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ON EXTENSION OF CR FUNCTIONS FROM PIECEWISE
SMOOTH MANIFOLDS INTO A WEDGE

ANDREI E. VITYAEV

1. Introduction

In this paper we study a holomorphic extendibility of CR functions on manifolds
in Cv, i.e., functions which are annihilated by all tangential Cauchy-Riemann differ-
ential operators. The following classical result says roughly that every CR function
on an "angle" formed by manifolds extends analytically into a wedge if the manifolds
intersect in a certain "generic" way. The latter condition is formulated in terms of
defining functions.

Given a function g C (CN), we write Og agdzj.Ozj

THEOREM 1.1 (Airapetyan-Henkin). Let Pl Pt, > 1, be real valuedfunc-
tions on Cv ofclass C2 such that Opl A /x OPl 0 and p (0) pl(O) O.
Suppose that smooth manifolds with boundary M1 Ml are given by

(1) Mk {z CN pj(z) O,1 <_ j <_I, j k, pk(z) >_0}.

IfU is a continuousfunction onM t.J. .t.JMl which satisfies the tangential Cauchy-
Riemann equations on each Mj, j 1 near O, then U extends holomorphically
to a small wedge with edge M f3 f3 MI near O.

The theorem ofAirapetyan and Henkin is a generalization ofthe Edge ofthe Wedge
theorem, which was proved in 1957 in the connection with dispersion relations in
quantum mechanics. See [BMP] for the original proofand [V1] as a general reference.
In [Tu2], Tumanov proved a more precise version ofTheorem 1.1. Namely, he proved
that in Theorem 1.1 we have extendibility to a small wedge which is formed by small
pieces of manifolds M1 MI.

Note that the statement of Theorem 1.1 does not provide us with any kind of
estimate on the size of the wedge. In general, not much is known about the size of
the holomorphic hull of CR manifolds. We can mention [BDN], [BN], [BPP] where
some estimates where obtained in the case of one smooth manifold.

In this paper we prove, by a new method, a stronger version of Theorem 1.1.
Namely, we obtain estimates on the size of the wedge of extendibility. The estimates
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194 ANDREI E. VITYAEV

depend on the size of the second derivatives of (normalized) defining functions of the
manifolds forming the angle.
Now we state the main result of this paper. By C2,a, 0 < < 1 we denote the

space oftwice differentiable functions whose second derivatives belong to the Holder
class Ca. Let Ilgll,s denote the Ca norm of g over the set S; i.e., let

Ig(x) g(y)l
(2) Ilglla,s sup Ig(x)l + sup

xS x,yS, ix-yl<l x Yla

If g is a vector or a matrix, the absolute value in (2) has to be replaced by the vector
or the matrix norm. Let I’ be the unit circle. Let be the Hilbert transform on T
normalized by (h)(1) 0. The Ca-norm of will be denoted by r r(c). For a
function oJ() on CN we denote by I1o"() the norm of the 2N x 2N matrix formed
by the second derivatives of the real and imaginary parts of 09. By a we denote the

x N matrix of complex derivatives a_.j.

THEOREM 1.2. Let Pl Pl C2,a, > be real valuedfunctions on Civ such
that p (0) Pl (0) O. Suppose there exist constants C, C2, R such that

(3) C11tl >_ >_ltl, ’v’t C

(4) IlPj’()II,s, C2, S { C" I1 R}, j I.

Then if U() is a continuous CR-function on (M1 t_J U MI) fq { C
I1 <_ R} (defined by (1)) then U extends holomorphically to the wedge W with edge
M M fq fq MI which is given by

where

Ve {( C" I1 _< R2, pj(( + ) >_ 112, j l}.

The constants R, R2, C are given by

R, 19"- 4--2’ R

--C2217(C1 + 1)2/12(1 d-/)4(1 d-2/C2)3,

I }Rg.
25(C + 1)/3(1 + K)2

min
/5(1 + t)2C2(1 + 2/C2)3,

R
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Note that the fight part of inequality (3) simply means that OPl (0)/k’../k pl(0) l 0.
Also note that when C2 tends to zero and R tends to infinity, the wedge tends to fill

out the set pj >_ 0 which proves the so-called folding screen lemma. The constant C1
tells us how far the intersection of Mj’s is from being non-generic. If the intersection
of Mj’s is close to being non-genefic then the defining functions pj’s have to be
multiplied by a large constant to satisfy normalization condition (3). This makes C1
(as well as C2) large. Note that R1 does not depend on C; i.e., the size of the edge
ofW does not depend on C.

Obtaining an extension to a wedge in Theorem 1.2 requires an estimate of a
neighborhood in the approximation theorem by Baouendi-Treves. No such estimate
can be found in the original statement of the theorem in [BT]. But it is possible to
extract one from the proof. Section 4 contains a proof of the approximation theorem
with neighborhood estimates. It is basically a refinement of the proof in [B].

Theorem 1.2 as well as all other results on the extendibility of CR functions (see
[A], [Trl], [Tul], [Tu2], [Tu3]) is proved by showing that analytic discs attached to
manifolds sweep out an open set in C/v. We, however, use a technique, different from
[A] and [Tu2], of "attaching discs" which we discuss now briefly.
We denote by H2 the Hardy space of functions valued in C/v, analytic in the open

unit disc in C and whose boundary values are in LE(T). For 0 < ot < we denote
by C(T; R) the set .of/-vector real valued functions on T with each component
belonging to the Holder class Ca. By C(T) we denote the space of complex valued
functions whose real and imaginary part belong to C(T; R). We say that an analytic
disc f H2 N Cv(T) is attached to a manifold if its boundary f(T) lies on the
manifold.

The paper [BRT] suggested a new approach to the problem ofconstructing families
of analytic discs attached to a generic manifold M {z C /91(z)
/91 (Z) 0}. A disc f H2 N Cv is attached to M if it lies in the zero set of the map

(5) 7-" f(ei) H21v Cv(T -----+ (pl(f(ei)) pl(f (ei)) C(T; R).

First, we try to prove that the set 4 {f H2 f3 Cv 7(f) 0} forms a Banach
manifold near a given small disc f0. Then, in many cases, we can deal with a tangent
space to the manifold A rather than the manifolds itself. This substantially simplifies
the problem.

In this paper we prove Theorem 1.2 by employing the Banach space technique
sketched above instead of a construction based on Bishop’s equation as in [A] and
[Tu2].

Sections of the normal bundle along the boundary ofan analytic disc. Now we
discuss one more question recently studied in the literature [G], [O], [C],[F]) and
which also arises in the proof of Theorem 1.2.

Let M { 6 Cv p () p() 0} be a generic manifold and suppose
f 6 H2N fq Cv is attached to M. Denote by TfT)M the restriction of the tangent
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bundle to the boundary of f; i.e., let

Ty(T)M U Tf(t;)M"
r,.T

The space of Ca sections of this bundle can be defined as

Ca(Tf(T)M) {g E C(T) Re (Op(fg(())=0, V(ET}.
We can define the normal bundle along f(T) as

Nf(T)M rf(T)CN/ Tf(T)M.

The problem we study is the following.

PROBLEM 1. Under what conditions on f andM do holomorphicfunctions span
the space of Ca sections of the normal bundle along f(T)? In other words, under
what conditions on f and M does thefollowing hold:

(6) H2N CI Cv Ca (Nf(T)M).

Here we identify an analytic function h e H2N N Cv with its equivalence class in
Ca(Nf(T)M).

If for particular f and M equation (6) holds, then the derivative ’(f) of the map
defined by (5) is onto and we can apply the local submersion theorem to show that

the set of analytic disc attached to M forms a Banach manifold near f. Thus Problem
1 arises in the Banach space technique of attaching discs. A variation of Problem 1
also arises in an optimization problem in electrical engineering; see [HV1], [HV2]
and [Vi].

If Ilflla is sufficiently small then it is easy to see that (6) holds. If M is maxi-
mally totally real then the answer depends on the so-called factorization indices of
Op(f)/O. It follows from the results in [Ve]; see also [O],[G].

In this paper we study Problem when we have a union of manifolds M M
with a genetic intersection instead of a single manifold M.

Consider CN with coordinates (w, z) (w wl, Zl ZN-I). Suppose we
are given CR-manifolds M Ml and functions p Pl of class C2 such that

Mk {(1/3, z) CN /gj (to, z) 0, < j < I, j k}

and such that OwP A A OwPl 0 on M U U MI. Here we used notation
Owp . wjdwj. Divide the unit circle T [0, 2zr) into open intervals Tj
(2rr j-l., ,2rr }). Consider the disc f H2N f3 Cv attached to/l,..., /l in the

following manner: fir, C Ml fl C M.
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Define the set of Ca sections of the bundle Nfr)M t3... O Nfff)Ml in the same
way as above. Namely it is the set of all functions g e Cv(T) modulo the equivalence
relation

gl g2 !k Re(Opk(f(()) )0
(gl() g2()) 0 for e T \ Tk.

PROBLEM 2. Under what conditions on f and Mj’s does thefollowing hold

(7) HN2 fq Cv CU(Nf(Tt)tVI11.3... (3 Nf(Tt)Ml).

Here we identify an analytic function h e H2N tq Cv with its equivalence class in
C(Ny<T,)M t Nf<rl)gl).

One has to solve Problem 2 with f 0 when proving Theorem 1.2. The solution
is quite simple in this case.

For an arbitrary f, Problem 2 seems to be quite hard. The Vekua’s theory ofpartial
indices can not be applied. We succeeded only in proving a partial result, Theorem
3.1 which says that (7) holds if the functions pj have a triangular dependence on some
of the variables.

This paper has the following structure. In Section 2 we prove Theorem 1.2. In
Section 3 we study Problem 2. This section is completely independent of the rest of
the paper. Section 4 contains the proof of the approximation theorem with concrete
neighborhood estimates.

The author would like to thank M.S.Baouendi for many fruitful discussions.

2. A new proof of the Airapetyan-Henkin theorem

We will need the two elementary lemmas below.

LEMMA 2.1. Suppose we are given two Banach spaces A and B and a C2-map
F A B such that F(0) O. Suppose there existfour constants 3, 32, 33, X such
that

ItF’(0)ll _< d, II(F’(0))-lll _< d2, IIF"(x)ll _< d3 for Ixl < X

where F"(x) A x A -- B is the second derivative of the map F at x A.
Then there exists a continuous map L B ---> A such that

(8) F-(y) (F’(0))-(y) + L(y) for 13’1 < rain
4333’

and such that

(9) IL(y)I < 4822831y12 for lyl < min
432233, ,3---
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Also the image ofthe ball Ix < min{ 2-:, X under the map F covers a ball

lYl < min
4t22t3,282

In addition, we have 2821Yl _> Ixlfor Ixl _< min{ 2--E )}’1

LEMMA 2.2. Suppose we are given a real vector valuedfunction p (Pl /91)
of class C2’ on Civ. Suppose there exist three constants q, )’2, tr such that the
following two conditions are satisfied:

(10) ’ltl > > Itl, Yt C
\

(11) IIp"()ll,s _< ’2, $2

Then there exists a C-affine change of coordinates ’ (x + iy, u + iv)
and a set offunctions h (hi hi) such that Po -- 0 and such that for every
I’1 _< min{ 4--r tr} thefollowingfive conditions hold

pj (’) pj (x + y u + iv) 0 yj hj (x u, v) 1 < j < l,

where h (0) O, Vh(0) O,

(12) IVh(x, u, v)IR/II2N- < for I(x, u, V)II2N- < min

(13) IIh’ll,s 8?’21(1 + Iy2)3, $3 {l(x, u, V)ll2-t < - min 4--F2’ cr ),

(14) (2q -t- 1)1- P0I I’1 I- P01.
lffor some c > 0 we have pj ( Po) > cl P0l2 for I P01 < cr then

( c ’a)l,12 for .,l<tr"(15) Imj >
(2q + 1)2 2

The proofs of Lemmas 2.1 and 2.2 are very elementary, though somewhat lengthy.
We do not include the proofs in this paper and refer the reader to [AMR] as a general
reference.

Denote by M the intersection of Mj’S; i.e., M { Cv pj() 0, j
l} Divide the unit disc T [0, 2zr) into intervals given by Tj (2zr L72

2zr/) for 1 _< j _< 1. The following theorem is the main step toward proving
Theorem 1.2.
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PROPOSITION 2.3. Suppose we are given manifolds with boundary

Mk { E Cv pj() O, j k, pk() >_0}, l_<k_<l

and suppose thatfor a given point Po M inequalities (10) and (11) hold.
Then the set

(16) {f(0)’fH2tqCrc,[If-polloo <_ -, flrl C M1 flr c MI}

contains a set Vpo given by

Vpo {( CN "1( Po[ <_ , Pj(() >_ ’[g" PolE j 1 l}

where

(2’1 + 1)32/3(1 + to)2 /min
3215(1 + to)2(1 + 1,2)3,2,

cr

)3 ,2213(2,1 + 1)2112(1 + tc)4(1 + 1,2)3.

Proof. Denote by Mj a continuation of Mj near 0:

j {z Cr pk(z) O, k :/: j}.

We start with a change of coordinates. Let us write

y=21/l+lI,=81y2(l+lt,’2)3, o"* lmin{ }
It follows from Lemma 2.2 that there exists a new set of coordinates ’ (to l/)l,

Zl zv-l) (x +iy, u +iv) such that Mj {(w, z) Cv Im w h(Re w, z)}
for I(w, z)l < 2or*. We will adopt notation Sj(w, z) Im wj h(Re w, z) for
j in the sequel. Lemma 2.2 also implies that

IIj’ll,s 2", 84 {1’1

We consider the set ofdiscs attached to the manifolds M in the following manner:
fir, C M1 fin C MI. Our next objective is to show that the set of such analytic
discs forms a Banach manifold. To do so we introduce the map

(17)
R" H/ f3 Cv -- C(T \ T1; R) x... x C’(T \ T/; R),

(f)(() (/51(f(()l’r\r) /S/(f(()lT\)).
Then the set of attached discs .A is equal to {f E H2 t-I Cv." R(f) 0}.
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We are going to apply the submersion theorem to 7". to show that in a certain
neighborhood of zero disc the set of attached discs forms a Banach manifold. In
order to do so we need to show that the derivative of R. is onto and its kernel splits,
i.e., has a closed complement. Consider the derivative map

’(f)’H n C -+ C’(T \ T; R) x x C’(T \/; R),

(18)

For an analytic disc f, also consider the map

S(f) {g c= HI2 N C’ Re g(1) O} ----+ C(T; R), S(f)(g) 2Re (wg)
where stands for the x matrix of w-derivatives of t3 (/1 /l).

Obviously, ifS(f) is onto then the derivative map 7T(f) is onto. Note that isOw
equal to -0.5i times the identity matrix. Therefore 11,5(0)11 1, IIS-l(0)ll + x,
c is the C norm of the Hilbert transform. Consider the derivative of S at f:

S’(f) {g 6 Ht-IC’[’Reg(1) O}x{g 6 Htzc’’Reg(1) =0} ---+ C(T; R).

Its k-th component is given by

(19)
Oi(f) jm Oi(f)S(f)(q, g) 2 . OWjO.mqj-m -’}- OWjOYomqjgm

j,m

Ok(f)+ __.
O"jO"m qjgm"

j,m

Therefore S’(f) has a norm not exceeding ly, for f such that f ll < a*.
Now we want to estimate the size of the neighborhood of 0 in {g H/2 t’l C

Re g(1) 0} in which S(f) is invertible. To do so we write

S(f) S(0)[I + --1 (0)(S(f) S(0))]

which implies that S(f) is invertible if

IIS-(0)II IIS(f)- S(0)ll < l.

In the view ofthe fact that IJS’(f)JI < ly2* for JJflJ < a*, the mapS(f) is invertible
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for

(20) Ilfll _<

and so is R,’(f).
In order to show that the kernel of (18) splits for f such that 7"4,.’(f) is onto, we

only need to show that the kernel of the projection

(21) 79. Ca(T;R) x... x Ca(T; R) -- Ca(T\ T;R) x... x Ca(T\/); R)

splits. Denote by Cff ([tl, t2]; R) the set {g e Ca ([tl, t2]) g(tl) g(t2) 0}. Then
we have Ca (T; R) Cff (T; R) Cff (T\ T1; R) (9R2, where R2 is identified with the
space {cd () +c2d2(() for fixed functions dl, d2 satisfying d (0) 1, d (2zr/l)
0, d2(0) 0, d2(2rr/1) Therefore Ca(T; R) x x Ca(T; R) ker79 B,
where

(22) B (C(T \ T1;R) ( R2) x x (C(T \ ;R) ( R2).
Thus we have just shown that ,4 is a Banach manifold for f such that (20) holds.

The tangent space to ,4 at the zero disc is given by

ToM {f H2 N Cv" Im f IT\T, 0 Im j IT\ 0}.

Here fl fN are the components of the analytic disc f written in (w, z) coordi-
nates. In other words, the tangent space is the space of discs attached to the tangent
planes ToM ToMl.
Now we are going to consider the set of discs attached to the angle M t_J. t3 Ml,

rather than to the union of manifolds M t.J t3 Ml. Denote by C(Tj; R) the set of
functions in Ca(Tj; R) which vanish at the end points of the interval Tj. Let A be a
Banach space

A C(T1 R) x x C(;R) x R x (n_ f’) CN_l)a

endowed with a norm

II(l,..., l, a, o,..., ON-)I[ i111 +"" + IIr/l[ za + lal9

+ IltPl 2 +". + IltPN-/II2a

If we introduce a map ’" ,4 ---> A defined by

(23) .T’(f) .T(fl fN)
(3(flrl) l(fl),Ref(1) Re f/(1), 3+ fN)

then its derivative at zero is given by

.T"(0)g (Imglrl Im gll,Re g(1) Reg/(1), g+ gN ).
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The operator .T’(0) ToM --> A is invertible and its inverse K is given by the formula

K( rl, a, o qgN_l) (a + ir 7"rl al

+ i! ’rl, 01 q)N-l)

where we denote by pj the extension of apj C(Tj) to T by zero. Note also that
K 1 + x. Therefore the map .T is a local isomorphism.
In orderto estimate the size ofthe neighborhood of0 on which .T is an isomorphism,

we need to estimate the norm of the second derivative of ’. Since each component
of .T" is given by a formula similar to (20), we have I1"11 _< 17’2" for f satisfying
(20). By Lemma 2.1 we can write

(24) .T-1 (.) K (.) + LGk),

{min
(1 + tc)ly a

where j denotes the harmonic extension of tpj to the unit disc in C. In fact, we can
find piecewise linear functions 4j’s which satisfy (26).

Define the evaluation map E’A CN by E(f) f(0). Consider the map

{(tcp, a, b) t, a Rl, b CN-l} (. A ----> CN

which is given by taking the restriction of E o y--1. Then we have I1(’(0))-2/3(1 + x) (since (’(0))-l(a + it, b) (tp,a + tT-[(b(O),b) ). And we have
IIG"II _< 8(1 / x)21, for Z (tq, a, b) satisfying (25).

Therefore we can apply Lemma 2.1 with

t2 213(1 + x), t3 8(1 + x)2/y2*, X
1 min{ 1 ,}4(1 + x) (1

and conclude that for every ( CN with

(27) I(I _< min
2717(1 -4-K)4y; 16(1 t)213 Im(j >_ 29111(1

there exists (t, a, b) such that

(28) ( E o .T"-1 (tltl till, a, b)
(al --t- it1 al + itl, b) + E L(t, a, b).

(25) IIL(X)ll < 4(1 + x)2/ll%ll2A for IlXllx < 4(1 +tc)

Note that for (pl Pt, a, Ol 0N-t) the analytic disc .T-I(Z) is at-
tached to the angle M1 to... tO MI if and only if apj > 0, j 1 1.

Let 4h 1 be functions in Ca (T; R) which satisfy the conditions

(26) j [T > 0, J[T\Tj "-0, j(0) 1, 114jll < 212
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In other words, the center of analytic disc .T"-I (t, a, b) is precisely (. In order to
show that this disc is attached to the angle, we have to prove that tj >_ 0, j I.
Equation (29) implies that

1( (a + it, b)l _< 16/5(1 + tc)2Yl(a + it, b)l2.

Lemma 2.1 implies that

I(a + it, b)l <_ II(t, a, b)ll^ <_ 4/3(1 + tc)l(I

and therefore we have

tj >_ Im(j- IIm(j- tjl >_ 29111(1 + c)4’2"1(I2- 1615(1 + tc)2’E*l(a + it, b)l2

_> 29/11(1 + tc)4yl([2 28/11(1 + tc)4y*[([2 >_ 0

and thus any ( satisfying (27) can be covered by a center of an analytic disc attached
to the angle (since tj > 0).

The inequalities in (27) are written in (w, z) coordinates. We can use (14) and
(15) to convert them to the original coordinates and come up with and # defined
in the statement of Theorem 2.3.

To finish the proof we just have to notice that we used only the discs f satisfying
(20) when written in (w, z) coordinates. Then the definition of or* together with (14)
imply that we used discs f with IIf p011 < tr/4 when written in the original
coordinates. H

ProofofTheorem 1.2. Let us apply Proposition 2.3 for a point P0 M such that

Ip0l </ 19--- 4--2’ R

Inequalities (3) and (4) imply that

Op(po) r
<_ (C1 +lC2)ltl.

At the same time, since -/lC2 >_ 1/2 we have

Op(po) r Itl[31C21tl >_ -.
Therefore the vector of defining functions /9 has to be multiplied by 2 to satisfy
inequality (10). After this normalization of p we can apply Theorem 2.3 with

’1 2(C1 + 31C2), ?’2 2C2, o" 3
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to fill out the set Vpo using discs f satisfying

Ilfllo _< f p011 // _< min
41C2’

R

This allows us to apply Theorem 4.4 to get extension ofCR functions into the set Vpo.

3. Sections of the normal bundle along the boundary of an analytic disc

As we mentioned in the introduction this section is completely independent of the
rest of the paper. Let us restate the assumptions associated with Problem 2 stated in
the introduction.

ASSUMPTIONS. Consider CN with coordinates (w, z) (Wl Wl, z 1,...,
ZN-I). Suppose we are given CR-manifolds M MI andfunctions p Pl of
class C2 such that

k={(w,z)CN’pj(w,z)=0,1 < j < l, j # k}

and such that Owpl A A OwPl 0 on M t_J t_J Ml.

Here we use notation 0top wdwj.
Now we state the main result of this section which says that (7) holds for every f

if the functions pj have a triangular dependence on some of the variables.

THEOREM 3.1. Suppose the assumptions above hold, and suppose, in addition,
that thefollowing hold:

p2(w, z) does not depend on W
P3 (w, z) does not depend on wl, w2

,O/(tO, Z) does not depend on Wl Wl-

Then equation (7) holds for ery f H2N fq Cv attached to lj ’s, i.e., for F such
that f lr C M1 f lr C MI.

The following lemma deals with derivative map (18) in general.

LEMMA 3.2. Suppose the assumptionof Theorem 3.1 hold. Given an analytic
disc f H fq Cv(T) such that fir1 C M flr C ll, consider the matrix of
w-derivatives

(29)
W, IT\T

W [T\/ 8wt
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Suppose we can extend the elements ofthis matrix, i.e.,findCa-functions ajk satisfying

apj(f)
(30) ajklT\rj O’Wk IT\Tj

SO that the Riemann-Hilbertproblem

all
(31) 2Re

all

is solvablefor any right hand side ap E C(T; R) and the matrix (ajk) is invertible.
Then equation (7) holds.

Proof. We want to show that derivative map (18) is onto. This leads to the
Riemann-Hilbert problem

bll
(32) 2 Re

bll blN UN fl 1T\

Here b’s are given by the formulas

(33)

For map (18) to be onto it is necessary and sufficient that (32) have a holoorphic
solution u E C for every collection j C (T \ Tj; R), j I. Let Sj C
be arbitrary extensions of Sj to the whole T. Then if problem (31) is solvable for any
fight hand side part then so is (32).

ProofofTheorem 3.1. First note that Owpl A A Ovopl # 0 and the fact that
matrix (29) is triangular imply that o)Ir\r #: 0, j I. Let cj be

apy (f)extensions of wy to the whole T such that the winding numbers of cj’s around 0
are all equal to zero. Extend other entries of the matrix arbitrary. We need to show
the solvability of the following problem:

(34) Re

Cl Ul rl
0 C2 * U2 1/r2

0 0 C U fl

For each cy there exists rj, a real valued function, non-zero everywhere on T, such that
rjcj h where hj is holomorphic and with the winding number equal to zero. The
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existence of rj can be shown by considering log cj. Multiply both sides of (34) on the
left by the diagonal matrix with entries r rl. Then make a change of variables
in (34): let u’ Hu where H is the diagonal matrix with entries h hi. Then
(34) becomes

(35) Re

Cll U b"
"21 U2 lr2

1 U lt
This problem can be always solved by a version of Gaussian elimination. We set
u apt + iT-[ap[ where 7-/denotes the Hilbert transform. Then (35) reduces to the
1- 1 dimensional problem

(36)Re

"1,/-- U lr Re "llU
C21Ul"2,1-1 U2 /t2 Re~

UI_ ltl_ Re 5_l,lUl
Therefore the derivative map (18) is onto and thus (7) holds.

4. The proof of the approximation theorem with neighborhood estimates

This section contains a proof of the approximation theorem of Baouendi-Treves
with explicit estimates on the size of the neighborhood in which holomorphic poly-
nomials converge uniformly to a given CR-function.

These estimates are new. They are obtained as a modification of the proof of the
theorem in [B].

THEOREM 4.1. Suppose we are given a generic manifold
M { Cv Pl() 0 Pl() 0}

where p Pl C2 are normalized so that

(37)
\ 0 ]

> Itl, Yt CI.

Suppose there exists a constant C > 0 such that

(38) IIP’()II _< C for I1 _< R.

Thenfor any continuous CRfunction U on M f3 { Cv I1 _< R} there exists
a sequence of holomorphic polynomials pj in Civ such that pj --+ U uniformly on
M f3 { I1 _< R*} where

--min 4-,R
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Proof. We start with a change of coordinates and defining functions given by
Lemma 2.2. For , ( CN let us define

" ( 1" ’1 4-’’’"}-N" ’N, []2 (. (.

We will make use of the notation

R=-min 4--’R
Define a function H by

(39) H(t, v) (h(x, u 4- iv), v), (x, u).

For every v e R/v-l, Iol _< ,, define a submanifold of M by

Mo {t + in(t, v); Itl < R}.

Let us define a function g(t) C(RN) to be for Itl < / and to have support
strictly inside of Itl < R. The lemma below is the first step toward proving Theorem
4.1. We will write Exp(x) instead of ex. rq

LEMMA 4.2. Let g be defined as above. Let U be a continuous function on M.
1} C My we haveSuppose Iol <_ g. Thenfor ( {t + ill(t, v) "ltl _<

U(() lim 7t’-N/25-N [ g(Re (’)U((’) Exp(-e-2[((40)
0 d

(’Mv

Moreover this limit is uniformfor Ivl , {t + ill(t, v)" Itl } c My.

Proo If we consider a map ((t, v) + ill(t, v) then for fixed Iol R, the
map ((., v) parametdzes My. This allows us to change the viable of integration:

(((t v)) lim-S/e-s fU
,o

g(t’)U((t’, v))

t’Rs

x Exp(-e-[g(t, v) (t’, v)]) det (t’, v) dr’.

Substituting t’ es yields

-/ [ g(t s)U((t s, v)) Exp(-e-[g(ts, v) g(t es, v)])
sRN

det (t s, v) ds.
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If Itl _< 1/2 then g(t 6s) as 6 1. Moreover

((t, v) ((t 6s, v) ---0--]- (t, v). (6s) + 0(62).

Therefore we have

6
-2 [((t, v) ((t 6s, 1))]2 ---(t, 1)). s -- 0(62)., vl < , the integrandThis means that pointwise in s, but uniformly in It[ _< 5

converges, as 6 - 0, to

g(g(t, v)) Exp --(t, v). s det -(t, v)

To show that the integral converges, we must uniformly in 6 dominate the integrand
by an integrable function of s IIv. Certainly f det(O(/Ot) is globally bounded.
So it suffices to dominate the exponential term by an integrable function. We have

g(t 6s)[Exp (-6-2 [ (t, v) (t 6s, v)]2)l
g(t 6s)Exp (-6-2 Re ([((t, v) ((t 6s, v)]2)).

Since (t, v) + H(t, v), we obtain

-6
-2 Re ([((t, v) ((t 6s, v)]2) -Isl2 + 6

-2 [H(t, v) H(t 6s, v)]2

Inequality (12) implies that IOH(v, v)/Otl < 1/2 for r supp g and Ivl 5 i. Therefore
we have

(1)21212[H(t, v) H(t -6s, 1))]2 5 76Is] 6 Is for Itl _< , (t- 6s) 6 suppg.

Combining the last two inequalities yields

g(’- 6s)Exp (-6-2 Re ([((,, v)- ((t- 6s, v)]2)) <_ g(t- 6s)Exp (-31s12)4
R

for Itl < -.
The fight hand side is an integrable function.

Thus the dominated convergence theorem implies that for Itl < 1/2 t, Iol <_ ,, the
integral converges to

U(((t, v))n"-/v/2 Exp --(t, v). s det -(t, v) ds

sRv
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and the limit is uniform for Itl _< 1/2J, Ivl _< . Notethat (t, v) (t+iH(t, v))
I + iOH/Ot Moreover IH(t, v)/tl <_ 1/2 for Itl _< 1/2, Iol <_ 1/2. Therefore the
proof of the lemma will be completed by the following proposition:

PROPOSITION. Suppose A is an N x N complex matrix such that Im All _<
Re AII and such that Re A is non-singular, then

-v/2 f Exp(-[A s]2) det A ds 1.

sERv

The proofofthis proposition is elementary and we refer the reader to the proofin
[B] for details. !"!

Lemma 4.2 would provide us with a sequence of entire functions if the integral in
(40) did not depend on the choice of My. The following lemma shows that if f is CR
then it is enough to integrate over M0 only.

LEMMA 4.3.
} then

IfU is a smooth CRfunction in a neighborhood ofM N {’ I’l <

(41) U(() lim 7r-N/26-N I,0
g(Re (’)U((’) Exp(-6-2[(

uniformlyfor Iol <//(24.f), Itl < 1/2a.

Proof For fixed ol R we consider

Mv {(t’,kv) =t’ +iH(t’,kv) M" It’l <_ R,0_< . <_ 1}.

Then Mo is an (N + 1)-(real)-dimensional submanifold of M and its boundary is the
union of M0, Mo and the set

(42) {(t’,&v) lt’l R,O < < 1}.

We apply Stokes’ theorem to (40) to conclude that for Itl < 1/2,, Iol _< we have

U(() lim zr-v/2-v f g(Re (’)U((’) Exp(--2[( (,]2) d(’
6--0 J

(’Mo

+ lim zr-v/2-v f,0
d(, {g(Re (’)U ((’) Exp(--2[( (,]2) d(.

Note that since the support ofg(Re ()does not intersect the set (42) the corresponding
term drops out. The second integral involves the exterior derivative de, 0, +
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0, but due to the presence of de, the only contributing term comes from 0,. By
taking the almost holomorphic extension of U from M to Cv, we may assume that
O,U(((t’, v)) 0 for It’l _< R, Ivl _< R. Therefore we have

U(() lim 7t-N/26-N f-0
g(Re (’)U(( Exp(--2[(

lim Tr-N/2e-N f ’g(Re(’)) U((’) EXp(-e-2[( -(’]2)d(’.(43) +
--).0

(’Mv

We want to show that the second limit is zero. To estimate Exp(-e-2[( (’]2)1 we
need to estimate the real part of the exponent:

Re{[ ,]2} It t’l 2 -IH(t, v) H(t’, o)l2.

Equation (39) and estimate (12) imply that 10 H/Otl < 1/2, l0 H/Ovl _< 2 for Ivl _< R
and for supp g. Therefore we have

IH(t, v) H(t’, Zv)l < IH(t, v) H(t’, v)l + IH(t’, v) H(t’,
< 1/2It t’l + 21o-)vl.

Squaring the last inequality and making use of the inequality 2ab < 1/4a2 + 4b2 gives
US

t’ 2 12In(t,v)-n(t’,)v)l2< lt- +81v-)v

The inequality Iv .vl < vl (which follows from 0 < . < 1) implies that

1 t,12 12Re{[( (,]2} >_ [t 81v

Now observe that since g(Re (’) for IRe (’1 It’l _< ,, we have -,g 0 for

IRe ’1 It’l <_ and therefore

1 t’ Rllt_t,i2> for suppc,g andltl<

At the same time we have

Therefore we have

8112 i’ for Ivl 24"

Re{[(- .t]2} >_. i"
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for t’, v as above. The last inequality allows us to estimate the second integral in (43):

f (;,g(Re ")) U(") Exp(-e-2[( (’12)d(
"Mv

where K is a constant determined by the size of Mo and the sup-norm of
(3,g(Re "))f(").

This inequality shows that the second limit in (43) is zero as -- 0 uniformly for
Itl < 51 and Ivl _< /(24).

End ofproofof Theorem 4.1. The function on the right side of (41) is an en-
tire function of (. Therefore f can be approximated by holomorphic polynomials
uniformly on M for I’1 _< /(24Vt) or (in old coordinates) for I1 _< /(24f).

THEOREM 4.4. Suppose we are given generic manifolds with boundary

Mt { C)v pj() O,1 < j <_ l, j -s/: k, pk() >0}

where Pl Pl C2 are normalized so that

(44)
Op(O) r

>_ltl, tCl.

Suppose there exists a constant C > 0 such that

(45) IlPj’()II < C, j < for I1 < R.

Suppose U is a continuous function on MI U O Ml which is CR on each of
Mj { CN I1 _< R}. Then there exists a sequence ofholomorphic polynomials
pj in Civ such that pj U uniformly on

(M1 1,3... I,J Ml) CI { C CN "11 < R*}

where

Proof. The proof is just a minor adaptation of the proof of Theorem 4.1. By
Lemma 2.2 there exists a new set of coordinates ’ (x + iy, u -4- v) and a function
h (hi hi), satisfying (12), so that

Mk { e CN yj hj(x, u, v) O,1 <_ j < l, j :/= k, yi hi(x, u, v) >0}.
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Let Mo {’ (x + iy, u + iv) Cv y h(x, u, 0)} for I’1 < /. Then M0
is a maximally totally real submanifold of the (M1 U... t2 Me). At the same time it
is a maximally totally real submanifold of each of the Mj’s individually.

Applying Lemma 4.3 with M Mj for j 1, implies that

U(() lim 7t’-N/2F.-N f g(Re (’)U((’) Exp(--2[( (’]2)d(’(46)
-+0

(’M0

uniformly for I(I _< /(24"v/), ( Mj. The integral in the fight hand side of (46)
is an entire function which proves Theorem 4.4.
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