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CANONICAL RING OF A CURVE IS KOSZUL:
A SIMPLE PROOF

GIUSEPPE PARESCHI AND B. E PURNAPRAJNA

1. Introduction

In this article we prove, for canonical model of curves, a theorem illustrating the
general principle that (to paraphrase Arnold) any homogeneous ring that has a serious
reason for being quadratically presented is Koszul. In this case we give a new proof,
which is both elementary and geometric, of a theorem of Finkelberg and Vishik [VF]
(see also [Po]) which says that whenever the canonical ring of a smooth complex
projective curve is quadratically presented, it is Koszul. Our method is different from
[Po]. We use vector bundle technique, building upon the one used in [GL]. We would
also like to mention here that our methods fit a more general principle as shown in
[GP1], [GP2] and [GP3].

A. The Koszul conditions. Let k be a field. A (commutative) graded k-algebra
of the form R := k (3 R1 Rn"" is said to be Koszul if its Koszul complex is
exact, or, equivalently, if k R/R>o has a linear minimal resolution over R; namely

with E0 R and Et, R(-p)*r(t’) for any p > 1. Denote the syzygy modules by
Rt’) "= ker(Et, -- Ep-1); this means that for any p > 0 the Rt’)’s are generated in
degree p + 1 (the minimal degree) as graded R-modules (we refer to the treatment
of [BGS] for generalities on Koszul tings, in a much more general context).
When R is a commutative algebra "arising from algebraic geometry", e.g., Re

(i H(X, E(R)i), where X is a projective variety and E some line bundle on X, the
Koszul conditions have a convenient interpretation in terms of line bundles due to
Lazarsfeld. To see this, it is useful to set the following notation: if F is a sheaf
on X, MF will denote the kernel of the evaluation map H(X, F) (R) Ox F.
Note that if F is globally generated and locally free on X then Me is locally free.
However, if H is locally free then H(Mv (R) H) is the kernel of the multiplication
map H(F) (R) H(H) -- H(F (R) H). Therefore, as it is immediate to see, R
(i H(X, Me (R) E(R)i), R (i H(X, MMe(R)e (R) E(R)i) and so on. Inductively,
let us set Me "= E, Me "= Me (R) E, M2e := MM (R) E M "= MMe-! (R) E
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for any p. In this setting to be a Koszul algebra means that the multiplication map of
global sections

() o p Ho E(R)n Ho E(R)n)H (Me)(R) ) (M(R)

is surjective for any p > 0 and n > 1. We refer for instance to [P] for more details.

B. Primitive pencils. Let us recall the following terminology: a line bundle A
on C is said to be primitive if both A and Kc (R) AV are base point free. If moreover
h(A) 2, A is said to be a primitive pencil. It is well known that the existence of
certain families of primitive pencils is a meaningful geometric condition. This is also
a key point in Finkelberg and Vishik’s proof. The following result is well known.

THEOREM 1. A curve C ofgenus g > 5 has a primitive pencil ofdegree g if
and only if it is not hyperelliptic, trigonal or isomorphic to a smooth plane quintic.

For non bielliptic curves this is generally proved using the Martens-Mumford’s
Theorem, which ensures that the general element of every component of the Brill-
Noether variety wgl_l (C) parametrizes a primitive pencil (see e.g. [ACGH], pp. 372-
3). For bielliptic curves there is one component of wgl_I (C) parametrizing primitive
pencils (see e.g. [S], [W] and [CS]). The "only if" part of the theorem can be found
in [ACGH].
We would like to remark at this point that the statement in [VF] leaves open the

case of bielliptic curves. However it is easy to see that the arguments, presented here
and in [VF], also work for bielliptic curves.

The second author would like to thank David Eisenbud for his constant encour-
agement and advice.

2. Some filtrations

In this section we will prove a generalization of a result of [GL] which will be the
main technical tool used in the proof.

Let A be a primitive pencil of degree g 1. Hence Kc (R) AV is a primitive pencil
too. Clearly MA Av and MKc(R)A K (R) A. Moreover let D Pl +""-+- Pd
be a general divisor in the linear system IA]. Since we are over the complex field
we can assume that the points Pi are distinct. It is also clear that for every effective
divisor D strictly contained in D we have h(O(D)) since otherwise A would
have base points. Therefore, by Riemann-Roch, h(Kc(-D)) g deg D; i.e.,
any proper effective subdivisor of D imposes independent conditions to the canonical
system H(Kc). Let us write D D + D2 and, for any two points p, q 6 D2, let
D3 D2-p_ q.
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LEMMA 2. In the above situation assume that 0 < deg D < g 3. Then we
have the exact sequences

()

(3)

0 A -- MKc(_D (R) Kc -- A --, 0

0-- Kc(-p- q) A peO Kc(-Pi) -- 0

Proof This lemma is proved in [GL] in the case D 0. The present proof is
a straightforward generalization of the argument in [GL] and we include it for sake
of self-containedness. First of all let us observe that Kc(-Dl) is base point free:
since Kc (R) AV is base point free the only possible base points are the points of D2

but if this was the case we would have a divisor strictly contained in D not imposing
independent conditions to H(Kc). We have a commutative exact diagram

0 -- Kc(-D)

0
(4)
where

0 0 0

0 MKc(-D) "+ Mgc(-D) -- aKc(_DI),D2 0

0 -- H(Kc(-D)) (R) Oc "- H(Kc(-D1)) (R) Oc -- VKc(-D’),D2 (R) OC -- 0

-- Kc(-D1) -+ Kc(-DI)ID -+ 0

0 0

H(Kc(-D))/H(Kc(-D)) and EKc(-O,),o2
ker(VKc(_o,),o2 (R) Oc Kc(-Dl)lo2). Moreover, Kc(-D + p + q) is base
point free too (arguing as above) and then there is also a diagram like (4) taking
Kc(-D + p + q) instead of Kc(-D) and D3 instead of D2. Therefore we get a
commutative exact diagram

(5)

0 0 0

0 -- Oc(-p q) Erc(-O,),o2 EKc-O),o3 --+ 0

0 ’ V (R) 0C "- VKc(_Ol),D2 (R) 0C VKc(_Ol),O3 (R) 0C 0

0 --+ Kc(-D1)lp+q Kc(-DI)Io2 --+ Kc(-D1)Io3 -- 0

0 0 0

where:
(a) the middle column is the last column of diagram (4);
(b) the last column is the last column of the above mentioned diagram like (4) with

Kc(-D + p + q) instead of Kc(-D and D3 instead of D2;
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(C) the first column is V - H(Kc(-D D3)/H(Kc(-D D2) and the third
vertical arrow is evaluation, which is surjective since a section s H(Kc(-D
D3)) which does not vanish on D O + D2 cannot vanish at either of p and q.

Therefore since dim V 1, the kernel is Oc(-p q).
Next, let us observe that ’rc(_Ol),O is isomorphic to (piEO30c(--Pi). Indeed,

since dim VKc<-DI),D3 deg D3 := n, the evaluation map VKc<_31),o3 (R) Oc --Kc(-D)lo decomposes in n surjective maps V/ (R) Oc -- Kc(-D)lp,, whose
kernels are O(-pi). The lemma follows taking as sequence (2) and (3) the first rows
of diagrams (4) and (5) tensored by Kc (recall that Mrc<-o) K (R) A). [2

THEOREM [VF]. If C is a non-hyperelliptic, non-trigonal curve which is not a
plane quintic then the canonical ring of C is Koszul.

3. The proof

We keep the notation of the previous sections, l’he strategy will be to prove the
theorem of Finkelberg and Vishik by verifying conditions (1) for E Kc and in
order to do that one repeatedly uses Lemma 2. To this purpose let us introduce the
following slight variation on the notation of Section 1.A: if E is a sheaf on C we let

AE := E, 2IE "= Moe (R) Kc and inductively define := M-, (R) Kc for any j.
For C, A and D as in the previous sections we will prove:

PROPOSITION 3. Let D be any effective or zero divisor contained in D such that
0 J Ho(K(R)n Ho J (R)Kn0 < deg D < 2. Then the map H (MKc_DI))(R) C (MKc<-OI)

is surjectivefor any j > O.

In view of Section 1.A, the case D 0 of the proposition is the theorem (since

JKc MJKc )" To prove Proposition 3 it is convenient to use the following ad hoc
terminology:

Definitions. Given three vector bundles E, E1 and E2 on C we will say that E
is cohomologically the direct sum of E1 and E2, and we will write E E1 E2,
if there is an extension 0 ---> Ei E Ej O, exact on global sections, with
1 < i, j < 2, - j. Inductively, we will say that E =_ (im__l Ei if E F G
and F =_ (iEx Ei and G =- (ix2 Ei with X1 LI X2 {1 m}. In this case
we will also say that E is cohomologically a direct sum ofcopies ofcertain bundles
F1 Fk if every Ei is isomorphic to some Fj.

The proof of the following lemma is by induction on m and left to the reader:

LEMMA 4. Suppose that Ei are globally generated sheavesfor 1 m and
that E - (im=l El. Moreover let K be a locallyfree sheafon C and assume that the
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multiplication mapsH Ei )(R)H K) --> H Ei (R)K) are surjective. Then Me(R)K =--
)im=l Me, (R) K and the multiplication map H(E) (R) H(K) ---> H(E (R) K) is
surjective.

We are now ready to prove Proposition 3. To simplify the notation we will prove
the statement only for n 1, since the general case is similar but easier. The key
point is the following:

J isLEMMA 5. Under the hypotheses of Proposition 3, for any j > 1, Mrc<_O
cohomologically a direct sum ofcopies of A, Kc (R) Av, and line bundles oftheform
Kc(-D1), with D again as in the statement ofProposition 3 (i.e., D contained in
DandO<degD <2).

ProofofLemma 5. Induction on j" the case j follows from Lemma 2. The
only thing to show is that sequences (2) and (3) are exact at the global sections level,
and this holds since on the one hand h (Mrc-O) (R) Kc < h (A +h (A 2+ (g
3-deg D)h(Kc(-Pi))+h(Kc(-p-q)) g2_(g_ 1) deg D1-3g+3 (we have
h(Kc(-pi)) g and h(Kc(-p q)) g 2 since C is not hyperelliptic),
and on the other hand h(Mrc<_o) (R) Kc) > g2 (g 1)deg D 3g + 3 since itis
the dimension of the kernel of the multiplication map H(Kc(-D
H0(K(R)2 1)c (-D This also proves that such multiplication maps are surjective, a
well known and easy fact. If the statement is true at j 1 then it is true at j.
This follows applying Lemma 4 to M- (R) Kc := (tJrc<_O). In fact all of A,

Kc(-Di)

Kc (R) AV and line bundles of type Kc(-D) as above are globally generated, and,
moreover, the multiplication maps H(A) (R) H(Kc) -- H(Kc (R) A), H(Kc
Av) (R) H(Kc) -- H0(K(R)2

c (R) AV) are obviously surjective, while the multiplication
H(K(R)2t D surjective by the previousmaps H(Kc(-D)) (R) H(Kc) -- c - )) are

J is cohomologically a direct sum of copies of A,step. Then, by Lemma 4, Mrc_o
Kc(R)Av and ofbundles oftype iIrc<-O), again with 0 < deg D < 2. The statement

at j then follows since, by the initial step, the bundles 4rc<-O) with 0 < deg D < 2
are in turn cobomologically direct sum of copies of A, Kc (R) AV and line bundles of
type Kc(-D) as above. This proves Lemma 5.

Finally, Lemma 5 and the last part of the statement ofLemma4 prove the Theorem.
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