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ONL UNIVERSALLY BAD SEQUENCES IN
ERGODIC THEORY

A. BIR6

We prove an arithmetical condition (conditions (c) or (d) of the theorem) for a
subsequence of the positive integers to be Lo universally bad. As a consequence,
we prove (Corollary 1) that every Lo universally bad sequence is g-sweeping out
for some 3 > 0. This problem was posed by J. Rosenblatt [2, p. 231] and (as I was
informed by R. Jones and J. Rosenblatt) A. Bellow and R. Jones also solve it by a
different method in ], as a corollary oftheir main result there. Our Corollary 2 shows
that one can test Loo universal badness of sequences on the special dynamical system
([0, ], B, ., x -- 2x (mod 1)) consisting of Borel sets of [0, with the Lebesgue
measure, and transformation x 2x(mod 1).

By a dynamical system (f2, A, lz, T) we mean a non-atomic probability space
(, A,/z) together with an ergodic measure preserving transformation T. A strictly
increasing sequence al < a2 < < an < of positive integers is called Loo
universally bad, if for every dynamical system there is an f Loo(f2) for which
the pointwise ergodic theorem along the subsequence {ai is not true, i.e., for which

ni=l f Tai to) fails to converge in a set of 09 of positive measure.

THEOREM. Thefollowing statements are equivalentfora given strictly increasing
sequence (al < a2 < ...) ofpositive integers.
(a) There exists a dynamical system (f2, A, tx, T) such thatfor every f Lo(f),

1 -f(Ta, to)
n i--1

is convergentfor a.e. to f2; i.e., {ai is not Loo universally bad.
(b) For every c > 0 there exists a dynamical system (f, A, tx, T) and an e > 0 with
the property that ifG A, y is the characteristicfunction of G, and

n

sup ’ (Ta’ to) >_ Clim
n--oo n

i=1

for a.e. to

_
f2, then Iz(G) >_ e.
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(c) For every 0 < c < there is an e > 0 such that if n is a positive integer,
H c_ 1, 2 n }, X is the characteristicfunction of H, and HI < en, then

<x _<n: ,
k ]k=l,2,max i (x + ai) >T. X _c < (1 -e)n.

(d) For every 0 < c, c* < 1, there is an e > 0 such that if n is a positive integer,
H c_ 1, 2 n}, X is the characteristicfunction of H, and HI < en, then

l
k

k=l,2,..max i X "Jr" a >7. X _c

(e) For every dynamical system (g2, A, #, T), with the notation

M(g)(w)= sup
k=l,2

k- Z g(Taito)
i=1

ifgi E Lo(g2)fori 1,2 IIgll _< 1, IIgll O, then IlM(g)ll ---> 0.

Proof (a) = (b). Let (f2, A,/z, T) be the dynamical system from (a), and e c.
Since , E L(2), we have, by (a),

lim ’(Ta’to) limsup y(Talto) >_ c
n--o n

i=l n-cx n
i=1

for a.e. to 6 fl, so by Lebesgue’s theorem,

/x(G) limL1 ff 1’(Tai to) d/z lim ’ (Ta’ to) dlz >_ c,
n--o n

i=1
n---x n

i=l

which proves (b).
(b) = (c). The proof depends on the following lemma of Rohlin ([3], Theo-

rem 8.1.):
Given any dynamical system (g2, A,/z, T), e > 0 and positive integer n, there is a

measurable set D A such that D, T-D T-0’-)D are pairwise disjoint, and
/z(D U T-1 D U U T-(n-1)D) > e. E!

Assume that for a given c assertion (c) is not true. Then for every e > 0 there is a
positive integer n, H

_
1, 2 n} such that HI < en,

l<x<n" max i (X -}-ai) >
k=l,2

X C > (1 e)n.
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Apply Rohlin’s lemma for this e and n, and for any given dynamical system (fl, A,/z,
T); then we get a set D e A, and let

G U T-n+h D"
hH

Denote by ), the characteristic function of G; then for 1 < x < n and 09 T-’+x D,

1 k

sup , ’e(Tai 09) >_.
k=l,2 i=1

1 k

max i (x+ai)
k=l,2

X

Hence, from the conditions,/z(G) IHI/x(D) < enlz(D) < e. On the other hand,

sup ye(Ta’09) >_ c > (1- e)nlz(D) > (1- e)2 > 1- 2e.
k=l,2 i=1

Here we can neglect the small values ofk, because the measure ofthe set {09: Ta’ . G
Vr. So for G we know that/z(G) < efor some _< 1 /vc} is at most /z(G) <

and

sup ?, (Tai 09) > C > 2e /-.
k> 1/Vr i=l

So if G Uj%l Ge/2y, the characteristic function of G is ,, then/x(G) < e, and by

V/’’/2j oo) we havethe Borel-Cantelli lemma (since Y__l 27 + <

/x o9: lim sup , (Ta’ 09) > C 1.
k--- oo o__

This proves that (b) is not true.
(c) = (d). Implication (d) = (c) would be trivial, but we have to prove now the

converse. Assume that assertion (d) is not true with a given c and c*. Then for every
e > 0 there is a positive integer n, H c_ 1, 2 n}, such that HI < en, and with
the notation

G 1 < x < n: max (x -+" ai) >
k=l,2,

X _C

we have IGl/n > c*. We would like to show that this can be satisfied with numbers
arbitrarily close to 1 in place of the fixed 0 < c* < 1. Now choose an integer m with
1 _< m _< n, and let H1 H LI (H + m), G G U (G + m); these are subsets

IGI Assume that < c’ for everyof 1, 2 n + m}. We want to maximize n--" n+m
1 _< m _< n with some c. It follows that

I{g e G’g + rn G}I > 2IGI- c(n + m),
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and summing with respect to m gives

,n(n+l) <E [{g G" g+m6G}[.2nlG[-cn2 -c 2 rn=l

The right hand side can be estimated with the number of pairs in G, so it is smaller
than IGI2/2; hence

(’) ,o,
* 3+- >4C1 n n n

Since the function x - 4x x2 is monotone increasing in [0, 1], one can choose
1 _< m _< n such that

IGll
>

4c* (*)2
C*

4-- C*

n+m 3 + (l/n) 3 + (l/n)

On the other hand, it is trivial that if X1 is the characteristic function of HI, then
kfor x G1 we have maxk=l,2 Ei--1 X1 (x .qt_ ai) > C. Summing up this process"

starting with a set H with the properties

He{1 2 n} IHI <en, <x<n: max X(x+ai)>c >c*n.
k=l,2

i-’1
(1)
we can find a new set satisfying similar conditions with the same c, with larger n,
with 2e in place of e, and with c* 4-c* in place of c*. Fix an arbitrary 0 < q <3(l/n)
and iterate this process. We want to achieve c* > q.
Now q is fixed, and we can start with arbitrarily small e. With the first set H

1 < HI < en, so for the first n we have < e, and since n increases, this will be
l-q and then, if c*always true. So we can assume for example < 2 < q, then

4 C*
C* > R1 c*3 + (l/n)

with a constant R1 > 1 depending on q. This means that there is a constant R2
(depending on q and on the original c*, but these are fixed numbers) such that after
R2 steps we will have c* > q, so we will have (1) for the actual H and n, with q in
place of c*, and with 2R: e in place of the original e. If the original e is small enough,
then 2Re is also small. This proves that assertion (c) is not true with this c.

(d) = (e). Firstly, from (d) it follows that for every c > 0 there is an e > 0 such
that if n is a positive integer, 0 < X < is a function defined on the set 1, 2 n },

n n =1 X (x "+" ai) < cn. Indeed, if Xand Yx=I X (x) < en, then Yx=I maxk=l,2
is a characteristic function, then this is obvious from (d), but for general X we have
for every d > 0 that X < d + X, where X > .
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If 0 < g < 1 is a function measurable on f, n is a large positive integer, then

g(co) g(TXco).
n x=l

nHence with the notation fl {co: x= g(Txco) > e} wehave/z(f2) < fug(co).
Let h be a fixed positive integer, 22 2 fl; then applying the remark above for
X (x) g(Txco), we get

n g(TX+a, co) < cnmax
x=l

k=l,2 h .=

for co "2. Hence
k 1

max g(Ta’ co) max g(Tx+a’ co)
k=l,2 h- n--ah k=l,2 h;

< g(co) + C
e n ah

estimating separately on the sets f2 and f22. If we first let n -, cx, and then h --we obtain IIM(g)ll _< c + llgll. Since c can be arbitrarily small, this proves (e)
(using positive and negative parts for general g).

(e) = (a). It is easily seen from (e) (which is a weakened version of the usual
maximal inequality) that if f L(f2), f, f2 f/ L(f), Ilfll _< C,
IIJ3 I1 _< C, f f/II1 0, C is a constant, and the pointwise ergodic theorem
along the subsequence {ai is true for all f/, then it is also true for f. So it is enough
to find a dynamical system in which we know the pointwise ergodic theorem along
the subsequence {ai} for an (in this sense) dense set of functions.

Consider the dynamical system ([0, 1], B, ;, x 2x(mod 1)). Here the set of
trigonometric polynomials is dense in the above sense, so it is enough to know the the-
orem for the functions x e2rinx (where n 0 is an integer), and for this it is enough
to show that for any e > 0 the function series hr(x) (’i+eJ’rl Ej<_(l+e)r e2zri(2ajn)x is
convergent for a.e.x. But this is true, because by Parseval’s formula

Ihr(x)l 2 dx <
r=l r=l (1 + 8)

hence 2Yr= Ihr(x)l is finite a.e., so hr(x) 0 a.e., and this proves (a). The proof
of the theorem is now complete.

Following Rosenblatt [2], we say that the sequence {ai} is a-sweeping out (for a
given 3 > 0), if for every dynamical system (f2, A,/z, T) and every e > 0 there is a
G 6 A with characteristic function y such that #(G) < e, and

1
lim sup y(Taco) >_
n---cx n

i=1
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for a.e. to f2. Now we see that condition (b) of the theorem is exactly the statement
that {ai is not -sweeping out for any > 0. So equivalence (a) = (b) gives the
following.

COROLLARY 1. The sequence {ai is L universally bad if and only if it is 8-
sweeping outfor some > O.

From the proof of the theorem it is clear that if condition (a) is satisfied, then we
can choose the special system ([0, 1], B, , x -- 2x(mod 1)) there, the pointwise
ergodic theorem along {ai will be true for f L, and the a.e. limit will be f01 f.
So we have:

COROLLARY 2. The sequence {ai is not L universally bad if and only if the
pointwise ergodic theorem along {ai} is true in ([0, 1], B, ), x 2x(mod 1)) for
Lofunctions, i.e., ifand only iffor every bounded measurablefunction f on the real
line, periodic with respect to one hasfor a.e. x,

fo1
f(2aix f"n

i=1
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