ON L_{∞} UNIVERSALLY BAD SEQUENCES IN ERGODIC THEORY

A. Biró

We prove an arithmetical condition (conditions (c) or (d) of the theorem) for a subsequence of the positive integers to be L_{∞} universally bad. As a consequence, we prove (Corollary 1) that every L_{∞} universally bad sequence is δ -sweeping out for some $\delta > 0$. This problem was posed by J. Rosenblatt [2, p. 231] and (as I was informed by R. Jones and J. Rosenblatt) A. Bellow and R. Jones also solve it by a different method in [1], as a corollary of their main result there. Our Corollary 2 shows that one can test L_{∞} universal badness of sequences on the special dynamical system ([0, 1], B, λ , $x \to 2x \pmod{1}$) consisting of Borel sets of [0, 1] with the Lebesgue measure, and transformation $x \to 2x \pmod{1}$.

By a dynamical system (Ω, A, μ, T) we mean a non-atomic probability space (Ω, A, μ) together with an ergodic measure preserving transformation T. A strictly increasing sequence $a_1 < a_2 < \cdots < a_n < \cdots$ of positive integers is called L_{∞} universally bad, if for every dynamical system there is an $f \in L_{\infty}(\Omega)$ for which the pointwise ergodic theorem along the subsequence $\{a_i\}$ is not true, i.e., for which $\frac{1}{n}\sum_{i=1}^{n} f(T^{a_i}\omega)$ fails to converge in a set of ω of positive measure.

THEOREM. The following statements are equivalent for a given strictly increasing sequence $(a_1 < a_2 < \cdots)$ of positive integers.

(a) There exists a dynamical system (Ω, A, μ, T) such that for every $f \in L_{\infty}(\Omega)$,

$$\frac{1}{n}\sum_{i=1}^n f(T^{a_i}\omega)$$

is convergent for a.e. $\omega \in \Omega$; i.e., $\{a_i\}$ is not L_{∞} universally bad.

(b) For every c > 0 there exists a dynamical system (Ω, A, μ, T) and an $\varepsilon > 0$ with the property that if $G \in A$, γ is the characteristic function of G, and

$$\limsup_{n\to\infty}\frac{1}{n}\sum_{i=1}^n\gamma(T^{a_i}\omega)\geq c$$

for a.e. $\omega \in \Omega$, then $\mu(G) \geq \varepsilon$.

Received April 8, 1996

1991 Mathematics Subject Classification. Primary 28D05; Secondary 11B75.

310 A. BIRÓ

(c) For every 0 < c < 1 there is an $\varepsilon > 0$ such that if n is a positive integer, $H \subseteq \{1, 2, ..., n\}$, χ is the characteristic function of H, and $|H| < \varepsilon n$, then

$$\left|\left\{1 \le x \le n: \max_{k=1,2,\dots} \frac{1}{k} \sum_{i=1}^{k} \chi(x+a_i) \ge c\right\}\right| \le (1-\varepsilon)n.$$

(d) For every 0 < c, $c^* < 1$, there is an $\varepsilon > 0$ such that if n is a positive integer, $H \subseteq \{1, 2, ..., n\}$, χ is the characteristic function of H, and $|H| < \varepsilon n$, then

$$\left|\left\{1 \leq x \leq n: \max_{k=1,2,\dots} \frac{1}{k} \sum_{i=1}^{k} \chi(x+a_i) \geq c\right\}\right| \leq c^* n.$$

(e) For every dynamical system (Ω, A, μ, T) , with the notation

$$M(g)(\omega) = \sup_{k=1,2,\ldots} \left| \frac{1}{k} \sum_{i=1}^{k} g(T^{a_i} \omega) \right|,$$

if $g_i \in L_{\infty}(\Omega)$ for $i = 1, 2, ..., \|g_i\|_{\infty} \le 1, \|g_i\|_1 \to 0$, then $\|M(g_i)\|_1 \to 0$.

Proof. (a) \Rightarrow (b). Let (Ω, A, μ, T) be the dynamical system from (a), and $\varepsilon = c$. Since $\gamma \in L_{\infty}(\Omega)$, we have, by (a),

$$\lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^n\gamma(T^{a_i}\omega)=\limsup_{n\to\infty}\frac{1}{n}\sum_{i=1}^n\gamma(T^{a_i}\omega)\geq c$$

for a.e. $\omega \in \Omega$, so by Lebesgue's theorem,

$$\mu(G) = \lim_{n \to \infty} \int_{\Omega} \frac{1}{n} \sum_{i=1}^{n} \gamma(T^{a_i}\omega) d\mu = \int_{\Omega} \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \gamma(T^{a_i}\omega) d\mu \ge c,$$

which proves (b).

(b) \Rightarrow (c). The proof depends on the following lemma of Rohlin ([3], Theorem 8.1.):

Given any dynamical system (Ω, A, μ, T) , $\varepsilon > 0$ and positive integer n, there is a measurable set $D \in A$ such that $D, T^{-1}D, \ldots, T^{-(n-1)}D$ are pairwise disjoint, and $\mu(D \cup T^{-1}D \cup \cdots \cup T^{-(n-1)}D) > 1 - \varepsilon$. \square

Assume that for a given c assertion (c) is not true. Then for every $\varepsilon > 0$ there is a positive integer $n, H \subseteq \{1, 2, ..., n\}$ such that $|H| < \varepsilon n$,

$$\left|\left\{1 \le x \le n: \max_{k=1,2,\dots} \frac{1}{k} \sum_{i=1}^{k} \chi(x+a_i) \ge c\right\}\right| > (1-\varepsilon)n.$$

Apply Rohlin's lemma for this ε and n, and for any given dynamical system (Ω, A, μ, T) ; then we get a set $D \in A$, and let

$$G_{\varepsilon} = \bigcup_{h \in H} T^{-n+h} D.$$

Denote by γ_{ε} the characteristic function of G_{ε} ; then for $1 \leq x \leq n$ and $\omega \in T^{-n+x}D$,

$$\sup_{k=1,2,...} \frac{1}{k} \sum_{i=1}^{k} \gamma_{\varepsilon}(T^{a_i}\omega) \ge \max_{k=1,2,...} \frac{1}{k} \sum_{i=1}^{k} \chi(x + a_i).$$

Hence, from the conditions, $\mu(G_{\varepsilon}) = |H|\mu(D) < \varepsilon n\mu(D) \le \varepsilon$. On the other hand,

$$\mu\left(\omega: \sup_{k=1,2,\dots} \frac{1}{k} \sum_{i=1}^k \gamma_{\varepsilon}(T^{a_i}\omega) \ge c\right) > (1-\varepsilon)n\mu(D) > (1-\varepsilon)^2 > 1-2\varepsilon.$$

Here we can neglect the small values of k, because the measure of the set $\{\omega \colon T^{a_i} \in G_{\varepsilon} \text{ for some } i \leq 1/\sqrt{\varepsilon}\}$ is at most $\frac{1}{\sqrt{\varepsilon}}\mu(G_{\varepsilon}) < \sqrt{\varepsilon}$. So for G_{ε} we know that $\mu(G_{\varepsilon}) < \varepsilon$ and

$$\mu\left(\omega: \sup_{k>1/\sqrt{\varepsilon}} \frac{1}{k} \sum_{i=1}^k \gamma_{\varepsilon}(T^{a_i}\omega) \ge c\right) > 1 - 2\varepsilon - \sqrt{\varepsilon}.$$

So if $G = \bigcup_{j=1}^{\infty} G_{\varepsilon/2^j}$, the characteristic function of G is γ , then $\mu(G) < \varepsilon$, and by the Borel-Cantelli lemma (since $\sum_{j=1}^{\infty} 2\frac{\varepsilon}{2^j} + \sqrt{\varepsilon/2^j} < \infty$) we have

$$\mu\left(\omega: \limsup_{k\to\infty}\frac{1}{k}\sum_{i=1}^k\gamma(T^{a_i}\omega)\geq c\right)=1.$$

This proves that (b) is not true.

(c) \Rightarrow (d). Implication (d) \Rightarrow (c) would be trivial, but we have to prove now the converse. Assume that assertion (d) is not true with a given c and c^* . Then for every c > 0 there is a positive integer $n, H \subseteq \{1, 2, ..., n\}$, such that $|H| < \varepsilon n$, and with the notation

$$G = \left\{ 1 \le x \le n: \max_{k=1,2,\dots} \frac{1}{k} \sum_{i=1}^{k} \chi(x + a_i) \ge c \right\}$$

we have $|G|/n > c^*$. We would like to show that this can be satisfied with numbers arbitrarily close to 1 in place of the fixed $0 < c^* < 1$. Now choose an integer m with $1 \le m \le n$, and let $H_1 = H \cup (H + m)$, $G_1 = G \cup (G + m)$; these are subsets of $\{1, 2, \ldots, n + m\}$. We want to maximize $\frac{|G_1|}{n+m}$. Assume that $\frac{|G_1|}{n+m} \le c_1^*$ for every $1 \le m \le n$ with some c_1^* . It follows that

$$|\{g \in G: g + m \in G\}| \ge 2|G| - c_1^*(n+m),$$

312 A. BIRÓ

and summing with respect to m gives

$$2n|G|-c_1^*n^2-c_1^*\frac{n(n+1)}{2}\leq \sum_{m=1}^n|\{g\in G\colon g+m\in G\}|.$$

The right hand side can be estimated with the number of pairs in G, so it is smaller than $|G|^2/2$; hence

$$c_1^*\left(3+\frac{1}{n}\right) > 4\frac{|G|}{n} - \left(\frac{|G|}{n}\right)^2.$$

Since the function $x \to 4x - x^2$ is monotone increasing in [0, 1], one can choose $1 \le m \le n$ such that

$$\frac{|G_1|}{n+m} > \frac{4c^* - (c^*)^2}{3 + (1/n)} = c^* \frac{4-c^*}{3 + (1/n)}.$$

On the other hand, it is trivial that if χ_1 is the characteristic function of H_1 , then for $x \in G_1$ we have $\max_{k=1,2,\dots} \frac{1}{k} \sum_{i=1}^k \chi_1(x+a_i) \ge c$. Summing up this process: starting with a set H with the properties

$$H \subseteq \{1, 2, \dots, n\}, |H| < \varepsilon n, \left| \left\{ 1 \le x \le n : \max_{k=1, 2, \dots} \frac{1}{k} \sum_{i=1}^{k} \chi(x + a_i) \ge c \right\} \right| > c^* n.$$
(1)

we can find a new set satisfying similar conditions with the same c, with larger n, with 2ε in place of ε , and with $c^*\frac{4-c^*}{3+(1/n)}$ in place of c^* . Fix an arbitrary 0 < q < 1, and iterate this process. We want to achieve $c^* \ge q$.

Now q is fixed, and we can start with arbitrarily small ε . With the first set H $1 \le |H| \le \varepsilon n$, so for the first n we have $\frac{1}{n} \le \varepsilon$, and since n increases, this will be always true. So we can assume for example $\frac{1}{n} < \frac{1-q}{2}$, and then, if $c^* < q$, then

$$c^* \frac{4 - c^*}{3 + (1/n)} \ge R_1 c^*$$

with a constant $R_1 > 1$ depending on q. This means that there is a constant R_2 (depending on q and on the original c^* , but these are fixed numbers) such that after R_2 steps we will have $c^* \geq q$, so we will have (1) for the actual H and n, with q in place of c^* , and with $2^{R_2}\varepsilon$ in place of the original ε . If the original ε is small enough, then $2^{R_2}\varepsilon$ is also small. This proves that assertion (c) is not true with this c.

(d) \Rightarrow (e). Firstly, from (d) it follows that for every c>0 there is an $\varepsilon>0$ such that if n is a positive integer, $0 \le \chi \le 1$ is a function defined on the set $\{1,2,\ldots,n\}$, and $\sum_{x=1}^{n} \chi(x) < \varepsilon n$, then $\sum_{x=1}^{n} \max_{k=1,2,\ldots} \frac{1}{k} \sum_{i=1}^{k} \chi(x+a_i) < cn$. Indeed, if χ is a characteristic function, then this is obvious from (d), but for general χ we have for every $\delta>0$ that $\chi \le \delta+\chi_{\delta}$, where $\chi>\delta$.

If $0 \le g \le 1$ is a function measurable on Ω , n is a large positive integer, then

$$\int_{\Omega} g(\omega) = \int_{\Omega} \frac{1}{n} \sum_{x=1}^{n} g(T^{x}\omega).$$

Hence with the notation $\Omega_1 = \{\omega : \frac{1}{n} \sum_{x=1}^n g(T^x \omega) \ge \varepsilon\}$ we have $\mu(\Omega_1) \le \frac{1}{\varepsilon} \int_{\Omega} g(\omega)$. Let h be a fixed positive integer, $\Omega_2 = \Omega - \Omega_1$; then applying the remark above for $\chi(x) = g(T^x \omega)$, we get

$$\sum_{x=1}^{n-a_h} \max_{k=1,2,...,h} \frac{1}{k} \sum_{i=1}^k g(T^{x+a_i}\omega) < cn$$

for $\omega \in \Omega_2$. Hence

$$\int_{\Omega} \max_{k=1,2,\dots,h} \frac{1}{k} \sum_{i=1}^{k} g(T^{a_i}\omega) = \frac{1}{n-a_h} \int_{\Omega} \sum_{x=1}^{n-a_h} \max_{k=1,2,\dots,h} \frac{1}{k} \sum_{i=1}^{k} g(T^{x+a_i}\omega)$$

$$\leq \frac{1}{\varepsilon} \int_{\Omega} g(\omega) + c \frac{n}{n-a_h},$$

estimating separately on the sets Ω_1 and Ω_2 . If we first let $n \to \infty$, and then $h \to \infty$, we obtain $||M(g)||_1 \le c + \frac{1}{\varepsilon} ||g||_1$. Since c can be arbitrarily small, this proves (e) (using positive and negative parts for general g).

(e) \Rightarrow (a). It is easily seen from (e) (which is a weakened version of the usual maximal inequality) that if $f \in L_{\infty}(\Omega)$, $f_1, f_2, \ldots, f_i, \ldots \in L_{\infty}(\Omega)$, $||f||_{\infty} \leq C$, $||f - f_i||_1 \to 0$, C is a constant, and the pointwise ergodic theorem along the subsequence $\{a_i\}$ is true for all f_i , then it is also true for f. So it is enough to find a dynamical system in which we know the pointwise ergodic theorem along the subsequence $\{a_i\}$ for an (in this sense) dense set of functions.

Consider the dynamical system ([0, 1], B, λ , $x \to 2x \pmod{1}$). Here the set of trigonometric polynomials is dense in the above sense, so it is enough to know the theorem for the functions $x \to e^{2\pi i n x}$ (where $n \ne 0$ is an integer), and for this it is enough to show that for any $\varepsilon > 0$ the function series $h_r(x) = \frac{1}{(1+\varepsilon)^r} \sum_{j \le (1+\varepsilon)^r} e^{2\pi i (2^{e_j} n) x}$ is convergent for a.e. x. But this is true, because by Parseval's formula

$$\int_0^1 \sum_{r=1}^{\infty} |h_r(x)|^2 dx \le \sum_{r=1}^{\infty} \frac{1}{(1+\varepsilon)^r} < \infty;$$

hence $\sum_{r=1}^{\infty} |h_r(x)|^2$ is finite a.e., so $h_r(x) \to 0$ a.e., and this proves (a). The proof of the theorem is now complete.

Following Rosenblatt [2], we say that the sequence $\{a_i\}$ is δ -sweeping out (for a given $\delta > 0$), if for every dynamical system (Ω, A, μ, T) and every $\varepsilon > 0$ there is a $G \in A$ with characteristic function γ such that $\mu(G) < \varepsilon$, and

$$\limsup_{n\to\infty}\frac{1}{n}\sum_{i=1}^n\gamma(T^{a_i}\omega)\geq\delta$$

314 A. BIRÓ

for a.e. $\omega \in \Omega$. Now we see that condition (b) of the theorem is exactly the statement that $\{a_i\}$ is not δ -sweeping out for any $\delta > 0$. So equivalence (a) \Rightarrow (b) gives the following.

COROLLARY 1. The sequence $\{a_i\}$ is L_{∞} universally bad if and only if it is δ -sweeping out for some $\delta > 0$.

From the proof of the theorem it is clear that if condition (a) is satisfied, then we can choose the special system ([0, 1], B, λ , $x \to 2x \pmod{1}$) there, the pointwise ergodic theorem along $\{a_i\}$ will be true for $f \in L_{\infty}$, and the a.e. limit will be $\int_0^1 f$. So we have:

COROLLARY 2. The sequence $\{a_i\}$ is not L_{∞} universally bad if and only if the pointwise ergodic theorem along $\{a_i\}$ is true in ([0, 1], B, λ , $x \to 2x \pmod{1}$) for L_{∞} functions, i.e., if and only if for every bounded measurable function f on the real line, periodic with respect to 1 one has for a.e. x,

$$\frac{1}{n} \sum_{i=1}^{n} f(2^{a_i} x) \to \int_0^1 f.$$

REFERENCES

- 1. A. Bellow and R. Jones, A Banach principle for L_{∞} , Advances in Math., to appear.
- J. Rosenblatt, "Universally bad sequences in ergodic theory" in Almost everywhere convergence II,
 A. Bellow and R. Jones editors, Academic Press, 1991, pp. 227-246.
- 3. M. Smorodinsky, *Ergodic theory, entropy*, Lecture Notes in Math., vol. 214, Springer-Verlag, New York, 1971.

Department of Algebra and Number Theory, Eötvös University, Muzeum krt. 6-8, H-1088 Budapest, Hungary biroand@ludens.elte.hu