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CONVERGENCE IN THE CES/kRO SENSE OF
ERGODIC OPERATORS ASSOCIATED WITH A FLOW

A. L. BERNARDIS, F. J. MARTfN-REYES AND M. D. SARRI6N GAVIL/N

ABSTRACT. We study the a.e. convergence ofthe Ceshro-(1 +c) ergodic averages and the a.e. existence in
the Ceso-u sense ofthe ergodic Hilberttransform associated with aCesobounded flow and < c < 0.

1. Introduction

Let (X, .T’, v) be a finite measure space. By a flow {zt: e } we mean a group
of measurable transformations rt: X --+ X with r0 the identity and rt+s rt ors
(t, s ). The flow is said to be measure-preserving if the zt are measure-preserving,
i.e., if v(r_tE) v(E) for all E e .T’. The flow is said to be nonsingular if
v(z_t E) 0 for all and all E .T" with v(E) 0. Fin..ally, the flow is said to
be measurable if the map (x, t) --+ ztx from X x into X is .T’-.T’-measurable where
.T" is the completion of the product<r-algebra .T" (R)/3 of.T" with the Borel sets, and the
completion is taken with respect to the product measure of v on .T" and the Lebesgue
measure on/3. Analogously we can define what we mean by a semiflow {rt: > 0},
a measure-preserving semiflow, a nonsingular semiflow and a measurable semiflow.

Y. Deniel studied in [4] the convergence of the Cestro-(1 + or) ((C,1 + or)) er-
godic averages, -1 < ot < 0, associated with a measure-preserving semiflow on a
probability space (f2, .T’,/z). More precisely, he proved the following result.

THEOREM A ([4]). Let {zt" > 0} be a measure-preserving semiflow ofa proba-
bility space (f2, , Iz). Let < ot < O, < p < oo and f LP (dlz). Then,
the (C,1 + or) ergodic averages

A+ fo
r

T,l+af(x) Tl+a f(rtx)(T t)a dt

converge, when T -- oo, almost everywhere and in the Lt’(dlz)-norm.

Theorem A does not hold in the limit case p [4]. However a positive result
was obtained in [2] in this limit case. Their result is the following.
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THEOREM B ([2]). Let {rt" > 0}, (f2, .T’,/z) and ct be as in Theorem A. Then,
limTo A+r,l+af (x) exists a.e. for all f in the Lorentz space L ..L. l(dlz)

l+t

{f" Ilfll,;g f ()f(t)) l+adt < }, where .f(t)= /z({x" If(x)l > t})
is the distributionfunction of f

On the other hand, Lorente Domfnguez and Martfn-Reyes studied in [6], the con-
vergence of the ergodic averages

f(rtx)dt,AT, If(X) - T

and the ergodic Hilbert transform Hf(x) lime->o He f(x), where

Hef(x) f f (ztx.____) dt,
<ltl<l/e

associated with a Cesro bounded flow on a finite measure space (X, ’, v) (notice
that the flow does not need to preserve the measure v). The result proved in [6] is as
follows.

THEOREM C ([6]). Let (X, .,v, v) be a finite measure space, <_ p < cx and let
{zt" E } be a nonsingular measurable flow on X such that for some positive
constant C and all f Lp (dr),

sup IIAr, fllp. <_ Cllfllp;.
T>0

(i) If l < p < x and f LP(dv), then limr AT, if(x) and limeo Hef(x)
exist a.e. and in the LP (dv)-norm.

(ii) If p 1 and f Ll(dv), then limr AT.If(X) exists a.e. and in the
L (dv)-norm and lime0 Hef(x) exists a.e.

The aim of this paper is to study, for 1 < ot < 0, the convergence of the (C,1
ergodic averages and the existence in the Cesro-ct ((C,ot)) sense ofthe ergodic Hilbert
transform in the setting ofTheorem C, i.e., for Ceshro bounded flows. More precisely,
for the (C,1 + or) ergodic averages, we shall prove the following theorem.

THEOREM 1.1. Let (X, , v) be afinite measure space, -1 < <_ 0 and T- <-
p < c. Let {rt" } be a nonsingular measurableflow on X such thatfor some
positive constant C and all f Lp(l+a)(dv),

(1.2) sup [[A+ < Cllfllp(l+=):ur, lfllp(+);u
T>0

(i) If < p < x and f e LP(dv) then limT_ A+T, +af(X) exists a.e. and
in the Lp (dv)-norm.
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A+ f(x) exists a.e.(ii) If p T’4S and f L r,l, (dr), then limr

Now, we make precise what we mean by the existence of the ergodic Hilbert trans-
form in the (C,ot) sense. Following Hardy [5, 5.14 and Notes on Chapter V], we
wish to study the existence of the limit

Hf(x) lime0 Hef(x) limt H/tf(x) in the (C,ct) sense; in the case
a > 0 that means that we want to study the limit

lim T----g H1/t f(x)(T t)a-1 dt.
T---

Interchanging the integrals we can easily see that studying the above limit is equivalent
to studying the limit of

Hef(x)
f(’ctX) (l dt+ f f(tX)

(l
<ltl_<l <ltl<_l/e

when e 0. We shall see that for suitable f the above integrals make sense not
only for c > 0 but also for ct > -1. Since the convergence of He,of(x) implies
the convergence of He.f(x) for ot > 0 (see 4, claim (d)), we are interested in the
limit limeo He,a f, for -1 < ct < 0. In particular, we shall prove the following
theorem.

THEOREM 1.3. Let (X, ., v) be afinite measure space, -1 < t < 0 and T’ <

p < cxz. Let {rt" } be a nonsingular measurableflow on X such thatfor some
positive constant C and all f Lp(l+)(dv),

(1.4) sup IlAT, lfllp(+=);v <_ Cllfllp(+);v.
T>0

(i) If T’4"d < P < cx and f LP(dv), then lime-.oHe,af(x) exists a.e. andin
the Lp (dv)-norm.

and f L (dv), then limeo He,af(x) exists a.e.(ii) Ifp T-4-d r-

On one hand, notice that for t 0, Theorem 1.3 is contained in Theorem C. On
the other hand, under the assumptions in Theorem 1.3 one can obtain the convergence
of the "two-sided"(C,1 + ct) ergodic averages

f(’ctx)(T -Itl)= dt,Ar, l+f(x)
(2T)+c r

but this result is an easy consequence of Theorem 1.1 applied to the flows {zt: 6 }
and {?t: 6 }, where ?t z’-t.

The proofs ofTheorems 1.1 and 1.3 are based on the study ofthe maximal operators
+ ,S++af supr>o Ar, x+alf[ and Ha f supe>0 IHe,afl (Theorems 3.1 and 3.7) and
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the Banach Principle. The boundedness of these operators will be obtained by using
transference arguments. This requires knowledge ofthe behaviour on weighted spaces
of some maximal operators in the real line. These last results appear in 2 while the
boundedness of S-+ and H* are in 3. Finally, the proofs of Theorems 1.1 and 1.3
are given in 4.

Throughout this paper ct will be a number such that < ot < 0 and if < p < o
then p’ will denote its conjugate exponent, i.e., 1/p 4- 1/p’ 1. The letter C will
mean a positive constant not necessarily the same at each ocurrence.

2. Preliminary results

As we said above, in order to prove the theorems we will need results about some
maximal operators in the real line which were studied in [9] and ]. First we introduce
the following definitions about weights.

Definition 2.1 10]. Let w be a positive measurable function on the real line. It
is said that w satisfies the Muckenhoupt Ap condition, < p < o, if there exists a
constant C > 0 such that

SUPa<b -a w(t) dt tol-p’(t) dt _< C if < p < o

and

sup w(x-t) dt <Cw(x) a.e. if p=l.
r>0 FF

Definition 2.2 ([ 12], [8], [7]). Let to be a positive measurable function on the real
line. It is said that to satisfies A’, 1 < p < o, if there exists a constant C > 0 such
that

sup w(t) dt wl-p’(t) dt < C if 1 < p < o
a<b<c a a

and

( fo )sup to(x-t)dt <Cto(x) a.e. if p=l.
r>0

The A- classes are defined in the obvious way, reversing the orientation in the real
line.

The boundedness of the ergodic maximal operator Sl++ associated with the
(C, 1 4- or) ergodic averages is based on the corresponding result for the maximal
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operator in defined by

M++f(x) sup T.I+ If(x + t)l(T t) dr.
T>0

The following result has been proved for this operator (see Theorem 2.5, Theorem 3.5
and Final Remarks in [9]).

THEOREM D ([9]). Let -1 < cr < 0, < p < oo and let w be a positive
measurablefunction on the real line.

(i) If + then there exists a constant C > 0 suchT < P < oo and w Ap(l+a),
that

f [Ml++af(t)] p w(t)dt < C f [f(t)lPw(t)dt

for all f LP (w(t)dt).
and w A then there exists a constant C > 0 such that(ii) /f p 1-

C 1/l+otw({t : Ml++af(t) > ,}) < --r-Ilfll
) "4"g ,1,w

for all f L (w(t)dt) and all , > O.--,

Remark 2.3. Actually, in [9], Theorem D (ii) was proved only for characteristic
functions but, for -1 < ot < 0, applying Theorem 3.13 in [13], p. 195 which
also holds for the sublinear operator Ml++a, we easily obtain the result for all f
L (w(t)dt). On the other hand, if ot 0, statement (ii) is the known result that

l+a

to A- implies the weak type (1,1) inequality for the one-sided Hardy-Littlewood
maximal function with respect to to(t)dt that was proved by E. Sawyer 12] (see also
[8] and [7]).

Obviously, a result analogous to Theorem D holds for the other one-sided maximal
operator M+af(x) suPT>0 TI fOT If(x + t)l(T + t) dt and the corresponding

A-l+a classes. Now, taking into account that the maximal operator

M1+a f(x) sup If (x + t)l(T -Itl)a dt
T>0 (2T) l+a T

is pointwise equivalent to the sum ofthe operators M++ and M-+ and that Ap(l+a)
Ap+(1 + classes+a) C3 A-I+,), we see that Theorem D is valid for MI+, with the Ap(l+a)
replaced by the Ap(l+a) classes. This result will be used to obtain the boundedness
of the ergodic maximal operator

R1+af(x) sup --f2r If (rtx)l IT -Itll dt.
T>0 (4T) l+a .]-2T
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On the other hand, in the study of the ergodic Hilbert transform in the Ceshro-ot
sense (see 3) the following maximal operator appears:

N1+af(x) sup
1 fTr>0 (2T) l+a <ltl<2T

If(x + t)l(Itl- T) dt.

This operator was studied in 1, Theorems 2.1 and 2.4], which obtained results anal-
ogous to the ones for the operator Ml+a. In the following theorem we collect these
results and the corresponding ones for MI+.

THEOREM E ([9], [1]). Let -1 < a < 0, < p < o and let to be a positive
measurablefunction on the real line. Let us denote by JM either MI+ or Nl+c.

(i) If y- < p < cx and w Ap(l+a), then there exists a constant C > 0 such
that

ft [Jlf(t)]P w(t) dt < c f .f(t).Pw(t) dt

for all f Lp (w(t)dt).
and w A then there exists a constant C > 0 such that(ii) /fp 1,

1/l+oew({t IR: Mf(t) > )}) < Ilfll.- t--,l; w

for all f L (w(t)dt) and all ) > O.7-.1

3. Boundedness for the ergodic maximal operators

This section is devoted to establishing the boundedness of the maximal operators

1/0 S-+of(x) sup
Tl+aT>O

If (rtx)l(T t)a dt,

associated to the (C,1 + c) ergodic averages A-+af, and Ho. First, we shall prove
the following theorem.

THEOREM 3.1. Let (X, , v), , p and {rt: R} be as in Theorem 1.1.

(i) If T’4g < P < x, then there exists a constant C > 0 such that for all

f Lp(dv),
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(ii) lfp T’’ then there exists a constant C > 0 such thatfor all f L r;7.11 (dr)
and all X > O,

C 1/l+av({x e X" S’+af(x) > )}) _< ---v-llfll+/-,l;.
In order to prove this theorem, we need two lemmas. The proof of the first one is

very similar to the proof of the claim in the proof of Theorem in [6]; therefore we
omit it.

LEMMA 3.2. Let (X, , v), or, p and {rt: 6 R} be as in Theorem 1.1 or in
Theorem 1.3. Then, there exists a measure Ix equivalent to v such that the flow
{rt: 6 N} preserves the measure

In what follows, the measure/z will be fixed and to will be the Radon-Nikodym
derivative of v with respect to/z. It is clear that 0 < to < o a.e.. Let tox denote the
function tog: R --+ R such that tog(t) to(rtx).

LEMMA 3.3. Let (X, .T’, v) be a finite measure space, -1 < ot < 0 and T’ <
p < o. Let rt: JR} be a nonsingular measurableflow on X.

+ for almost every x X and with the same(i) If (1.2) holds, then wx Ap(l+a)
constant.

(ii) If (1.4) holds, then tog Ap(l+a) for almost every x X and with the same
constant.

Proof. We only sketch the proof of (i), since the proof of (ii) is similar (notice
that (ii) was already used in [6]). First, observe that if p --, then (i) follows from
the fact that the flow preserves the measure/z given in Lemma 3.2.
Now assume that q p(1 + c) > 1 and let q’ be its conjugated exponent. Taking

Lemma 3.2 into account, by (1.2) we get that

r, lf(x) w(x)dtx(x) <_ C If(x)lqto(x)dlz(x)

for all T > 0. Then letting r tol-q’, by duality we can write the above inequality
as

l(T,1) f(x)lq’cr(x)dp(x) <- C [f(x)[q’o’(x)dll,(x),

where (At+,1)* f(x) y for f(rx) dt is the adjoint operator of A+r, with respect to
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the measure/z. Let us define the following operators:

PTg [A+ (I 1/q)] 1/q’

r.1 glq’w- wqq’

aTg [(A+T.1)*(lg[qo’-l/q’)] l/q1

Pr and Qr are sublinear operators and Pr, Qr" Lqq’(dlz) -’+ Lqq’ (d) with
IIe II, Qrll C, where C is the constant in (1.2). Clearly, the same holds for
the operator Pr + Qr and P + Qr 2C. Now, given f Lqq’ (d), f > 0, let
us define

(Pr + Qr)i)f
gr

(4C)i=0

where (Pr + Qr)<i denotes the i-th iteration of Pr + Qr. Clearly gr Lqq’ (d)
and

Pr (gr) (x) < 4Cgr(x) and Qr (gr) (x) < 4Cgr(x).
q’From these inequalities we can see that if vr gr w 1/q and ur gcr -1/q’ then

(3.4) A+ )*r.l (Vr) < Cvr and (A, (ur) < Cur

The lemma follows since w(x) UT(X)I)IT-q (x) for almost every x 6 X and as a
consequence we can prove that wx A-. In fact, let a, b and c be real numbers such
that a < b < c. If (a, b), by the inequality for vr in (3.4) with T c a we get

fbCvr(rsx)ds--a
[’1c-t VT(’rr rtX) dr

c a db-t

fo
c-a

VT(rrtx)dr
a

<_ Cvr(rtx).

In the same way, by using the inequality for ur in (3.4) with T c a and for
6 (c, d), we get

1 fb ur(rsX) ds < CUT(rtx).
c--a da

Then, from the last inequalities,

fab (fb
c )q-11-q’ (rtx)vr(rtx) dtUT(ZtX)I)IT-q (ZtX) dt u r < C(c a)q.
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Proofof Theorem 3.1. We only prove (ii) since (i) follows in a similar way. As-
sume c < 0. As we observe in Remark 2.3, in order to prove (ii) we only need to
consider characteristic functions, i.e,, we need to prove that

v({x E X: S+a (Xe) (x) > 3}) < "-T- Xe(x)dv(x)

for all ,k > 0 and all measurable sets E. We shall use a transference argument. For
fixed L > 0 we define

S+l+a,Lf(x) forsup
T1+0<T<L

If(r.tx)l(T-t)dt.

Then, for all N > 0 we have

v({x X: S+ (Xe) (x) > .}) Xlx: s(/(xe)(x)>X}(rtx)w(rtx)d/x(x) dt

w(’ctx)d/x(x)dt.
N x: s’(+(xe)(rtx)>X}

Since S+a(XE)(r,x) < M++a x(XeX(O,N+L))(t), where X:(t) Xe(rtx) and wx sat-
isfies A- for almost all x with the same constant (Lemma 3.3 (ii)), Theorem D (ii)
implies that

u({x e X" s?+. (xe) (x) > x}) _< - wX (t) dt d/x

C fxfo
u+z

< XE(’rtx)w(’ctx)dtd/x
N.r;’

C(N + L) fxNX" Xe(x) dv(x)

because the flow preserves the measure/x. Letting N --+ and then L --+ cxz we
finish the proof for < ot < 0. The case ot 0 is proved in the same way but using
general functions f 6 L1 (d/x).

In what follows, we shall establish the boundedness of the ergodic maximal oper-
ator Ho supe>0 He.a I. This will follow from the boundedness of the operators H
and the fact that

R+f(x) sup If (rtx)llT -Itll dt.
r>0 (4T) ]+a :zr

The result for the last operator is in the following theorem.
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THEOREM 3.5. Let (X, .T’, v), or, p and {rt" } be as in Theorem 1.3.

(i) I T < P < cx, then there exists a constant C > 0 such that for all
f Lp(dv),

IIe+fllp. < CIIfllp..

(ii) /fp T-4-g, thenthereexistsaconstantC > Osuchthatforall f L r_, (dr)
and all X > O,

C 1/l+av({x X: el+af(x) > X}) < ---z-llfll,, 1- 1-’ ’l;v

Proofof Theorem 3.5. The proof of Theorem 3.5 is completely similar to the
proof of Theorem 3.1. We only need to notice that the operator RI+a is pointwise
equivalent to the sum of the following two maximal operators:

R+af(x) sup
r

f(tx)l(Z -Itl) dt,
r>0 (2T)

R12+a f(x) sup
1 frr>0 (2T) l+a <ltl<2T

If (ztx)l(Itl T)" dt.

Then, when we apply the transference arguments we shall need to use the results of
Theorem E for the operators Ml+a and Nl+a.

Now we are ready to establish the boundedness of H. First, we easily see that
the ergodic truncations H,af are well defined. In fact, by Theorem 3.5, we get

’f(rtx)’(1- e)dt+f<ltl<_l/e

< Ce Rl+o(f)(x) < o

If(rtx)l
(1 eltl)a dt

Itl

for almost every x and f e Lp (dr) if < p < c or f e L
1...,11 (dr) if p 1-Tg"

Second, we prove the following key pointwise estimate.

LEMMA 3.6. Let (X, .T’, v) be a finite measure space, -1 < ot < 0 and let
{rt" } be a nonsingular measurable flow on X. Then, there exists a constant
C > 0 such that

Hf(x) <_ C [Rl+af(x) + H) f(x)]
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Proof. First, we write

H,af(x) fe<ltl_<2e
dt + dt

e<ltl<l

e<ltl<l/2e <ltl<l/2e

f(rtX) [(1- eltl)a- 1] dt

+ f f(’ctx)

/2e<_ltl<_ l/e
(1 -sltl) dt I + II + III + IV + V.

Clearly, IIIII < Hf(x). Also, we can easily see that III, IVl CRl+af(x). On
the other hand, by the Mean Value Theorem and by decomposing the integral in II
into the sum of integrals over the sets {t" 2ks < Itl < 2k+le}, wecan see that IIII and
II V are bounded by a constant times the usual ergodic maximal operator Mof(x).
Then the lemma follows since Mof(x) < Rl+f(x) for -1 < c < 0.

Now, the boundedness of H; follows from the above lemma, Theorem 3.5 and
Theorem in [6]. In this way we obtain the following result for the operator H.

THEOREM 3.7. Let (X, .T’, v), or, p and {zt" } be as in Theorem 1.3.

(i) If T’ < P < oo, then there exists a constant C > 0 such that for all

f Lp(dv),

IInfllp: CIIfllp;,.

(ii) Ifp then there exists a constant C > 0 such thatforall f L (dr)T’4"d i--4-g,1
and all ) > O,

C l/l+tv({x X" n2f(x) > )}) < --r--Ilfll,l" 1" ’l;v

4. Proofs of Theorems 1.1 and 1.3

From Theorem B and Theorem 3.1 we can easily prove Theorem 1.1.

Proofof Theorem 1.1. We only prove (i) since the proof of (ii) is similar. By
Theorem 3.1, the Banach Principle and the Dominated Convergence Theorem it
will suffice to prove the a.e. convergence of the averages A-+af for f in a dense
subset of LP(dv). Using Theorem B we have the a.e. convergence of A+l+af for

f LP(dv) f L (dlz) which is a dense subset of f LP(dv) (lz is the measure
--7-g,

given in Lemma 3.2). Then, the theorem follows.
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Proofof Theorem 1.3. As in the proof of Theorem 1.1 we only prove (i) and we
only have to show that the a.e. convergence holds for the functions in a dense subset
of LP (dv).

Let us fix/ and q such that p < < q and, as before, let/z be the measurel+tl
given in Lemma 3.2. On one hand, the set D Lp(dr) f3 Lq (dlz) is a dense subset
of Lp (dr). On the other hand, since/z is preserved by the flow, for all f 6 D we
have the following results:

(a) By the classical result by Cotlar [3] (see also [11]) or by Theorem C,
limeo He,of(x) Hf(x) exists for almost every x 6 X.

(b) By Theorem 3.7, Hf is a.e. finite, because q > and the ergodic averages
Ar, are uniformly bounded on Lq(l+)(dlz).

In what follows we will prove that, for all f D, (a) and (b) imply the a.e.
existence of limeo He.af(x) and that lime0 He,af(x) Hf(x). The proof is an
adaptation of Lemma 2.27 in [14].

For fixed f D, let x 6 X such that lime--,o He.of(x) Hf(x) and Hf(x)
is finite. We may assume without loss of generality that Hf(x) 0. Applying the
formula

X

(4.1) (x u)+ C (t u)a(x t)-l dt, > O,

with ot , where C depends only on ot and d; (in fact, C r(//.!) wherer(a+)r()
is the Gamma function), we obtain

(4.2)
I/e

He.af(x) C e (1/e t)a-#-I H/t.f(x)dt.

Given )7 > 0, let us fix 0 with 1/2 < 0 < and (1 -0)a- < )7. Then,

O/e

He.f(x) C e (1/e t)-/-1 H/t.f(x)dt
dl

/e
)---4-C e (1/e- H1/t,f(x)dt 1 4- II.

dole

First, we estimate II and obtain

IIII <_ C s Hf(x) (Ole) (lie- Ole)- <_ C Hf(x) )7.
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To estimate I, we integrate by parts and use (4.2) with c =/ + to obtain

I C e (1/e O/e)-0-1 o/ so HI/s,O f(x) ds

o/e fl+ C e (ct -/ 1)(1/e t)-O-a sOH/s,of(x)dsdt
dl

C8Ot t]-Olt-O-1 (0/e)0+I He/o,O+I f(x)

+ C e (or -/3 1) (1/e t)-O-2tO+lH/t,o+f(x)dt III + IV.
dl

Now, we claim that the following hold.

(c) H+af(x) is finite for all t$ > 0.
(d) lime0 He,o+f(x) HI(x) O.

The above claims follow from (4.1), (4.2), (a) and (b). Taking into account the
claims (c) and (d) we obtain

IIIII <_ C (1--0)t-o-1 o0+llne/o,o+lf(x)l < rl

for e small enough.
On the other hand, since ct -/3 2 6 (-2,- 1) and fl > -1, we have (1/e

t)a-0-2 < (1/e 0/e)-0-2 and 0+! < (0/e)0+! for all 6 (1, 0/e). Then,

o/e

IIVI <_ C e IH1/t,o+l f (x)l dt,
dl

which tends to zero as e goes to zero because limtoo H1/t,o+f(x) 0 and

H+ f(x) < cx. Therefore we are done.
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