed
by either iterated integral.
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This argument shows that for all .fx Lp(X,/3, m), there exists a unique
element, denoted Tu,f in Lp(X, , m) such that I(f f2)---fTu.flf2 din.
Also, for a.e. x,

rifl(X) ffl(rg-lX) d(g).
It is clear that Tg is a bounded linear operator on Lp(X,,m)with
IIT, _< ]]/x ]]1. The operator Tg defined in this manner is what is meant by

fT dl(g).
In a manner similar to the above, if T is a continuous representation of G

as unitary operators on a Hilbert space H, then for any /z M(G),
there is a continuous operator T defined on H weakly by (Ttzfl f2)=
f(Tgfl, f2) dlx(g) for fl, f2 H. Then IITgII -< IIlll too. If H
L2(X, , m), the previous use of Fubini’s theorem extends this to giving an
interpretation of Ztzfl as an integral of the form Tgfl(x) ffl(Tg-lX)dlz(g)
for a.e. x X. If T is an irreducible representation h of G on H, then Tg
will be denoted in the sequel by T to emphasize the dependence on A, even
though h would be more strictly consistent with the previous notation. The
reason for this notation is more apparent in stating Corollary 1.6.
Now if/z > 0, then Tg > 0 and if/z is a probability measure then Tg is a

positive contraction simultaneously on all Lp spaces. Moreover, if/x is the
Dirac mass tg at g G, then Tg Tg. The mapping/x T from M(G) to
the bounded operators on Lp(X, , m) is a well-defined linear mapping. It is
also a Banach algebra homomorphism commuting with the adjoint operator.
The routine proof of this fact which is stated precisely in 1.1 will be omitted.

1.1. PROPOSITION. If tX, v M(G), then Tg .v Tg T,. If tz* is defined
by/x*(E) =/x(E-1) for all E G, then (Tg)* T..

1.2. Remark. Just as above, if T is a continuous representation of G as
unitary operators on a Hilbert space H, then/z T is a Banach .-algebra
homomorphism of M(G) into the bounded operators on H. We will need
this observation later in discussing the direct integral decomposition of Tg.

For applications in ergodic theory, one important task is to be able to
compute the spectrum of T on L2(X, fl, m). To carry this out via direct
integrals, we need some separability hypothesis on G. By 0 is meant the
unitary dual of G in the Fell topology. See Dixmier [10] and Fell [11], [12],
[13]. The separability of ( will be needed in Theorem 1.5 and the use of
Choquet’s Theorem in Corollary 1.7.

1.3. PROPOSITION. If G is a g-compact group, then G has a metric
topology if and only is separable (i.e., has a countable dense subset.)
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Proof If G is g-compact and metric then L2(G, fiG, AG) is separable.
Therefore, the convex set P c L=(G, fiG, AG) Of regular positive linear func-
tionals on LI(G, fiG, AG)with norm no more than 1 is separable in the
w*-topology. See Hewitt and Ross [17] for a discussion of P. It is immediate
that ( is then separable. Conversely, if ( is separable, let F c ( be a
countable dense subset. Because G is r-compact and each y F is irre-
ducible, there is a countable dense subset Vy c Hy in the underlying Hilbert
space Hy of y. For each finite set A c F, finite sets By c Vy, y A, and
k > 1, let

k) {g G" l(3,(g)v,v>

< 1/k for all y A and v By}.

Then the sets N(A, {By}, k) are open neighborhoods of e G, and there are
countably many of them. If we show they form a neighborhood basis at
e G, then G is first axiom and metric. First, any g in all N(A, {B}, k) has
(y(g)v,v) (v,v) for all y F and v Vy. But then y(g)= Id for
y F. However, the density of F in t says that if p (, and w Ho there
exists y e F, w Hr,, such that lim(y(g)w, w) (p(g)w, w i uni-
formly on compacta in G. Hence, (p(g)w, w) (w, w) for any w Ho and
so p(g) Id for all p (. That is, if g is all N(A, {By}, k) then g e. But
now take any compact neighborhood K of e in G and any open set
U, e U c K. If no N(A, {By}, k) U, then by the finite-intersection prop-
erty there is some g K \ U which is in all N(A, {By}, k). However then
g e and g U, a contradiction which shows the sets N(A, {By}, k) are a
basis of neighborhoods of e in G. Thus, G is first axiom and a metric space.

1.4. Remark. It is also clear that G is a r-compact metric group if and
only if L2(G, G, AG) is separable. Some authors say G is separable in this
case. This can be confusing. For example, the compact abelian group
1-[TT T {z C: Izl 1}, is separable (in that it has a countable dense
subset), but it is not a metric group and ( is not separable. Also, generally if
G is separable, then G is a metric group, but the converse is not the case
without some extra hypothesis, like r-compactness.
The spectral decomposition theorem that we need is Theorem 1.5. It

requires the strong separability hypothesis that L2(G, G, AG) has a count-
able dense set, which Propostion 1.3 and Remark 1.4 should clarify.
There are several versions of Theorem 1.5, some global as mentioned in
Tempelman [34], [35]. However, we need only the version given here. See
Mackey [22] and Dixmier [10] for good discussions of this existence theorem.
These sources also explain the measurability concepts used here.
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1.5. THEOREM. Given a r-compact metric group, and a continuous unitary
representation T of G, there is a measure space (A, .) consisting of continuous
irreducible representations over which T is unitarily equivalent to a direct
integral fA TA dF(h) with respect to some tr-finite positive measure F on
(A, .) and some measurable h TA from A to G.

There are many technical issues associated with such direct integral
decompositions. For example, the measure space (A, _) can be chosen
without dependence on T, so that only F remains to be chosen given T. This
is not important in our applications. We only really need the fact that T, also
decomposes as a direct integral via the above. Also, no uniqueness of this
decomposition is needed, which is fortunate since only certain groups have
such a property. See Mackey [22] and Tempelman [34], [35] for the following.
For additional facts about direct integrals, see also Dixmier [10].

1.6. COROLLARY. If G is a g-compact metric group, and lz M(G), then
with respect to a direct integral decomposition of T, we have Tg fA
T) dF(h).

In particular, for G abelian, the representation space HA of each TA,
h A, is one-dimensional and Tg fA /2(h)Id dF(h).

In any of these direct integral decompositions of/z, if/z > 0, then F is
positive. However, the formula is also useful when/x is some polynomial in a
probability measure because of the following. Suppose T is written as a
direct integral as above and f L2(X, fl, m). Then f is f fA dF(h) for
some fA HA, h A, and Ilfll2 fAIIfx I1 dE(h). It follows that

IITf1122 fall Tfxl[2A2 dF(h)

and so

AA

This is a key fact in the following and so we state it formally here and give
another proof of it, one which avoids the language of direct integrals.

1.7. COROLLARY.
JlrJl _< supxAllrJl.

If G is a r-compact metric group, and Ix M(G), then

Proof. Let f L2(X, ,m), Ilfll2 1. Then Po(g)= (Tgf, f) is a con-
tinuous positive definite function on G. As in Proposition 1.3, P is separable
and so we can apply Choquet’s Theorem to see there is a probability measure
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r on the extreme points EP of the set of continuous positive definite
functions P on G such that P0 fePP dr(p). That is, for f LI(G, o, )to),

ff( g)Po( g) d)to(g) reeff( g)P( g) d)to( g) do’(p).

It follows that Po(g) fePP(g)do’(p) for g G by Fubini’s theorem. So

Now, each p(g)= (Tu, ) for some continuous irreducible representa-
tion (p)of G on a Hilbert space Hr with vr Hv, vvllu 1. Hence,

Thus,

So IIZll 2 sup011Zffll 2. c

1.8. Remark. Notice that II Z II sup Z II for every/x if the repre-
sentation T weakly contains every irreducible representation 7 (.

Another aspect of the direct integral representation is that it gives better
criteria for the invertibility of T, than one can get using just criteria for the
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invertibility of/x in M(G). For example:

1.9. PROPOSITION. If G is
inf{ I/2(A)l" A } > 0, then T
subset of clc{/2(A): A }.

a tr-compact, metric abelian group, and
is invertible. Hence the spectrum of T is a

Proof
then

Here T fA /2(A) Id dF(A). Hence, if inf{l/2(A)[" A (} > 0,

/2(X) -11d dF(A)

is a well-defined bounded inverse for T. If y clc{/2(A): A (}, then
y Id T, TVe_ has ]Yge fl bounded away from zero. So 3’ Id T, is
invertible. That is,

C \ clc{/2 (A)" A } c C \ sp(T).

1.10. Remark. (a) If G is a discrete abelian group, or, more generally, if
G is abelian and/ has no singular part, then the Wiener-Pitt Theorem says
that the criteria above gives the invertibility of in M(G). Hence, by
Proposition 1.1, T is invertible too. However, the Wiener-Pitt phenomenon
(see Rudin [31] and Williamson [37]) shows that /x can fail to be invertible
while T, is invertible.

(b) If G is not abelian, then the same principle as above applies if each T)
is normal because if 3’ is a distance e from sp(R) for a normal operator R,
then (3’ Id R)-1 exists and

11(3’ Id R)-1[I

However, failing normality, it is possible for 3’ to be separated by e from
each sp(T)) and each (3’ Id T)) -1 to exist without there being a bound on
I1( Id- T)-lll independent of A, which would allow 3’ Id- T to exist
too. This is certainly abstractly the case, but good examples of this possibility
occurring in this explicit a context are needed.

2. Ergodic theorems for abelian groups

Various criteria for the norm and/or almost everywhere convergence of
the powers of Tg when G Z have been given which have been successful
because of the ability to compute the spectral behavior of Tg via/2. Some of
these results can be generalized.
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2.1. DEFINITION. For a probability measure /x M(G), we say /x is
adapted if the support of generates a dense subgroup of G, and we say/x is
strictly aperiodic if the support of/x is not contained in a proper closed left
coset of G.

See Rosenblatt [27] for the background and the information below. See
also Glasner [16].

2.2. PROPOSITION. Let G be an abelian group.
1) tx is adapted if and only if A and/2(A) 1 implies A 1.
2) tx is strictly aperiodic if and only if )t and ]/2(A)] 1 implies

A=I.

When G is a discrete abelian group, or when/x is spread-out (i.e., some t/,
n

and h are not mutually singular), then/z is strictly aperiodic if and only if/x
is adapted and

lim ]./,n+l n I11 0.
n

2.3. Example. (a) Let a, b, c be rationally independent real numbers. Let
/x 1/2(aa + ab + 6c). Then II/xn+l nlll 2 for all n > 1, but/z is strictly
aperiodic.

(b) The example /x in Rudin [31] is a continuous probability measure,
singular to Lebesgue measure, such that/x is strictly aperiodic, but I1n/
/xnl[l 2 for all n > 1.
Here is one simple general principle for abelian groups. This follows also

from the result in Blum-Eisenberg [6]; see Tempelman [34, 35].

2.4. THEOREM. If G is abelian and Ix is strictly aperiodic, then for m finite,
znand all f Lt,(X,/3, m), 1 < p < , lim t,f Pif, the projection off on

the G-invariant functions, with convergence in the Lp-norm.

Proof. By general principles, it suffices to prove

limn_llTf(f- Tgf)ll2 0

for all f L2. There is also no harm in identifying A as ( in this case. But if
f f 9 fv dF(y), then

IIT -(f- T f)ll fln+(’) n(3’) 1211fv1122 dF(y).
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Here [/n(3,)[ < 1 for 3’ 1. So as n ---> , 1/.n+1(3’)_ n(3")lzllf1122 __> 0 for
all 3’. By the Lebesgue Dominated Convergence Theorem,

limn__,llT(f- Tf)[[2 0.

2.5. Remark. A similar result is true for rn just tr-finite in L,(X,/3, m),
1 < p < . However, it will not be true in LI(X, ,rn). Indeed, if T is
ergodic, then I n LI(X,/3, m)= {0} if rn is not finite. However, for any
f LI(X fl, m), f > O, and any/x > 0, IITnflll Ilflll/x(a) for all n > 1.
See Section 4 for further discussion.
By analogy, the cousin to 2.4 is the following:

2.6. THEOREM. Let T be a normal contraction operator on L2(X fl, m)
and suppose that the resolution of the identity E corresponding to T has E{z:
Izl--1, z 1}--0, Then Tnf converges in LE-norm to Etl}f for all f
L2(X,,m).

Here is an alternative proof of Theorem 2.4 which does not use the
formalism of direct integrals. Assume G acts continuously as unitary opera-
tors on a Hilbert space H and that I {f H: f is G-invariant}. To see
Theorem 2.4, we take H L2(X, , m) and show that for/z strictly aperiodic
and f I +/-, limn_,ll Tffll 0. But for any f H, p(g)= (Tgf, f) is a
continuous positive-definite function on G. So, because G is abelian, the
Bochner-Weil theorem says there is a positive finite measure/xf on ( with

p( g) fC,3"( g) dp,f(3") for all g G.

The Bochner-Weil theorem can be viewed as a substitute in this case for
Choquet’s theorem as it was used in the proof of 1.7.
Now generally, the element w in the closed convex hull of {Tgf: g G}

which has smallest norm, is G-invariant. So when f I +/-, w 0.
That is, there exists a sequence of convex sums EAi(S)Tg,<s)f such that
lims__,=llEAi(s)Tgi<s)fll 0. But then,

0--s_.(EAilim( S) Tgi(s)f, E A ( s ) Tgi(s)f)
lim ii(S) tj(S) ( Tg-l(s)gi(s)f fl
$---.oo

d(3’).
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Since the integrand here is 1 at 3’ 1, and /./>_ 0, we see this shows
/(1} O.

But now we can also calculate,

f(Tf,f)d(* *ld,)n(g)

ffy(g)dp,y(y)d(p,* * b)n(g)

ff/( g)d(tx* * tx)"(g) dtx(y)

f (idb* ,.----)n(’)t) dl.6f()

fl(v)12" dr().
Since I/2(V)1 < 1 for y : 1, and /z/{1} 0, letting n o gives
limn__,oollTfll,__ --0 for any f I +/-. That is, Tf Pif as n oo for all
fH.
The same technique can be used to prove 1.9. Indeed, with the notation

above

llTfll >- infID(3,)l llfll.

Thus, if this infimum is not zero, we know T.,. is 1-1, and, as a simple
argument with Cauchy sequences shows, Range(T) is closed. But then also
Range(T) H, since otherwise there is h H, h 0, such that 0
(T,f, h) for all f H. But then T,h 0 while T, also satisfies

II T,h II >_ inf I"(y)IIIh II > o,

because "(y) =/2(y) for all , (. That is, T, is 1-1 and onto, and thus is
invertible.
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To get results in the abelian case which apply to the issue of pointwise
convergence requires more from/z than strict aperiodicity. For example, the
reason that the criterion

lim II/zn+l -/znlll 0
noo

is important can be seen from the following.

2.7. PROPOSITION. Suppose G is an abelian group and lim._,ooll/zn+l
/znlll 0. Then for all f L(X, [3, m), lim,_l[T(f- T,f)[l 0.

Proof. IIZn(f Zf)lloo IIZn+,_nflloo I1n+l nlllllflloo. r

2.8. PROPOSITION. Suppose G is an abelian group and lim,_,ool[n+l
0. Assume m is finite. Then on the subspace

S {fl + f2- Tf2" fl is G-invariant, fl Loo( X, fl, m),

f2 Loo(X,,m)},

which is dense in Lp(X, fl, m) for any
lim, ooT,nf(x ) exists a. e. x.

l < p < oo, we have if f S,

More generally, as part of proving a.e. convergence theorems on some
Lp(X, 13, m), it is desirable to have weaker conditions on/z that guarantee at
least that T,nf converges a.e. for all f S where S is dense in Lp(X, , I).
Here are two results like this. See also Lin [20] for a proof and use of the
next lemma. The assumption that G is abelian is not used in the next lemma.

2.9. LEMMA.
G-invariant.

If tx is adapted and h L2(X, [3, m) with T,h h, then h is

Proof. Here h T,h fTghdtz(g)where IIZhll2 Ilhl12 for all g G.
Assume, without loss of generality, Ilhl12 1. Then 1 Ilhl122 (T,h,h)
f(Tgh, h) dtz(g). But I(Tgh, h)l < 1. So for/z a.e. g, (Tgh, h) 1. That is,
Tgh h for/z a.e. g G. Since/z is adapted, h is G-invariant. r3

The following also appears in Blum and Reich [7] and Tempelman [34],
[35], 6.2.1, in greater generality.

2.10. PROPOSITION. Suppose G is an abelian group and Ix is strictly aperi-
odic. Then lim _,ooTff(x) exist a.e. for all f in a subspace S which is dense in
L2(X, , m).



532 R. JONES, J. ROSENBLATT AND A. TEMPELMAN

Proof. Again, it suffices to consider a direct integral decomposition Tg
f /2(7’)Id dF(7")where (A,D) is ((,/30). Consider a function f= f
fv dF(y) f nv dE(y) where fv 0 for 3’ K and K is a compact subset
of G with 1 K. By continuity of/2,

sup{lt2(,) 1"3’ K} 1 e for some e > 0.

So

I1 = fl ( )nl llLii z

2n 2<(l-e) fllf,[I dF(7,)

(1 e)2nllfl122.

Hence, E: 111T,nfll converges and so Y’=: 11Tnf[ 2 is in LI(X, , m). Thus,
lim._,ooTf(x) 0 a.e.. But the space of such functions f is dense in

{fo L2(X, , Ix) (fo, h) 0 for all G-invariant functions h}.

Indeed, if f(h, f )dF(7")= 0 for all such f, then h
except for 7’ 1. So

0 for F a.e. 7’,

Tgh f (7")hv dF(7’) f hv dF(7’) h.

But/x is strictly aperiodic and hence adapted. So h is G-invariant by Lemma
2.9.

This gives a dense subspace S of L2(X,,m), namely {fl + f2: fl is
G-invariant, (f2) 0 for 7’ K, for some K c G, K compact, 1 K}, on
which T,f converges a.e.

2.11. Remark. The conclusion in 2.8 is stronger than the one in 2.10 in
that in 2.8 we get a dense subspace of any Lv(X, , m), 1 < p < .

This is the analogous theorem for operators.

2.12. PROPOSITION. Let Tbe a normal contraction operator on L2(X,/3, m)
and suppose that the resolution of the identity E corresponding to T has E{z:
Izl 1, z 4= 1} 0. Then there is a dense subspace of LE(X, [3, m) such that
limn_.=Tf(x) exists a.e. for all f S.

2.13. Remark. (a) Sometimes it is clear that T T satisfies the hypothe-
ses of 2.12. For example, if G Z and /x is strictly aperiodic, then the
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spectral mapping theorem shows sp(T)N {z: Izl x} (1}, so trivially
2.12 holds because E{z: Izl-- 1, z 4: 1} E()= 0. However, if G R,
tz :(’3a + 6b + 6), where a, b, c, 1 are rationally independent, then /x is
strictly aperiodic but sp(T,) {z: Izl < 1}.

(b) By 1.9 it is easy to see that sp(T) {z: Izi 1} {1} if and only if for
any open neighborhood W of 1, supv wl/2(y)l < 1. It would be interesting to
characterize when Er{z" Izl 1, z 4: 1} 0 in a similar fashion. But in any
case, we have Theorem 2.10 for strictly aperiodic measures.
The other part of getting a.e. convergence theorems for Tff, f

Lp(X, , m), is the existence of a maximal inequality. There are occasions
when such a result is true along a suitable subsequence of {1, 2, 3... }. This
was observed for discrete abelian groups in [3], [4], [5]. More generally, we
have this result.

2.14. PROPOSITION. Suppose G is an abelian group and tx is strictly aperi-
odic. Assume that for some compact neighborhood K of e, sup l()l 1,

nsThen there is a subsequence (ns" s 1, 2, 3,... ) such that lims_,ooT, f(x)
exists a.e. for all f LE(X,/3, m).

Proof Proposition 1.9 and the above guarantee that

sp(T,) cn {z" lzl--- I} {11.

Since T, is a normal contraction, this result is in [4].

If/z is adapted and limn__,ooll/xn+l
because

111 0, then/z is strictly aperiodic

sup I(,)lnl((/) 1)1

as n o. So if 3/4= 1,/2(7) 4= 1 and ](7)n "") 0 as n o i.e. It2(v)l < 1 for
y 4: 1. But moreover, whenever supl/2(7)ll/2(y) 11 0 as n 0% we
have It2()l bounded away from 1 if /2(7) is bounded away from 1 i.e.
clc{/2(y): y t} {z" Izl 1} {1}. Hence, these special types of strictly
aperiodic measures also satisfy subsequence theorems by the same proof as
the one for 2.14.

2.15. PROPOSITION.
has

If G is abelian and a probability measure I M(G)

sup I(,) Inl(3,) 11 0
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as n oo, then there is an increasing subsequence (ns" s 1, 2, 3,... ) such
?1that Tg f(x) converges a.e. for all f

2.16. Remark. (a) If/x << ha and strictly aperiodic, then the conditions
of 2.14 hold. However, /z can fail to satisfy 2.14 and still satisfy 2.15. For
example, let/z 1/2(t0 + ta -- tb). If a, b are rationally independent, then
is adapted and strictly aperiodic. Also, [[/xn+l nl[1 0 since/x2 and/x are
not mutually singular, by Foguel’s theorem [14]. This norm condition is
stronger than what is required for 2.15. However, by Kronecker’s lemma, for
a sequence (y), lim_=y oo, lim_od2(y)= 1. So the conditions of 2.14
fail.

(b) The example in Rudin [31] is a symmetric probability measure with

for all al,..., Cv C. Let v =/x2. Then b’n +

but
unlll--2 for all n > 1,

sup 13(3,)Inll 3(3,) < sup rn(1 r) < 1/n
0r<l

because (y) [0, 1] for all y 0. Thus, the hypotheses of 2.15 hold, but
]l, n+l vnlll does not go to zero. This is another reason to state 2.15 in this
form. It would also be good to remark that the operator T does have
II Tn +1 Tn 112 -< C/n; indeed, this is true for any T which is normal and has
spectrum contained in a proper Stolz region. See [4].
One can also obtain some subsequence theorems for all Lp, 1 < p < o, by

using the method in [3]. Namely, if G is Rk Z for some k, > 0, and/ is
as in 2.14 or 2.15 then there exists a subsequence (n) such that lim _ooT, f(x)
exists a.e. for all f L,(X,/3, m), 1 < p < oo. Since we do not see how to
prove this more abstractly in abelian groups in general, the proof (which is
identical to the one in [3])will be left out here.

2.17. Remark. If G is a discrete abelian group, then strict aperiodicity is
the only assumption needed in 2.14. However, in general strict aperiodicity is
not sufficient. Moreover, without additional information about the behavior
of/2(y) for y near 1, there may be no way to replace (ns) by (1, 2, 3,... ). See
[51.
With regards to going beyond norm theorems to get pointwise results,

when only strict aperiodicity is assumed, the following is an example of the
difficulties that can arise.

2.18. THEOREM. Let a, b, c be real numbers such that 1, a, b and c are
rationally independent. Let {Tt: t R} be an aperiodic ergodic flow on a
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probability space (X, fl, m). Let tx -(ta + b d- c). Then for any increasing
nssequence (ns), there is f L(X, fl, m) such that lims._,T f(x) does not exist

a.e..

Before proving this result, let us make some observations. First, Ix is
strictly aperiodic, but Ilixn+l Ixn Ila 2 for all n > 1. Also, even Tn+
TII2 2 for all n > 1 here. Second, {/2(y): y R} is dense in {z" Izl _< 1
by Kronecker’s lemma. So the conditions of 2.14 and 2.15 both fail. However,
because of strict aperiodicity, there is a norm convergence result by 2.4.

Finally, because of the norm identification in 2.4, 2.18 gives a Ix such that
the averages

1 N

k=l

converge a.e. and in Lp-norm to Pif for all f Lp(X,/3, m), 1 < p < .
Nonetheless, the chaotic behavior of sp(T,) causes there to be no (subse-
quence) theorem for a.e. convergence of iterates of T. in this case.

Proof 2.18. Because the flow is ergodic, the averages

1 N

k=1

converge in L2-norm to ffdm for all f L2(X , m). Hence, to prove the
result only requires denying the finiteness of the Lz-metric entropy for (Tf,:
n >_ 1), by Bourgain [8]. See also Rosenblatt [29].
Choose M > 1 and (tri:), 1,..., 2M, j 1,..., M, with each o-ij +_ 1,

such that column (trij: i>_ 1) consists of half + 1 and half-1, and
the columns (t%.: >_ 1) are independent of each other for distinct j. In
Rosenblatt [29] it was shown that for all a > 0, there is r(a) >_ 0 such that if
(r/g) is lacunary with rlk+l/rlk > r(a), and sk + 1, then there exists y,

< for k > 1. Choose a subsequence (nmk:I’l 1, such that ly TM ski a
nmok > 1)with nmk+l/nm >_ r(oz)fo all k > 1. Choose Yi, lyil 1, lyi tril

< a for 1,..., 2 k/’, j" 1,... M. Now choose real numbers ri, ri+ >_ r
+ 1, i= 1,..., M, with I/2(ri) -’il < e0. This is possible by the rational
independence of 1, a, b, c. By suitable choices of a and e0, we see that we
can arrange Inm:(ri) triyl < e for 1,... ,2M, j 1,..., M.
Using Lind [21], the aperiodicity of (T/: R) shows that for all e > 0,

there is a measure-theoretic copy of (F [L, L], IxF AR) in (X, m) where
IxF is a positive measure on F with m(X\ (F [-L, L]))< e, so that
Tt(x, r) (x, r + t) for (x, r) F [-L, L] with + r [-L, L] too. It
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follows that

1 1-s
2- > t(F) > 2L

Define Xr(X, t) exp(-2rirt) for (x, t) F [-L, L], and Xr(x, t) 0
otherwise. Here Xr(t)will also denote exp(-2rirt), for any R. Let

1 2M
f(x,t) Ex,(x,t).

l=-i

This f has L2-norm which can be estimated by

1 2M
11fl122 m(F -L, L ]) + - t’tl’.t’l

and

fXrl "r dm
1 fLLe_2rirlte+2rirl,td

2 1
<

2L’27rlrt--rl,
< 2rrL

since [r rr[ > 1 for 4: 1’. Hence

1Ilfll22 < 1 + --ff2M(2M
2M--1

=1+ 27rL

Also, for (x, t) F [-L, L], such that s+t[-L,L] for all s
supp(/zn),

1 2M

E sn(S)Xrl(X, S -b t)T2f(x’t) 2V/ l=1

2M

2/1=11E s txn(s)exp(-2rirl( s + t))

2n

2V -" ( rl)Xr,(t).
/=1

Hence, there is a constant K, depending only on M, such that if tl < L K,
x E F, and k 1,..., M, then

1 2M

Zmkf(x’t) 2 E nmk(rl)Xrl(t)"
l=1
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But then for k 4= k’,

I(Zmf Z"’f)(x t)
F -L+K

dt dlzF( x)

E (nmk(rl) nmk’(rl))Xrl(t)
/----1

dt dlxF( x)

> 2L ’J_.+r2t E (nmk(rl) nmk’(rl))Xrl(t)
1=1

dt.

But for 4= 1’,

2 1
<- 27rlrl_ rl,

<-- -since Ir
k k’,

rrl >_ 1 for 4= l’. So expanding the integrand above gives, for

> (1 e)(2L 2K) E I/2"mk(r/) -/2""(r/)12
2L" 2t /=1

1 e 2t(2t 1)
4

2L 2t

If L is large enough, and e > 0 small enough, for k 4= k’,

2M(1 e)(2L 2K) E Itrlk2L" 2t 1=1

2M(1-e)(2L-2K) E12e-2L" 2t l=1

(1 e)(2t- 1)
2frL

2M1 12 1
>

2v+ 5
1=1

1 1 4
>

2M+1 (4" 2t-1) > .
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At the same time, if L is large enough and e > 0 is small enough, we can
3 2have >_ Ilfll2.

The conclusion is that for any M >_ 1 there exists f L2(X [3, m), Ilfl12 1
and some nml,..., nm such that IITmf- Tn’fll2 >_ V/8/15 for all k, k’

1,..., M, k = k’. This shows that the metric entropy of Tf is infinite.

2.19. Remark. (a) The same conclusion as 2.18 is true if we just know
that some non-trivial arc in {z" Izl 1} is a subset of clc{/2(r): r R}.

(b) The example in 2.18 is important because all previously studied cases of
the use of convolution powers to get ergodic theorems had the property that
if there were an Lp-norm theorem, then there was at least an a.e. conver-
gence theorem along a subsequence of powers (ns). See Bellow, Jones,
Rosenblatt [3].

(c) There should be an analogous theorem for a normal operator T with
sp(T) containing an arc in the unit circle.

(d) An inspection of the proof of 2.18 shows that the constant in the
entropy calculation can be, instead of V/8/15, as chose to - as we like. For
geometrical reasons, this is certainly optimal. It follows, analogously to
Rosenblatt [29], that the powers Tf are 0-sweeping out for some 0.
Actually, there is a universal constant C such that 0 > C where is as
above, so that 0 does not depend on the dynamical system.
One final remark about convergence of powers for abelian groups in the

positive direction.

2.20. THEOREM. Let G be an abelian group and suppose Ix is strictly
aperiodic with {/2(3,): 3, } contained in a proper Stolz region. Then for all
f Lv(X, , m), 1 < p < , Tff converges a.e. and in Lp-norm to Ptf.

Proof The normal operator T, has sp(T) c clc{/2(3,):
Bellow, Jones, Rosenblatt [4] gives this general result.

/e d}. So

2.21. Remark. The condition in 2.20 can be phrased as

I1sup
e 1 I/2(3,)1

This generalizes to abelian groups the analogous result in [4], [5]. In particu-
lar, if G Zm, and Ix is a probability measure on G with finite second
moment, Ekzmllkll2/x(k) < o, then the expectations

{k/Ix(k)" k Zm, k ( kl,... km) k Z}
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all being zero is necessary and sufficient for

I1sup
,yZ 1 I/2(
TI

This generalizes the result in [5] for G Z.

3. General locally compact groups

In Section 2, we saw the principle that if/z is a strictly aperiodic measure
on an abelian group G, and (X,/3, m) is a probability space, then Tn satisfies
a norm convergence theorem for all f Lp(X,/3, m), 1 < p < oo; but Tf
may or may not converge a.e. for f Lp(X, , m) even for a subsequence of
powers, depending on more delicate features of the behavior of/2. In general
locally compact groups, some of these positive results still hold, but the
difficulties with getting simple general theorems become even greater.

Perhaps the first principle to observe is the following very general one.
This is stated in Tempelman [33], see also Tempelman [34], [35].

3.1. THEOREM. If tz is an adaptedprobability measure on G, and (X,/3, m)
is a probability space then for all f Lp(X, 13, m), 1 <_ p < 0% the averages

Nl E Tf(x)n
n=l

converge a.e. and in Lp-norm to the invariant projection Pxf of f on the
G-invariant functions in Lp(X, , m).

Proof. By Lemma 2.6, which did not require commutativity of G, {T,f f:
f L2(X,,m)} is a dense subspace of I+/-, where I is the subspace of
G-invariant functions in L2(X, , m). Hence,

v-o - E Tf Pxf =0
n=l 2

for all f Lp.(X,/3, m), 1 < p < oo. But also by the Dunford-Schwartz theo-
rem, 1/N)E= 1Tff(x) converges a.e. for all f

3.2. Remark. This result answers a question in Milnes and Paterson [23]
in that it shows how there always exists, what they call, ergodic sequences in
a group.
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To obtain norm and a.e. convergence theorems for Tf by itself, further
conditions on/x are required. One example of a general result of this type is
that for any it-compact amenable group there exists q LI(G,, Aa), such
that d/z q dAG is a probability measure with limn_,ooll/zn* hill 0 for all
h LI(G,, A), fhdh 0. See Rosenblatt [27] and Kaimanovich and
Vershik [19]. These give examples of when the following occurs. Also com-
pare this result with Foguel [15] which shows that in the abelian case, the
hypotheses of 2.4 and 3.3 are the same.

3.3. THEOREM. Assume G is a tr-compact metric group. Let tx be a
probability measure on the group such that lim,,__,ooll/x"* hill 0 for all
h LI(G, [3, A), fh dA O. Let (X, 13, m) be a probability space. Assume
the representation g Tg on L2(X, [3, m) is continuous. Then for any f
L,(X, , m), 1 < p < 0% lim_ooT,nf ptf in L,-norm.

Proof It suffices to show that lim,__,oollTffl[2 0 for all f L2(X, fl, m)
of the form Thf0 for some h LI(G, , h), fhdA 0, and some fo
L2(X fl, m). Indeed, if fl L2(X, fl, m), and (fl, Thfo) 0 for all such h
and f0, then (Th.)fl 0 for all such h where h* is defined by h* dA
(hdA)*. We claim this means fl is G-invariant. Choose (h,,)
LI(G fl, A), fhn dA 1, hn of compact support and supp hn

supp hn + 1, f’) supp hn {e}. Then

fhn(g)h(g ) dA(g) h(e)

for all h continuous on G. But for any f2 LE(X, fl, m),
fTgf(x)f2( x) din(x) is continuous. Also,

g

ThnTg Th Thn,tg Th Thn,go_hn

and

fhn,,3go(Z ) dAo(z) fh,(zgffl)dA(z) fh.(z) dX(z) 1.

Hence, h go h, is mean zero and

0
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But

( rhn(rgofl), f2>
fGhn( g) fxrg(rgofl)(X)f2(x) dlTl(X) d’G( g)

-+ fx(Tgofl)f2dm as n --) oo.

So letting n --. 0% for all f2 L2(X, fl, m),

0 =<Tgofl,f2> -<fl,f2>"

That is, Tgof fl for all go G.
The conclusion is that {Thfo: h Ll(G,/36, AG), fhdhG O, fo

L2(X, 13, m)} spans a subspace S c L2(X 13, m)with S +/- c I. That is, S I +/-.
Thus, if limn_,oollTfll2--0 for all f S, then the theorem is proved.
But if f= Thfo, then Tff= T,.,hfo. Now limn_ooll/x"*hl[1 0. So
limn_,oollTzn,hfol[2 =,0 too.

This gives a fairly general norm convergence theorem. But with conditions
on /, relating to the behavior of T.f, y a continuous irreducible representa-
tion of G, there are similar results. See also Tempelman [34], [35] for a
general spectral criterion for norm convergence which gives this proposition.

3.4. PROPOSITION. Assume G is a acompact metric group. Let Iz M(G)
be a probability measure. Suppose for all h q: Id, [[TXl[ < 1. Let (X, [3, m)
be a probability space. Then for all f Lp(X, fl, m), 1 <_ p < 0%
lim,-,llTnf- Plfllp O.

Proof We write the representation T on Ic L2(X fl, m) as a direct
integral which decomposes T, fA T dF(h)whereeach h is irreducible.
Now consider f f fx dF(h)where fx 0 if [IT, > 1 e. Then

II fll f ll dF(A)

2< (1 e)211fl12.
So lim,__,oollTnfll2 0 for all such f. However, by the criterion in the
theorem, such f span a dense subspace of I +/-.

3.5. Remark. It would be enough to assume T < 1 for F a.e.a. But
since F is not specified, we have imposed the stronger hypothesis. The result
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in Derriennic and Lin [9] gives the conclusion above with different hypothe-
ses.
The criterion of 3.4 turns out to be sometimes impossible to achieve. The

best type of result would be one where a property of supp() implies this
condition. However, this is the best that can be said in this regard. See Fell
[12], [13] and Dixmier [10] for background.

3.6. THEOREM. Suppose I is a strictly aperiodic probability measure on a
tr-compact metric group G and A is a continuous irreducible representation A of
G. Assume T on LE(X, ,m) is continuous. If IITll 1, then there exists a
dense subgroup H and G such that the identity representation of H is weakly
contained in A in the discrete topology.

Proof. If IITII 1 for some h, then there exists fn HA, Ilfnll 1,
limn--,o rfn II 1. But then

ff( T-’gfn, fn) dlx(g) dlx(h).

Now I(T-gfn, f)l < 1 for all h, g G. Hence, it must be that for some
subsequence (fnm) and for/z /z a.e. (g, h), limm__,oo(T-gfnm, fnm) 1. The
strict aperiodicity of shows that there is a dense subgroup H of G such
that limm_,(Tfnm, fm) 1 for all x H. That is, IdlH is weakly contained
in A in G with the discrete topology. D

3.7. Remark. The same point makes it clear that if Id is weakly contained
in A, then for all probability measures /z M(G), T 1. So no condi-
tion on can get strict inequality as in Proposition 3.4 in this situation.
Indeed, this is the case if one only knows Id is weakly contained in A with the
discrete topology.

3.8. COROLLARY. Let G be a tr-compact metric nilpotent group and let
be a strictly aperiodic measure on G. Assume (X, fl, m) is a probability space
and T is continuous on LE(X, fl, m). Then for all f
limn-llTf Plfllp O.

Proof It suffices to prove that IITII < 1 for all non-trivial continuous
irreducible A on G. By Theorem 3.6, otherwise there exists a dense subgroup
H of G such that Idl/ is weakly contained in A with the discrete topology.
Since H is dense in G, A I/-/is also an irreducible representation, A In 4: Idl/4.
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But H is nilpotent and so an irreducible representation 3/ of H does not
weakly contain Idl/-/. D

3.9. Remark. If G is nilpotent and /x is a spread-out strictly aperiodic
measure then /z satisfies the conditions needed in 3.3. The corollary above
shows that we can get this same conclusion, via a direct integral argument,
without the spread-out condition. See Derriennic and Lin [9] for a more
general result in the case that/z is spread-out.

Because of the above results, some discussion of the separation property
that is needed would be worthwhile. In part, the point is that G is not
generally Hausdorff (or even TO or T1). See Fell [12], [13] and Bekka and
Kaniuth [2]. If G is abelian, then G is the same in the Fell topology and in
the dual topology. Hence, ( is always Hausdorff. Also, if G is compact, then
( is always discrete. R. Howe pointed out that the criterion needed above is
true for nilpotent groups, even though ( can fail to be Hausdorff in the
nilpotent case.
However, it is clear that a condition like h 4: Id not weakly containing Id

will fail in general. In Yoshizawa [38], it is shown how a non-abelian free
group has some h ( which weakly contain all irreducible representations.
It is also easy to see that solvable groups may fail to have the needed
property. R. Howe has also suggested this finitely-generated example of such
a solvable group.

3.10. Example. Let M be a 2 2 matrix, e.g.,

[1 2]
which is invertible over Z and has no eigenvalues of unit modulus. Let
Z Aut(Z2) be the homomorphism defined by r/(1)= M. Then let G be
the semi-direct product Z2 n Z. That is, G can be thought of as triples
((z,z2), g:), z 1, z 2, j Z, with the multiplication,

((Z1, Z2), gJ) ((Ul,U2), g k) ((Z1, Z2) -- MJ(btl, U2), gj+k)

for all zi, ui, J, k Z. Then G is finitely generated by ((1, 0), g 0), (0, 1), g 0),
and ((0, 0), g)). It is also solvable since Z 2 is normal in G as written with
G/Z2 Z.

Consider the representation A of G on /2(Z 2) given as the regular
representation induced by

/((Z1, Z2), gJ)(Ul, U2) (Z1, Z2) -- MJ(ul, u2).
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Since G is solvable, and hence amenable, there exists an invariant mean on
I(Z2) for this action. Using the Folner condition (see Rosenblatt [26] for a
discussion of this idea due to Flner), there is a sequence (Fn) of finite sets in
Z2 such that for all zi, j _. Z,

card(A(zl, z2, gi)Fn A Fn)lim 0.
n--> card(Fn)

Let

1
1fn= /card(F,) e,.

Then fn /2(Z2), Ilfnll2 1, and limn_,llA(g)fn -f,,ll2 0 for all g G.
Hence, A weakly contains Id.
However A Id, and we claim A is irreducible. Indeed, if S c/2(Z2) is a

non-zero subspace, which is invariant under A(G), then we claim S is dense
in/2(Z2). Suppose f S, f 0, and F S +/-. Then by using A(Z 2 {gO})
as an action, one sees f.ff=0 as an element in /2(Z2) where is

convolution over Z2. But then 0 f. if= jeff on Z2= T2. Now the invari-
ance under M for S also gives f. F rM 0 for all j z where ’M is the
automorphism of T2 given by MT M, i.e.,

in the case

1 2

Since M has no eigenvalues of modulus 1, ’M is erg.odic. Since f 0 on
some set of positive measure, this ergodicity shows F 0 a.e. on T2, i.e.,
ff 0 and so F + 0.
The example above seems to be well known, but we discuss it in such detail

here because of the interesting mixture of ergodic theory and harmonic
analysis involved in its construction. E. Kaniuth pointed out that this
example is also a special case of a property of countable amenable discrete
groups G such that {e} is the only finite conjugacy orbit. For such groups,
there is an irreducible representation A such that A weakly contains every
other irreducible representation because A is weakly equivalent to the
regular representation.

It is also important to remark that the condition of 3.4 does also hold for
some solvable, non-nilpotent groups. For example, if G is the motion group
of the plane, then the conclusion of 3.6 is never the case, so 3.4 holds. This is
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also true for the higher dimensional motion groups, it remains to classify
even the connected Lie groups which cannot have 3.6 occur. Since this
separation property is so useful, but different than the types of separation
properties of G that have already been studied, this would be a worthwhile
project.

Finally, we should observe that the norm convergence theorem above for a
general strictly aperiodic measure/x may hold well past the scope of where
the norm criteria above can be used. For example, let G be the affinegroup
R n R with the multiplication given by rt(r)(s) ers for all r, s R. Then
G is solvable, non-nilpotent, and the criterion of 3.4 fails. However, it can be
shown that for any/x which is strictly aperiodic just on the factor group R,
one has the conclusion of Theorem 3.4. It seems likely even that by consider-
ing induced representations, there is a norm convergence theorem based only
on criterion on the supp() for all connected solvable groups. Since there is
also such a result for many of the semisimple groups, this would give impetus
to proving such a general norm convergence result for all Lie groups. The
details of this remain to be investigated.

Because of the problems mentioned above with norm techniques, it would
be useful to state here this general fact. It also shows that the ensuing
discussion about pointwise behavior of Tf can sometimes be completely
resolved. See also Oseledec [25] and Tempelman [33]. This type of theorem is
discussed further in Tempelman [34], [35], 4.1.5 and 6.6.1.

3.11. THEOREM. Let M(G) be a symmetric strictly aperiodic probabil-
ity measure. Let (X, fl, m) be a probability space. Then Tff converges in norm
to Plffor all f Lp(X, fl, m), 1 <_ p < o, and Tff(x) converges for a.e. x if
f Lz,(X,,m), 1 <p < .

Proof Because t is symmetric, Tg
strong maximal inequality

is normal and by Stein [32], there is a

n>l p

Let J {f L2(X, ,/x): Tt,f -f}. If f J, then Tg2f f. But /z2=

/x* it, which is adapted because/x is strictly aperiodic. So f is G-invariant
and hence f= 0. Thus, the G-invariant functions I is exactly {f
L2(X, fl, m): T,f f}. Now since Tg is symmetric, sp(Tg) c [- 1, 1]. So I +/-

contains as a dense subspace

S {ETa(-- 1 + e, 1 e)f’e > O, f Lz(X,,m)}.
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Also, IIZEr(-1 + e, 1 e)fll2 (1 eYllfll2. Hence, Tf(x) -o 0 a.e. for
any f S. Thus, the maximal inequality shows that for all p, 1 < p <
Tf(x) converges a.e. to Pif. But then it follows that Tf converges in
Lp-norm to Ptf for all f Lv(X,/3, rn) and all p, 1 < p < oo. El

The argument used above, as far as it relates a.e. convergence on a dense
subspace S, also applied in the context of Theorem 3.4.

3.12. THEOREM. Assume G is a or-compact metric group. Suppose tz is a
probability measure such that for all A Id, II T)II 1. Then there is a dense
subspace S of LE(X, 13, m) such that lim _ooTff(x) exists a.e. x for all f S.

Proof This is argued identically to the argument used in the abelian case
via direct integrals. El

Sometimes the criterion of 3.12 can be improved enough to get a conver-
gence result. Here is an example of such a theorem.

3.13. THEOREM. Let G be a compact metric group and let M(G) be a
probability measure such that supv , , Id T 1. Then for all f
Lp(G, fl, A), 1 < p <_ , Tff(x) converges a.e. to ffdAa. Also, Tff con-
verges in Lp-norm to ffdAa for all f Lp(G, fl6, Aa), 1 _< p < .
Proof Only the a.e. convergence has not been proved. By a direct

integral argument, if

L(G,/3o, Ao) {
then

T [IL < sup T < 1.

y=Id

Since IIZllLo 1, by interpolation (see [28]), IIZllL0 1- tv, for some

8v > 0, if 1 < p < oo. This gives the strong convergence E=111Tfll < oo for
all f Lp(G, fla, ha), 1 < p < oo. Hence, lim,,__,ooTf(x) 0 a.e. for these
f. This proves the theorem. El

3.14. Examples. For example, if G is abelian, then any f
with support not contained in a proper closed coset of G will do. There are
also examples though where /z is continuous and singular to
vanishes at oo to which the above applies.
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If the group G has a stronger representation property, then not only will
3.5 be satisfied but there is a uniformity too.

3.15. THEOREM. Let G be a discrete group with Kahzdan’s property T.
Suppose Ix is strictly aperiodic on G. Then sup IoIIT.YlI (1. Let
(X, fl, m) be a probability space. Then for all f L(X, fl, m), 1 < p < oo,
limnoTff(x) exists a.e. and is Pif. There is also norm convergence to the
same limit on each of Lp(X,

Proof If there exists (Yn) c \ {Id} such that II Znl[ 1, then on H
=_an, IITII-- 1. Hence, by the strict aperiodicity of /x, Id is weakly
contained in the diagonal representation T of G on H given by Tg(fn)=
(T]nfn) for all (fn) H. By property T, then H contains a G-invariant vector
(f,) with E7 llfnl 2

Hr, 1. But then each fn is G-invariant. So some Yn is
trivial, a contradiction. Now IIZ IIz < 1 and so the rest of the argument
proceeds identically to the one in 3.13. rq

3.16. Remark. We see that what is being said above in part is that if G
has property T (i.e., Id is isolated in t), then, by a well-known aspect of
property T, if Id is weakly contained in another (irreducible) representation
U, then Id is actually a subrepresentation of U. So if U is irreducible too,
then U Id. That is, when {Id} is open in the Fell topology, then Id cld{3’}
for any 3’ G, 3’ 4: Id.
Another weaker condition on IIZll which gives an a.e. convergence

theorem is one restricting the behavior of II TII as , converges to Id.

3.17. THEOREM. Suppose theprobability measure Iz M(G) has IITll < l
for all 3" ( \ {Id}, and

II Id Tf II
sup

1 II TII

Then for all f L,(X, , m), 1 < p < , lim,_=Tff(x) exists a.e.

Proof We know there is a dense subspace with a.e. convergence by 3.12.
The only question is then if there is a maximal inequality. Consider first
p 2. As in [4], [5], we can bound,

(1) sup Tfl + if < sup - E Tf
n>_l 2 n>l k=l

1/2

E kl(r /l- T )fl
k=l 2
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But

)
1/2

E l(r*’ r)l
k=l

E fl(r/- r2)l
k=l

k=l

dm

k=l

But for h 4: Id,

( )E kllzllllId- zll IlId zll =
k=l 1-1IT,

Hence, since the series is zero for h Id,

(2) E l{r+1 Z)fl <
k=l 2

llld- Tfflsup
vd 1
,rId

Hence, (1) and (2) give a strong Z2 maximal inequality with the hypothesis of
the theorem.
A similar calculation shows that the r-th difference operator ArT.n satisfies

supnrlrzflll <-- Cr[Ifll2
n>r 2

for some constant Cr. The rest of the argument, to get a strong Lp maximal
inequality, 1 < p < , proceeds as in Stein [32] by using his complex interpo-
lation theorem. Thus, there is always a strong maximal inequality in
Lp(X,/3, m), 1 < p < . This is all that was needed to prove the theorem.

3.18. Remark. It would be interesting, for/z adapted, to prove a general-
ization to locally compact groups of the negative result in [5]; namely, if

IlId- TIIlim
y-)Id 1-llzl

then T,f fails to converge a.e. for some f L2(X,/3, m).
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Of course, one possible application of the above has already been men-
tioned in Section 2 with the special case of abelian groups. Another applica-
tion would be that it strengthens 3.13 and 3.15 where the hypotheses had the
effect of bounding the denominator away from 0. The abelian examples show
that this is too strong. Theorem 3.11 can also be seen as a special case of 3.17
in some situations.
However, we also have seen that even if /x is strictly aperiodic, it can

happen that II TII 1 for some 3’ 4: Id and so the hypotheses above cannot
be fulfilled. Yet, if G is nilpotent, then we have observed that this is not a
problem and this condition is possible, depending on the behavior of II Zll
for 3’ near Id. What exact centering criterion on /z for nilpotent groups is
needed for the hypothesis of Theorem 3.17 to hold is not yet clear to us.
The difference between 3.11 and 3.17 is illustrated by groups like the one

in Example 3.10. There no condition on can keep II Zll < 1 and allow the
condition of 3.17 to even be a possible criterion. However, if/z is symmetric
and strictly aperiodic, then 3.11 will apply. The distinction arises here
because of the different types of spectral theorems that are being used. While
the direct integral method of spectral analysis of T is very useful throughout
this article, with examples like 3.10, it is not as flexible. Then the spectral
analysis of T,, or some more intrinsic measure-theoretic method, must be
employed.

Finally, let us observe that there can also be a problem with the continuity
of TII as , approaches Id. This is discussed in Dixmier [10], p. 76, where it
is noted that generally II Zll is continuous in 3’ when t is Hausdorff in the
Fell topology, something that may fail to happen even in nilpotent groups.
This is what makes it difficult to formulate subsequence principles for T, in
general groups.
For example, suppose we want to find the behavior of

93/

N1 E (T)k

for 3’ approaching Id, where the value of Dr is 0. If 3’ IITII is generally
continuous, then we can say Dr 0 as y Id. This is the only missing
ingredient in the following subsequence theorem.

3.19. THEOREM. Suppose the adapted probability measure lz M(G) has

TII <_ 1 8k for some 6c > O, for all y q K, K some compact neighbor-
hood of Id. Suppose also that G is Hausdorff in the Fell topology. Let
(X, 13, m) be a probability space. Then there is a subsequence (ns) such that for
all f L2(X, 13, m), lims_ooTsf(x) exist a.e. and is P1f.
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Proof. The proof is similar to the ones in [3], [4]. Consider

1 N

D E (Tff)
k-I

By continuity at Id and the control of IITII
subsequence (ns) such that for all y

away from Id, there is a

But then,

E r i- rt’i"Sk

s=l f llDn ,f ll dF(A)

That is,

25 IIfll 2 dF(A) 511f112.

n$

lim
1 E TfI(A) Tnsf(x) 0 a.e. for all f L2(X,/3, m).

s--,oo ns h=l

Since/z is adapted, by Theorem 3.1, we have our conclusion.

3.20. Remark. E. Kaniuth has pointed out that the condition that ( be
Hausdorff is very restrictive. For example, if G is connected, then G is
Hausdorff if and only if G contains a compact normal subgroup K such that
G/K is abelian. See Baggett and Sund [1]. While if G is discrete, then ( is
Hausdorff if and only if the center of G is of finite index in G. See Thoma
[36] for the main ingredient of this fact.
A number of interesting issues remain to be clarified in order to under-

stand fully what can be achieved by spectral methods in general groups, in
studying the a.e. and norm convergence of Tfl. Hopefully, the previous
material gives some idea of what these issues are in general.

4. When rn is Infinite

Some of the results for T on Lp(X, , rn) which were previously proved
for probability spaces (X,/3, m) extend to tr-finite measure spaces. However,
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there are some additional technical details. The most obvious issue is that
when the action by {Tg" g G} is ergodic and re(X) 0% then 0 is the only
G-invariant function in Lp(X, fl, m), 1 <_ p < 0% and Tff will most often
converge to 0 if there is a good result on Lp-norm convergence. Nevertheless,
some discussion of the G-invariant functions in L(X, fl, m) is needed. See
Jacobs [18] and Tempelman [34] for theorems as are given below.

Let I {f L(X, fl, m): f is G-invariant}, 1 _< p _< . For p 0% I
will at least always contain the constants. For p, 1 _< p < 0% let q be the
index conjugate to p, 1 _< q _< oo. Let I {f Lq(X, fl, m): (f, h) 0 for
all h I,}. So I c {f LI(X fl, m): ffdm 0}, and, if G is ergodic, then
Ip Lq(X, fl m) for 1 <_ p < oo.

4.1. THEOREM. For 1 < p < 0% Lp(X, fl, m) is the direct sum of Ip and

The case p 1, and p 0% as above are generally not true. For example,
for p 0% we could be considering an ergodic action on an infinite measure
space (X,/3, m). Then 11 {0}, I Loo and I= consists of the constants.

If p 1, then if the action is ergodic too, 11 {0} and

loo& {f Zl(g, , m)" ffdm 0}.

So 11 + I is a proper closed subspace in LI(X, 13, m). For this reason, in
the sequel, convergence theorems on Loo(X,/3, m) are not considered and
convergence theorems in LI(X, I3, m) are only considered on I=
clL{Tgf -f: g G, f LI(X, , m)}.
The following describes the norm convergence result that holds for infinite

measure spaces (X,/3, m) in the abelian case.

4.2. THEOREM. Let G be an abelian group and suppose T is (weakly)
continuous. Suppose tx is strictly aperiodic. Then"

(a) If 1 < p < oo, Tff converges in Lp-norm to the canonical projection on
Ip given by the direct sum decomposition Lp(X,,m)=Ip + I for all
f Lv(X, , m);

(b) T,f converges to 0 in L-norm for all f I.

These results can be partially generalized to other groups in the same
fashion as was done in Section 3. For example"

4.3. THEOREM. Suppose tz is a probability measure on a group such that

IITll 1 for all , , Id. Then for any separable g-finite measure
space (X, fl, m), if 1 < p < oo, limn_.oT,nf exists in Lp-norm and is the
canonical projection Plpf, iff Lp(X, fl, m).
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4.4. Remark. It is not clear in this situation whether lim,_oollixn f0l[1
0 for all fo LI(G, 13, ho), ffdho 0. In particular, even for nilpotent
groups, it seems to be unresolved whether Foguel’s theorem used in 4.2 is
still true.

4.5. COROLLARY. Let Ix be a strictly aperiodic probability measure in a
nilpotent group. Then for any separable tr-finite measure space (X, fl, m), if

n Tnf Lp(X,/3, m), 1 < p < o, lim ,f Ptpf in Lp-norm

A number of the theorems on pointwise convergence that were proved in
Section 2 and 3, also are true for g-finite spaces, generally when p is in the
range, 1 < p < oo. Such results were generally stated without any finiteness
hypothesis on m. One exception was Theorem 3.11. There the result is true
with 1 < p < o in any tr-finite (X,/3, m).
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