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ON AN INEQUALITY DUE TO BOURGAIN

MICHAEL LACEY

1. The inequality

The focus of this article is a key estimate behind J. Bourgain’s pointwise ergodic
theorems for arithmetic subsequences of the integers ([B]). It is an interesting variant
on the Hardy-Littlewood maximal function estimate on L2, and it has tantalizing
connections to some deep questions in harmonic analysis.

Some notation is necessary to state the inequality. Define the Fourier transform
by f(j) fi() f e-2ixf(x) dx. Let tp be a smooth function satisfying, say,

Io(x)l < Clx1-3, I()- 11 < I1 and I()1 < Cl1-2.
Let tpj (x) 2-Jo(2-Jx). For Ii, let ex (x) e2rixx.

THEOREM 1.1.
for e # ’. Then

sup
Ij>_jo

Let )L1, )L2, L ]i be distinct points with ILe Le, >_ 2-j

L

E ex, (x) tpj (e_x, f)(x)
e=l

_< C (log L)3 f 2.

We do not have anything to add to Bourgain’s proof of this lemma. But in some
applications, one actually knows a little more thanjust separation ofthe base points of
the multipliers. The points .e are in fact rational points, with the common denominator
not terribly large. Taking advantage of this fact; one can give a remarkably simple
proof of the estimate. Specifically:

THEOREM 1.2. With the notation of the previous theorem, assume further that
’L - 2-JA-1Z,for some A > 1. Then

ex, (x) tpj (e-x, f)(x) log log(L + A)Ilfll2.

The proof, under the restriction that the base points of the multipliers be in a
lattice, will not employ the clever ideas of Bourgain. The tools will be standard. The
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proof offered here does extend to irrational .e that admit a favorable simultaneous
Diophantine approximation--but goes no further than that.

The theorem above is strong enough for the requirements ofthe polynomial ergodic
theorems [B]. For them, one would apply the inequality above with the Xe given by

Qs={;=a/ql 1 <a <q; 2 <q <2+l’, 1.c.d.ofaandqisl}.

Notice that there are O(2) such rational points; they are separated by O(2-2);
and they have a common denominator A O (22). Hence,

sup E ex(x)oj (e_xf)(x) _< C(log s)II f 2.

The logarithmic estimate in s is sufficent to prove the polynomial ergodic theorems.
Our proof easily treats the case where the tpj are replaced by an appropriate trun-

cations of a singular integral. This is relevant to the investigations of [SW].

2. Proof of Theorem 1.2

For the proof of the second theorem, the important case to observe is this.

LEMMA 2.1. Let 1, )2 L be distinct points with I)e .e, > 1, and )e
A-1Z. Assume L < A. Then

sup
j>2 log A

L

E ex, (x) tpj (e_x, f)(x)
e=l

Cllfll2.
2

Here, the supremum is over j > 2 log A, and the constant is independent ofL and A.

Proof. The idea is that in the further restriction in the supremum, there is an extra
degree of smoothness which can be used to introduce some orthogonality.
We begin with a decomposition of f. Let (x) be a smooth function with (0) 1.

Set 3(x) ( * (e-xef)(x). Then

Summing this estimate over < < L and j > 2 log A, we see that it suffices to
estimate the L2 norm of

sup
>2 log A

L

E ex, (x) oj * fe(x)
e=l
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Fix a choice of j > 2 log A and x. We exploit smoothness in the tpj. For any
lul_< A,

It,oj * fe(x) q)j fe(x u)l < I Iq)j(x y u) qgj(x Y) Ife(Y)l dy

2J )-( 2J ) "[fe(y)ldy

C [ 2-J{A2-j m (1 + 2-Jlx yl)-3} Ife(Y) dy

--y24j/3 A-/3 --yl24j/3 A-

C(A2-J)2/3Mf(x)
C A-1My(x).

This implies that for any 0 < u < A,

< CMf(x).

But then, as these estimates are uniform in j, it suffices to estimate the L2 norm
below.

To make the argument clearer, we set j),e tpj fe. And we estimate the L2 norm
of

fo^ sup]
oo Z j>_21ogA

Fir0
A

sup
o Z j>_21og A

12ex, (x) fj,e(x u) du dx
e=l

_,ex,(u) fj,e(x) dudx
e=l

Notice that this line uses the periodicity ofthe exponentials. But 3,e is the convolution
q).i * fe(x), so that ex,(u) f,e(x) o.i * (ex,(u) fe(.))(x), treating u as a constant.
Hence

sup qgj. ex(u)3(.) (x) dudx
>_2 log A =
A L 12

ex(u)f(x) dudx
=1

This line follows by the ordinary maximal function estimate applied in the x variable.



234 MICHAEL LACEY

Continuing the line of inequalities, we conclude the proof.

fe(x) dx

L

_< C2 Ilfl122 sup I(( .e)l 2

C211f1122

To conclude the proof of the theorem, we need to control the supremum over
< j < 2 log A, which can be done with the aid of this lemma.

LEMMA 2.2. Let R1 C R2 C C Rr be sets in ,. Then

I</<K 2

_< C(log g)llfll2.

This is really just the Rademacher-Menschov Theorem, and we could deduce it
directly from that theorem. Bourgain has however, an attractive proof of the lemma,
reproduced below, which can be regarded as a dualization of the standard dyadic
decomposition approach to this theorem.

Proof Let K 2’ for an integer s. Let (Skf) 1Rk f, and let B denote the
best constant in the inequality dual to the one to be proved. Namely,

SkA B Ifkl
2

The best constant B is clearly finite. An upper bound on B will be provided.
The square of the left hand side can be expanded by taking advantage of the

equalities S Sk, and Sk Sk, Sk^k,. To get the logarithm into the picture, associate
to each _< k _< 2’ the terms (el(k), e2(k) e,(k)) in its dyadic expansion.
Namely, k ’t=l et(k)2t-l where et(k) {0, 1}. Then for an initial string of O’s
and l’s, v (el et), let 7(v) be those integers whose first terms in its dyadic
expansion agree with v. Further, denote by v0 the string obtained by appending 0 to
the end of v, and do likewise for v 1. Let vl be the length of the string v. The point
here is that for all k 79(v0) and k’ e 79(v 1), we have k < k’. Taking advantage of
all of these observations, we can write

2

k=l 0<lvl<s k O) k’’P(vl)
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k=l Ivl<s k’P(vO)

D+O.

The first term is trivially less than k Ifll122. As for the second, use the assumed
bound with best constant.

0<2
2 k’Ta(vl)

Ivl<s k79(vO) 2 k’79(vl) 2

<_ 2sB Ifkl

As each integer k is in exactly s sets 79(v), the last line follows.
Pulling the estimates together, we see that B2 < + 2sB, from which the estimate

B < 2s follows.

ProofofTheorem 1.2. By using a dilation, we may assume that the .e are all
separated by 1; that is, it is enough to consider the case j0 0. But then, by Lemma
1, we need only control the supremum over < j < 2 log(A + L). To do this, let
Rj { min<e<L I .e < 2-J }. Then, from Lemma 2,

sup I- 1Rj.T’I
l<j<2 log A+L

_< C loglog(L + A)Ilfl12.

Use a square function argument to directly compare these Fourier projections to the
multipliers we wish to control.

2 log L+A

E
j=l

L

E ex,(x) tpj * (e_,f)(x) .T’-I 1Rj.T’f(x)
e=l

< f I1@ supt j.=
2

lt () E( )e)
e=l

< CIIfll2 E 2-j
j=l

< CIIfll 2
2"
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