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A SHEAF HOMOLOGY THEORY WITH SUPPORTS

PHILIPPE JACOBS

ABSTRACT. We introduce a homology theory with supports and with coefficients in a sheaf. It has a very
explicit description of the chains in terms of a triangulation of an ambient space, making the theory useful
for integration purposes. We prove a Poincar6 Duality Theorem that states that our homology modules are
isomorphic to the classical sheaf cohomology modules with supports. This theorem is a main ingredient
in the proof of a criterion on the vanishing of real principal value integrals in terms of cohomology. We
briefly explain how real principal value integrals appear as residues of poles of distributions if is and as
coefficients of asymptotic expansions of oscillating integrals.

1. Introduction

In this paper we introduce a sheaf homology theory (with supports) on an open
subspace W of a topological space X. On W we are given a sheaf .T" of L-modules
and a family o of supports. We use a (locally finite) triangulation of the "big"
space X and an orientation o of the simplices of to build our homology L-modules

H(W, 9r, t, o). The triangulation must subtriangulate the complement of W in X.
The chains of our homology theory are formal sums ofproducts of a coefficient in the
sheaf .T" and an intersection of a simplex of with W. If W X then we get a more
traditional approach to sheaf homology. Note that the triangulation is finite if X is
compact. This fact can be exploited to prove the equality of integrals on homologous
cycles of our homology theory; see [D-J].

The main result of this paper is a Poincar6 Duality Theorem. We assume that
X is a n-dimensional differentiable manifold and that " is locally constant. Then
the theorem states that, under some natural conditions on o, and L, our homol-
ogy L-modules H(W, .T’, t, o) are isomorphic to the classical sheaf cohomology
modules Ho-i (W, .T’). Note that this last module is independent of and o, hence

H(W, .T’, t, o) is independent of and o.
If W X we recover two well-known cases. In the first case we take 9 equal to

the family of all compact subsets of W. Then our homology modules are isomorphic
to the classical singular homology modules. In the second case we take o equal to
the family of all closed subsets of W. Then our homology modules are isomorphic
to the classical Borel-Moore homology modules [Bo].

Our version of the Poincar6 Duality Theorem forms one of the main ingredients
in the proof of the following theorem on the vanishing of principal value integrals.
Let X be a non-singular complex projective algebraic variety defined over I of
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complex dimension m such that X(R) 0. Let o9 be a rational differential m-
form of degree d on X defined over IR. Thus o9 F(U, f2/(R)d) for some Zariski
dense open U C X. Let Idiv(og)l denote the support of the divisor of o9. Let
X: X (R) 1, -1 be a function that is constant on the connected components of
X(R) -Idiv(og)l. Let div(og) _,i fli Di. We formally consider ogl/d as a multivalued
rational differential form on X and define div(o9l/d) ,i oti Di where cti = fli/d. We
assume that Idiv(og) has normal crossings over R, meaning that it has normal crossings
and that each irreducible component containing an k-rational point is defined over
R. Moreover we assume that o1/d has no integral poles, meaning that no oti is a
strictly negative integer. Then we can define P V fx()xl/dl, the principal value

integral of X Io/al over X(R) as in Langlands paper [L]. This is done as follows.
Choose a finite number of local coordinates {Xp: Up m}pap for X(), centered
at p e X(R), such that the Up cover X(R) and on each Up" o9 pXp’p(dxp)d’
where p is a regular function on Up, defined over and nowhere zero on Up, and

XP Fp Hi XPpi with Fp, Z. This is possible since Idiv(og)l has normal crossings
over I. Choose a Co partition of unity {qgp}pp with respect to {Up}pcP. Then
for each p P" fv, qgPXlPll/dlXPlP/d+SldXp converges for Re(s) >> 0 and its

meromorphic continuation is holomorphic in s 0 because ogl/d has no integral
poles. Then one defines

PV xlog|/al .= -pp opxlpl/alxpl/d+’ldxpl
s=0

where [-is=0 means taking the value in s 0 of the meromorphic continuation of
the integral. This definition is independent of the choices made. Let .(o9|/a) be the
locally constant sheaf of C-vectorspaces on X [div(og)l associated to og/a, which
is locally free of rank 1. A non-zero section of (o91/a) on a connected open U is an
analytic branch of og|/a on U multiplied with a complex number.

(I. 1) THEOREM. If Hm (X (C) Idiv(og)l,/(ogl/d)) 0 then

PV fx Xlogl/dl 0.
()

For a nice overview of the proof we refer to [D-J]. The whole proof can be found
in [J].
Now we briefly explain the connection between coefficients of asymptotic expan-

sions of oscillating integrals and residues of poles of distributions If I’; see [A-V-G,
II,7], [I1 ], [I2], [Lae] for more details. The connection of these two with principal
value integrals is worked out in detail in [J2]. Let f: ]m R be a non-constant real-
analytic function with only isolated singularities. Let o: ]m ._.> ] be a C-function
with compact support. Then one considers the integral

I (z) "= f eirf(x)tfl(x)dx,
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where r is a real parameter, x (x Xm) and dx dxl A A dxm. The
function I (r) has an asymptotic expansion for

m-1

1(3)
ct k=O

where the coefficients ak,a are distributions of 9 and where c runs through a finite set
A of numbers in descending arithmetic progressions. One can write these arithmetic
progressions in terms ofthe numerical data (Ni, vi), I, of an embedded resolution
zr: Y --+ R" of the singularities of f. The set A consists of the numbers in the
arithmetic progressions

--V --(I) + 1) --(V + 2)
fori 6 I.

Ni Ni Ni

Now let . be a complex parameter with real part (,k) > > 0 and define the functions

Then

and

G+ (.) := ff>o fXdx+ff<o
(-f)Xgdx"

G+() f,,,, IflXgo

G_(,) I sgn(f)lflxdx,

where sgn denotes the sign function. So we obtain the classical distribution Ifl x and
its twisted version sgn(f)lflx (twisted by the character sgn). One can show that
these functions have meromorphic extensions to the complex plane with poles c in
the set A, hereafter called the set of candidate poles. The coefficient ak,a(9) in the
asymptotic expansion of I (3) can easily be expressed in terms of the coefficients
b+ 0/)--(TMl.a(o) of (. >_ k, in the Laurent expansions of G+(L).

Let ot 6 A be a candidate pole. Using the resolution zr one finds a non-negative
integer ka such that bt (p) 0 for all 9 and all k > ka. Then, for most o, ka is
the expected order of ot as pole of G+(,k). Let/ be the maximum of A, such that
ata,t (qg)3t (ln 3)ta is the dominating term in the asymptotic expansion of I (3). In [J2]
we show that b+/- ,t(qg) and hence ata.(qg) can be expressed in terms of real principal
value integrals (of a meromorphic differential form of higher degree). Thus in the
case that f is a polynomial the theorem stated before gives a condition in terms of
cohomology for the vanishing of the coefficient aka.(9).

This paper is divided into six sections. In the second section we give some defi-
nitions and a lemma which we need to build our homology theory in Section 3 and
to state our main results in Section 4. Besides the Poincar6 Duality Theorem we
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formulate Propositions A and B, which are useful to check the conditions of the
Poincar6 Duality Theorem. In the last two sections we prove our results. The proofs
of Propositions A and B are given in Section 5. Section 6 is entirely devoted to the
proof of the Poincar6 Duality Theorem.

The results in this paper can also be found (in a slightly more elaborated way) in
my Ph.D. Thesis [J]. At this point I’d like to thank Prof. Jan Denef for the many
fruitfull discussions and for his interesting suggestions.

2. Definitions of basic notions

In this section we define the basic notions that we need later on. We introduce
simplicial complexes as in [Ka-Sch, VII, 1, p. 321-322]. We also explain the notions
of triangulation, orientation and family of support.

2.1 Simplicial complexes

(2.1) Definition. A simplicial complex $ (S, A) consists of a set S and a set
A of subsets of S, satisfying the following axioms.

1. Any a in A is a finite and non-empty subset of S.
2. If r is a non-empty subset of an element a of A, then r belongs to A.
3. {p} belongs to A for any p in S.
4. The set {a Alp or} is finite for any p in S.

An element of S is called a vertex of S and an element of A is called a simplex of S.
We equip/s with the product topology and for cr in A we definethe relative interior

of or by

Icrl :’- {x Slx(p) O fr p cr; x(p) > O fr P cr and x(p) ]
We also define ISI := 11, called the space ofS, "if, the closure oflrl in ISI and
dim or, the dimension of a, which is one less than the cardinality of tr. We denote
the set of/-dimensional simplices of S by Ai. A non-empty subset of a simplex a is
called a subsimplex orface of a. A face of a simplex a of dimension (dim a 1) is
called afacet of a.
A simplicial complex ,S’ (S’, A’) is called a simplicial subcomplex ofthe simplicial
complex S (S, A) if S’ C S and A’ C A.

(2.2) Convention. If we write p -i )i Pi, we will always mean that p is a
positive barycentric combination of the Pi, so i > 0 and -i .i 1.
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2.2 Triangulations

(2.3) Definition. Let X be a topological space. A triangulation ofX is a home-
omorphism t: 1,91 X from the space 1,91 of a simplicial complex ,.q to X. We
denote it by t: S --+ X. For any simplex cr of S we denote the set t(Icrl) by at and
for any subspace W of X we denote the set (6) N W by crw. If X is a differentiable
manifold then we will always assume that the sets crt are locally closed differentiable
submanifolds of X.
We say that the triangulation t’: C --+ C is a subtriangulation oft if C is a subspace

of X, C is a simplicial subcomplex of $ and t’ equals the restriction of to the space
ICI of C, If such a triangulation t’ exists we also say that subtriangulates C. Note
that for any simplex cr of S with at C X C the closure of crt in X C is equal to
Crx -C. I3

(2.4) LEMMA. Let W be a subset ofa topological space X. Let t: (S, A) --+ X
be a triangulation ofX which subtriangulates X W. Then:

1. W is an open subspace of X.
2. crt C X W or O" C Wfor every r in A.
3. For eve.ry D C A the subset k3ocrw of W is a locallyfinite union and hence

closed in W.
4. The set crw is connectedfor each cr in A.
5. For every simplex cr in A we have

Crw U t.
rtcW
face of

The proofofthis lemma is elementary. It can be found partially in [Ka-Sch, VII, 1,
pp. 321-322].

(2.5) Definition. Let t: $ -- X be a triangulation of a topological space X
and let F be a closed subspace of X. We say that is good with respect to F if
subtriangulates F and for each simplex cr of $ with crt A F 0 there exists a vertex
p of r with p F. (Here we identify p with the unique point in the singleton
{p},.) c

(2.6) Example. Let be the triangulation of the 2-sphere sketched in Figure 1.
Let E be the "equator" and M the "zero meridian". Then subtriangulates M and

E. Moreover is good with respect to E, but not with respect to M. It is also good
with respect to {Po, P2} but not with respect to {pl, P2}.

(2.7) Remark. A triangulation t: S -, X which subtriangulates a closed sub-
space F of X can always be refined to obtain a triangulation t’ of X which is good
with respect to F. You can take the first barycentric subdivision of for example.
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jo0

P2

Figure

2.3 Orientations

(2.8) Definition. Let S (S, A) be a simplicial complex. For a simplex cr

{Po Pi} we define an orientation ofr as a pair (s, (Po Pki)) where s 6

1, -1 is a sign and cr {Pk0 Pi }, modulo the following equivalence relation. We say that (s, (Po Pi)) (r, (Pro Pt,)) if the permutation f of the
vertices of cr such that f(pj) Plj for all 0 < j < i, has sign equal to s.r. We
denote the class of (s, (Pk0 Pi)) by s[p Pki]" !’-!

(2.9) Definition. Let cr {Po Pi} 6 A and let r {P0 13j Pi}
be a facet of cr (where /3j means omitting pj). Choose an orientation o(r)
s.[po Pi] of or. Then we define the orientation on r induced by o(r), denoted
by o(cr)lr, as the orientation of r given by s(-1)J[po 13 pi]. One checks
that this is well-defined. I1

(2.10) Definition. An orientation o ofa triangulation t: $ --> X of a topolog-
ical space X, is a map which maps each simplex cr of $ to an orientation o(cr) of
the simplex or. Note that the orientation o(r) of a face r of a simplex cr is not de-
termined by the orientation o(cr). Thus the orientations of the simplices need not be
’compatible’. r"l

2.4 Families of supports

(2.11) Definition. Let X be a topological space. Afamily ofsupports on X is a
family q) of closed subsets of X such that:

1. A closed subset of a member of q) belongs to q).
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2. p is closed under finite unions.

The family q9 of supports on X is said to be paracompactifying if in addition:

3. Each element of o is paracompact.
4. Each element of o has a neighborhood which is in p.

We write c(X),resp, cl(X), for the family of supports on X consisting of all compact,
resp. closed, subsets of X. If W is a subspace of X and o a family of supports on X,
let q9 N W := {K N WIK 6 o} and olW := {K 6 olK C W}. Both are families of
supports on W.

3. A sheaf homology theory with supports

In this section we build up our homology theory. We assume the following data.

(3.1) Data. Let X be a topological space and let W be an open subspace of X.
Let L be a ring and 9r a sheaf of L-modules on W. Let o be a family of supports on
W. Let t: (S, A) --+ X be a triangulation of X which subtriangulates X W and let
o be an orientation of t.

(3.2) Notation. Let cr 6 A. Then we define

.T’(rw) := lim .T’(V).
trwCVCW

In this direct limit V runs through all open subsets of W containing aw. Note that
we have a natural restriction .(aw) ---> ’(rw): c c]rw for a subsimplex

(3.3) Definition. We define Ci(W, .T’, t, o) as the direct product of L-modules
Ho.EA "(O’w). We denote an element of I-IEA, .(aw) by I-IA, c(crw)aw, where
c(aw) .(aw). Note that this notation is justified since for any two different i-
dimensional simplices a and r of S we have aw rw provided that these last two
sets are non-empty. If only a finite number of the c(crw) are non-zero we also write

YA, c(Crw)Crw. If A we agree Ci(W .’, t, o) O.

(3.4) Definition. If is a facet of a simplex cr we define the sign e(cr, r) by the
relation o(cr)lr (cr, r)o(r).

(3.5) Remark. If zl and zz are two different facets of a simplex tr A with
non-empty intersection p, one checks that
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(3.6) Definition. Now we define boundary morphisms

Oi" Ci(W, fie, t, o) -- Ci_ (W, .’, t, o),

for >_ O. If A 0 or 0 we put Oi O. Otherwise we define

Oi(C(6rw)O’w) H
rCa,rEAi_I

((r, r)c(rw)lrw)rw

for cr e Ai, (O’W) .,’(O’w). Here c(rw)lrw is the image ofc(crw) under the natural
restriction )r(crw) .T’(rw). We extend this definition by linearity to Ci(W, ., t, o).

Using Remark 3.5 one checks that Oi-10i 0 for all i. Thus we have constructed
a chain complex of L-modules (C. (W, .T’, t, o), 0.).

(3.7) Definition. For c I-IEzx; c(rw)crw Ci(W, ’, t, o) we define the sup-
port ofc by

supp(c) := t_J crw.
A

Remark that supp(c) is a closed subset of W by lemma 2.4. We also define

C(W, ’, t, o) :-- {c Ci(W ’, t, o)lsupp(c) tp}

(3.8) Definition. Since supp(Oi(c)) C supp(c)for c Ci(W,.’, t, O)we have
Oi" Cf (W, ., t, o) Cf_ (W, , t, o). Thus again we have a chain complex of
L-modules (C(W, .T’, t, o), 0.). We define H.(W, .T’, t, o) as the homology of the
chain complex (C.(W, ., t, o), 0.).

(3.9) Notation. We denote the module of/-dimensional cycles, resp. bound-
aries, by Z (W, .T’, t, o), resp. B (W, .T’, t, o). We denote H.cl(w) (W, ., t, o) by
H.(W,,t,o).

(3.10) Remark. The homology modules H(W, .T’, t, o) depend a priori on the
chosen triangulation and orientation o. However it is easy to check that they don’t
depend on the chosen orientation. Later on (see 4.3) we will see that in some inter-
esting cases they don’t depend on the triangulation neither.

(3.11) Example. Let X be the complex projective line and let W X {0, o}.
We identify W with C {0} and choose an affine coordinate z on W. Let c, d be
relatively prime positive integers with c := c/d Z. Let w be the rational differential

1-formzC(dz)a on W ofdegree d, i.e., w I(W, f2x/(R)a). Let/(wTM) be the locally
constant sheaf of C-vectorspaces on W associated to wTM, which is locally free of
rank 1. A non-zero section of (wTM) on a connected open U is an analytic branch
of oTM on U multiplied with a complex number.
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w x- {o,

Figure 2

We choose a triangulation of X which subtriangulates X W, as in Figure 2. We
also choose an orientation o of such that all 2-dimensional simplices have the same
orientation, i.e., the orientation induced by one orientation of the Riemann sphere X.
Now we will show that Hi(W, E(wl/d), t, o) 0 for all i. It is clear that all

2-dimensional cycles correspond with global sections of .(1/d) on W. Hence
H2(W, (0911d), t, O) vanishes since c Z.

Denote the simplex {pi, Pj} by rij. Let z ’(cr01)w be a chain. Turning one
time around zero we see that (1 e2rria)z is homologous to a chain which contains
only simplices with only pl, P3 or P4 as vertices. Using similar arguments one sees
that every 1-dimensional cycle is homologous to a cycle of the form a3(cq3)w /
a34(cr34)w -k- a41 (cr41)w. Such a cycle must vanish since otherwise there would exist
an analytic branch of zadz on an open neighborhood of (rl3)W t.J (r34)w t3 (r4)w.
This proves that H (W, .(w/a), t, o) O.

Finally every vertex of in W is clearly also a boundary, hence also
Ho(W, (wl/a), t, o) 0. Similarly one verifies H(W, .(w/a), t, o) 0 for
all and p equal to c(W), c(X {0}) f) W or (X {cxz}) fq W.

4. Statement of the main results

In this section we assume the following data.

(4.1) Data. Let X be a real differentiable manifold of dimension d and let W
be an open subspace of X. Let L be a ring which is a flat Z-module and let/2 be a
locally constant sheaf of L-modules on W which is locally free of finite rank r on
W. Let o be a family of supports on W. Let t: (,9, A) --+ X be a triangulation of X
which is good with respect to X W (see Definition 2.5). Let o be an orientation of
with respect to which we consider homology. The orientation sheaf of L-modules
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on W will be denoted by (C)L. Thus (C)L (9 (R) L where (9 denotes the orientation
sheaf of Z-modules on W.

In this article we prove the following theorem and propositions.

(4.2) POINCARt DUALITY THEOREM.
Assume:

Assume Data (4.1).

1. 99 has the union property, i.e., for every Ko in 99 and for every locally finite
family 1C ofelements in 99 the union U{K 1CIK N Ko # 0} belongs to 99.

2. H,lw(aW, L) Ofor all a &, j > O.

Thenfor all i, 0 < < d, there is a natural isomorphism

Hff_i(W, ., t, o) - H(W, . (R) OL).

The cohomology modules here are the classical sheaf cohomology modules (e.g.,
see [Go]). Furthermore these isomorphisms are natural with respect to inclusion of
families ofsupports. More precisely we have commutative diagrams

nd_i(W, ., t, o) - H (W, (R) OL)

n2_i(W, C, t, o) -- H(W, C (R) OL)

if 991,992 are twofamilies ofsupports as in Data 4.1 which satisfy conditions and 2
andfor which 991 C 992. Here the vertical maps are the natural maps induced by the
inclusion 991 C 992.

(4.3) COROLLARY. The homology modules H(W, , t, o) don’t depend on the
triangulation nor on the orientation o (as long as and 99 satisfy the conditions of
the Poincard Duality Theorem (4.2)).

(4.4) PROPOSITION A. Assume Data (4.1). Then 99 has the union property (see
(4.2)) in each of thefollowing cases"

1. X is compact.
2. 99 cl (W), thefamily ofall closed subsets of W.
3. 99 c(X F) fq W, where F is a closed subset ofX W.

(4.5) Remark. If X is a compact Hausdorff space, then a closed subset of W
belongs to the family 99 c(X F) N W if and only if its closure in X is disjoint
from F. For such a family the second condition of the Poincare Duality Theorem is
also satisfied, at least if we add the very weak condition that is good with respect
to F.



654 PHILIPPE JACOBS

(4.6) PROPOSITION B. Assume Data (4.1). Let F be a closed subset ofX W.
Suppose that is a good triangulation with respect to F. Let o c(X F) fq W.
Then JHlaw (aw, L) Ofor all cr A and j > O.

(4.7) Remark. There are two important cases in which the Poincar6 Duality
Theorem applies. Take X W.

If o c(W), the family of all compact subsets of W, then condition 1 is satisfied
by Proposition A and condition 2 is satisfied by Proposition B. Hence our homol-
ogy modules Hw(W, ., t, o) are isomorphic to the classical singular homology
modules on W.

If o cl (W), the family of all closed subsets of W, then condition 2 is satisfied
since the crw are contractible. Also condition is satisfied by Proposition A and
our homology modules H (W, , t, o) are isomorphic to the classical Borel-Moore
homology modules on W (e.g., see [Bo, 1,2.2]).

(4.8) Example. We have H (C {0},/(091/d)) 0 where w is the differential
form of example 3.11. This follows from the Poincar6 Duality Theorem (4.2) and the
results of example 3.11. (Note that the triangulation in that example satisfies the
conditions of the Poincar6 Duality Theorem. Use proposition B with F 13.)

5. Proofs of Propositions A and B

ProofofProposition A. The first two cases are evident, so suppose o c(X
F) f3 W. Let Ko o. Then there exists a compact subset K of X F such that
K0 K N W. Let/ be a locally finite family of elements in o. Then there are only
finitely many elements of/C that meet K. Hence U{K e/ElK N Ko 0} belongs
to o. [2

(5.1) LEMMA. Let t: $ X be a triangulation ofa space X which is good with
respect to a subspace F. Let cr be a simplex ofS such that crx N F 0. Then there
exists a subsimplex z ofor such that Cx fq F rx.

Proof. We prove this lemma by induction on dim r. If dim cr 0 or if crx C F
this is clear. So assume crx F and dim cr > 0. Then at f F 0 by lemma 2.4.
Hence there exists a vertex p of cr with p F since is good with respect to F. Let
p cr {p}. We claim that crx F Px f F. To prove this claim it suffices, by
Lemma 2.4, to show that for every face . of cr with p e ), we have .t f F 0.
Choose such a face . and suppose that .t fq F 0. Then t C F, by Lemma 2.4
again, and hence p x C F since F is closed. But this is in contradiction with
p F. By induction on dim r there exists a subsimplex z of p and hence of r such
that rx Px F. [2
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ProofofProposition B. Fix cr in A. If crx N F 0 then olcrw cl(crw) and the
proposition follows since trw is contractible So we may assume that crx N F 0.
Since is good with respect to F it follows from Lemma (5.1) that there exists a
subsimplex z of cr such that crx F Zx. Let := cl(crw U rx), the family of all
closed subsets of crw U Zx. Since crw t2 Zx is paracompact this is a paracompactifying
family. Then we have an exact sequence (see [Br, II,10.2]):

nJ+l--+ HI, (Crw, L) --+ H(rw t3 Zx, L) Hlrx (rx, L) 1,,. (gw, L) --+...

Since rx is closed in crw t2 rx we see lrx cl(rx). One checks that

Icrw cl(trw t2 Zx)law

(c(rx) (rw rx))lrw

c(rx rx) f3 crw
(c(X- F)fq W)lcrw

olcrw

Since crw t2 Vx and Zx are both contractible, H(aw t.J Vx, L) and Hlrx (vx, L)
vanish for j > 0. Then the sequence implies that Hlaw (aw, L) 0 for j > 2.
Because Zx 0 the map from H(crw t2 rx, L) to Hlx (vx, L) is an isomorphism,
so Hlaw (crw, L) 0. Since lcrw tplcrw this proves the proposition.

6. Proof of the Poincar Duality Theorem

In this section we will prove the Poincar6 Duality Theorem (4.2). In the first two
paragraphs we give some more results on triangulations and sheaves. The reader who
wants to skip the details of the proof may proceed directly to paragraph 3 in which
we outline the two main steps of the proof. These steps are proved in the two last
paragraphs.

6.1 Triangulations

(6.1) Definition. Lets (S, A) be asimplicial complex and p e ISI. Let A.h/’p
be the set of all simplices tr in A for which p belongs to " together with all their
faces (i.e., non-empty subsets of a). Let SAfp be the set of all vertices of simplices
in AA/’p. Then ./V’p (SA/’p, AAfp) is a simplicial complex, called the simplicial
neighborhood of p in $. Let A/:p be the subset of AAfp consisting of all simplices
cr in AJV’p for which p doesn’t belong to - and let Sp be the set of all vertices
of simplices in A/:p. Then/:p (SZ:p, A/:p) is a simplicial complex, called the
simplicial link ofp in ,.q. v1
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(6.2) LEMMA. Let S be a simplicial complex such that ISI is a d-dimensional
topological manifold. Let p ISI. Then:

1. IdV’pl is contractible.
2. IZ3pl is homeomorphic to the (d 1)-dimensional sphere Sd-1.
3. Hi(l.A/’p[, [/2p[) --OforO < < d- 1.

Here Hi (-, -) means the standard singular relative homology.

Proof. For parts 1 and 2 we refer to [Mau, Prop. 2.4.4, p. 43; Prop. 3.4.3, p. 89].
The third part follows from parts and 2 and the exact homology sequence for the
pair ([A/’p l,

(6.3) LEMMA. Let $ be a simplicial complex such that [SI is a d-dimensional
topological manifold. Let r be a simplex ofS such that rl is a (d- 1)-dimensional lo-
cally closed submanifold of l$1. Then there exist exactly two d-dimensional simplices
ofS which contain r.

Proof Take a point p in [rl and an open neighborhood U of p in 1,91 such that
there exists a homeomorphism o from U to an open subset D of d under which
p corresponds to the origin 0 and Irl to the set C {x Dlxd 0}. Let cr be
a simplex of $ of dimension d which contains r. By making U eventually smaller
we may suppose that Irl N U is a non-empty connected component of U rl. But
U rl has exactly two connected components whose closure in U contains p. This
proves the lemma.

(6.4) LEMMA. Let S (S, A) be a simplicial complex such that ISI is a d-
dimensional topological manifold. Suppose that Irl is a locally closed submanifold
of l$lfor each simplex cr ofS. Fix apoint p in 1,91 and denote the set ofj-dimensional
simplices cr of 1,91 with p ff by Aj,p. Let rl, cr2 Ad,p. Then there exists a finite
sequence trl ., )2 Zk- ’k t72 with i - Ad.p and .i N ,i+1 Ad_.p for
all i.

Proof Define an equivalence relation on Ad,p by saying that rl or2 if
there exists a finite sequence crl 1, ,k2 .k-l, ,kk or2 with )i Ad,p and
/,i N i+1 Ad-l.p for all i. Let A be one of the equivalence classes and let B
be the union of the other classes. Note that A # 0. Suppose that B # 0. Let
A := tocra" and B "= tos- and choose an open connected neighborhood U of p
in 1,91 contained in A tO B. Then A N B U is a finite union of closed submanifolds
of U of codimension at least 2. Hence U (A B) is connected. Then we can find
apath p" [0, 1] U (A f3 B) with p(0) A U and p(1) B N U (which is
non-empty). But Im(p) N A and Im(p) fq B are closed in Im(p) and they are disjoint.
This contradicts the connectedness of Im(p). Hence B must be empty which proves
the lemma, r’-I
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O" {P0,191}

t)1 ICl

ICl

Figure 3

(6.5) Definition. Let$ (S, A) be a simplicial complex and let C be a simplicial
subcomplex of S. Denote I1 by C and ISI I1 by V. Assume that S is good with
respect to C, which means that for each simplex a ofS with lal c ICI 0 there exists
a vertex p of a with p 6 V. Let r, a 6 A and let 0 < < 1. Then we define

rv(a, )"= {Epr )pp 6 Vl pr-E )P < and

We also define

Stv(a, e) "= Uzxrv(a, ),

called the epsilon star ofcr in V.

(6.6) LEMMA. Assume the data ofDefinition (6.5). Then:

1. The sets rv(a, ), 0 < < 1,form a base ofopen neighborhoods of rv q av
in rv.

2. rv (a, ) 0 if r f3 a C C.
3. rv(a, ) rv if r C a.
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4. Sty(a, e) N zv r.v(cr, ).
5. The sets Sty(a, e), 0 < e < 1,form a base ofopen contractible neighborhoods

ofcry in V.

Proof. Ifx e rvnav (zna)v thenx ]prna ’pP with -p(rna)-c ’P > 0
because of Lemma (5.1). Thus x e rv(a, e) for 0 < e 5 1. Then part 1 is clear.
Ifrna c Cthen(rng)-C from which part 2 follows. Ifz C gthen

r g and r n r from which part 3 follows since S is good with respect
to C. Let x belong to Sty(g, e). Then x Pv(g, ) for some in A. Now suppose
that r A such that x rv. Then x pnr Lpp with p(nr)- p < and

ps(nrn-c p > 0. Thus x e ( n z)v(g, e) c Zv(g, e). is proves part 4.
Now we prove that Sty(a, e) is open in V. Let x belong to Sty(g, e). Since there
e only finitely many r in A for which x Zv, there exists an open disk U in V
ound x such that U n rvc rv (a, e) if x rv and U n Zv if x rv. But then
U C Stv(, e) (indeed, suppose y a U and choose r in A such that y Zv; then
U n rv and hence x must belong to zv, so U n zv c Zv(g, e) c Sty(g, ); thus
y Sty(g, )).

It is also clear that Sty(g, e) contains gv since v gv(a, e) by part 3.
Now we show that Sty (, e) is contractible. For this purpose we show that gv and

Sty (g, e) e homotopically equivalent. Letq Sty (g, ) and choose z in A such that
q rv(a, ). Then q psr PP with psr- Lp < and p(roa)-c Xp > 0.

en we define (q) "= psrn P av. This definition is independent

of the choice of r, so we get a well-defined map " Sty(a, e) av. Moreover
lav is the identity and is continuous since it is clearly continuous on the sets
rv(a, ), which are closed in Sty(a, e) (by part 4) and cover Sty(a, ). Now we
define F" [0, 1] x Sty(a, ) Sty(a, )" (t, q) t(q) + (1 t)q. Then F is
a homotopy, F(0,-) is the identity on Sty(a, ) and F(1,-) . us av is a
strong defoation retract of Sty(a, e). Since av is contractible by Lemma (5.1),
Sty(a, ) is contractible too.

Finally by part and 4 it follows that the sets Sty(a, ), 0 < e 1, form a base
of neighborhoods of av.

(6.7) Definition. Let t" $ X be a triangulation of a topological space X. Let
t’: C C be a subtriangulation of t. Denote ISI I1 by V and let W := X C.
For a, r in A and 0 < < we define rw(a, ) "= t(rv(a, )) and Stw(a, ) :=
t(Stv(a, )), called the epsilon star ofa in W. E]

(6.8) LEMMA. Let X be a topological space and let W be an open subspace of
X. Let t: (S, A) -- X be a triangulation ofX which is good with respect to X W.
Let 3, a A and O < < 1. Then"

1. The sets rw(a, ), 0 < < 1, form a base ofopen neighborhoods of rw aw
in



A SHEAF HOMOLOGY THEORY WITH SUPPORTS 659

2. Vw(a, ) 0 if r N cr fq W 0.
3. rw(a, ) rw if r C a.
4. Stw(Cr, e) N Zw Zw(cr, ).
5. The sets Stw(cr, e), 0 < e < 1,form a base ofopen contractible neighborhoods

ofcrw in W.

(6.9) LEMMA. Let X be a topological space and let W be an open subspace of
X. Let t: ,.q --+ X be a triangulation which is good with respect to X W. Let L be
a ring and let . be a locally constant sheafofL-modules on W. Let cr be a simplex
of S. Then crw has a base of open contractible neighborhoods in W on which . is
constant.

Proof. This follows from Lemma (6.8) and the fact that locally constant sheaves
are constant on simply connected opens, v1

6.2 Sheaves

(6.10) Definition. Let .T" be a sheaf of L-modules on a topological space W. Let
s be a global section of.T" on W, i.e. s e .T’(W). Then we define supp(s), the support
of s, as {p Wisp 0}. Note that this is a closed subset of W. All global sections
with support in a family o of supports in W form an L-module, denoted by F(.T’).
Moreover F(-) defines a functor of the category of sheaves of L-modules on W
to the category of L-modules. Let (.T", 0) be a cochain complex of sheaves of L-
modules on W. Applying the functor 1-’0(-) we get a cochain complex (l"0(.T"), 0)
of L-modules. The i-th cohomology module of this cochain complex we denote by
H (1-’o(.")). Similarly we get a chain complex (1-’(.T’.), 0.) if (.T’., 0.) is a chain
complex of sheaves of L-modules on W. The i-th homology module of this chain
complex we denote by Hi (1-’0(.T’.)).

(6.11) Definition. Let W be a topological space and .T" a sheaf of L-modules
on W. Let q9 be a family of supports on W. The sheaf .T" is said to be p-acyclic if

Hfl (W, .T’) 0 for p > 0. The sheaf .T" is said to be flabby if .T’(W) --+ .T’(U) is
onto for every open subset U of W. A resolution C of .T" is called o-acyclic, resp.
flabby, if each C is tp-acyclic, resp. flabby.

(6.12) LEMMA. Let W be a topological space and.T’aflabby sheafofL-modules
on W. Then .T" is p-acyclicfor everyfamily ofsupports o on W.

Proof. See [Br, II, 5.2]. [2]

(6.13) LEMMA. Let W be a topological space and C" a oi-acyclic resolution of
a sheaf ofL-modules on W, where oi, 1, 2, are twofamilies ofsupports on W



660 PHILIPPE JACOBS

with q)l C 2. Then we have commutative diagramsfor all >_ 0:

s (r (c)) & (w, m)

Here the horizontal maps are isomorphisms and the vertical maps are the natural
maps comingfrom the inclusion ol C q)2.

Proof. See [Br, II, 4.1]. El

6.3 Outline of the proof
There are two important steps in the proof.

1. We construct C. (;), a chain complex of sheaves of L-modules on W and show
that

Hff_i(W, , t, o) -- Hd-i(Fo(C.())).
Then Cd-. (12) is a cochain complex of sheaves of L-modules on W and

Hd_(r’(C.())) ni (F(Cd_.())).

2. We show that Cd-. (/2) is a o-acyclic resolution of/2 (R) OL, so

At the same time we will check that the isomorphisms in these steps are natural
with respect to inclusion of families of supports.

6.4 Proof of step 1

(6.14) Notation. We write ( and I-I for the tensor product and direct product
in the category of sheaves. For the tensor product we need only two factors. In the
case of the direct product however we need an infinite number of terms. Note that the
direct product presheaf of sheaves is again a sheaf. Also note that the tensor product
sheaf of two sheaves is isomorphic to the sheafification of the tensor product presheaf
of these sheaves.

(6.15) Definition. For a simplex cr in A let P/2‘" be the presheaf on W with
sections lim ‘’wcvcw E(V) above an open subset U of W, where V runs through
all open neighborhoods of U (rw in W. (Note that P.‘’(W) =/2(trw).) Let/2‘" be
the sheaf associated to the presheaf P/2‘’. Note that/2,, (/z‘’),(L[trw), where/z‘"
denotes the embedding trw --+ W.
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Let Ci(/), 0 < < d, be the sheaf I-[s,x,/. We will define morphisms
Oi" Ci(,) Ci-l()for < < d. Letz Ai-1 and leta e Ai such thatz
is a facet of r. Let e(cr, z) be as in Definition 3.4. Let U be an open in W. Let
V be an open in W containing crw N U. We have a morphism (V) E(V)’
s - (a, z)s. These morphisms are compatible with restrictions, hence we get a
morphism /r. Summing over all a e A which have r as a facet we get
a morphism Ci() /r for every r in Ai-1. These morphisms then give rise
vf to a morphism Oi" Ci () ---> Ci-1 (). r-1

(6.16) LEMMA. (C. (), 0.) is a chain complex ofsheaves of L-modules on W.

Proof. If Z, the constant sheaf of Z-modules with stalks Z, then this lemma
follows from Remark 3.5. From this we get the result for general/ by tensoring up.
Indeed, it is straightforward to check that

c. (2) (R) I-I (2 (R) ) c. (). ra
aA.

(6.17) LEMMA. There are natural isomorphisms
Hi (F(C. (/))). Furthermore we have commutative diagrams

HS(W, ,, t, o) -
H/91 (W, , t, O) - H/(F, (6.()))

Hi(W, ,, t, O) - Hi(re2(C.()))

if01, 02 are twofamilies ofsupports on W with o C o2. Here the vertical maps are
the natural maps comingfrom the inclusion Ol C q92.

Proof. Let W be the connected component of W which contains aw. Then

r((z:)) I-I

- H P"r(W’)
aAi

Ci(W, ff..).
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The isomorphism follows from Lemma (6.18). These isomorphisms
I’(Ci()) --> Ci(W, ) clearly commute with 0 and respect supports. Hence we
have natural isomorphisms Hi(r’(C.())) --+ H(W, , t, o). The commutativity
of the diagram is evident.

(6.18) LEMMA. Let L be a ring and.T" a presheafofL-modules on a topological
space W. Let U be an open path-connected subset of W such that for all points
p U and all open neighborhoods We ofp in U there exists an open neighborhood
Up C Wp ofp such that the restriction resu.up .(U) --+ .T’(Up) is an isomorphism.
Then the natural map 0(U): .T’(U) --+ $(f’)(U) is an isomorphism. Here S denotes
the sheafificationfuncwrfrom the category ofpresheaves to the category ofsheaves
(see [Ha, II, 1, p. 64]).

Proof. We may assume U 0. We will construct an inverse (U) for O(U).
Let s S(.T’)(U). Choose a point p U, an open neighborhood Wt, C U of p and

’(Wp) such that tq s(q) for all q Wp. By assumption we have an open
neighborhood Up C Wp of p such that rest:,up: .(U) --+ f’(Up) is an isomorphism.
Define (U)(s) in 0r(U) by resu,vp((U)(s)) reswp,u(t). Using the condition
on U again one sees that ap(U)(s) is independent of the choices made. One also
checks that ap(U) is the inverse of O(U).

6.5 Proof of step 2

(6.19) LEMMA. Ca-.() is a resolution oflE (R) O.

Proof. Since/2 (R)z O /2 (R)L OL and since L is a fiat Z-module it is sufficient
to prove the lemma in case E Z. We denote Ci (Z) by Ci.

In this proofwe introduce some data atached to a d-dimensional simplex cr ofS. By
Lemma (6.9) we can choose a fixed contractible open neighborhood U oftrw in W on
which (.9 is constant. The orientation o(cr) of or, represented by [P0 Pd], defines
a unique element o of O(crt), represented by the chart rt --+ d: t( LiPi) -->
(.1 .a). Then the restriction O(U.) (9(at) is an isomorphism. Let go be
the generator of (.9(U.) which maps to o. under this isomorphism.
We start by constructing a morphism of sheaves e: (.9 --+ Ca. It suffices to

construct morphisms of presheaves %: (.9 --+ PZ. for every a in Aa. Let
let U be an open subset of W and r/ 60(U). Let {Ui be the set of (non-empty)
connected components of U fq U,,. Since the restrictions O(U.) --+ O(Ui) are
isomorphisms we can find integers zi such that olUi ziglUi. Now there is a
natural morphism f: I-Ii z(ui) --+ PZ.(U) since 1-Ii z(ui) z(u N u.). Then
we define % (U)(0) := f(I-Ii zi). One easily verifies that these maps are morphisms
which commute with restrictions, giving us the required morphisms (.9 --+ PZ..
We have to prove the exactness of the following sequence:

Od-Io o & c - C_l
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It suffices to prove exactness at the stalks in points p in W. So let’s fix a point p
in W. To simplify notations we introduce a new chain complex (C.(Wp), 0.). Let
Ai,p(W "= {0" E AilP aw}. Define Ci(Wp) i’- (aEAi,p(W) 7 and denote an
element of Ci(Wp) by YE,xi.p(w) z,a. Also define boundary operators

Oi" Ci(Wp)-- Ci-I(Wp): E Zar ’ E E
O’CAi p(W) o.Ai,p(W) facet ofo

zAi_l.p(W

This chain complex is isomorphic to the chain complex ((.)p, (O.)p). This follows
since the stalk (i)p is clearly isomorphic to I-I.A, (Z)p and (Z)p Z if p aw,
(Z)p 0 otherwise. We will denote the composition of the morphism (p -’ (d)p
and the isomorphism (d)p "- Cd(Wp) also by e. Thus we need to prove the exactness
of the following sequence:

First we prove exactness at Op. Choose 0 Op such that (r/) 0. Now
e(rl) ZXp(W)za where the z are integers such that r/ z(go)p in Op.
Since Ad,p(W)" 0 this implies that r/= 0.
Now we prove exactness at Cd(Wp). First we show that im() C ker(Od). Choose

rl Op and let z be as above, for a in Ad,p(W). Then (0) YE,p(w)za.
Let r Ad_,p(W). Since X is a d-dimensional manifold z is the interection of
exactly two simplices al, or2 in Ad,p(W) (see Lemma (6.3)). Moreover if (g,,l)p
s.(g2)p with s E {1,-1} then s -(a, r).(cr2, r) (this can be checked on the
level of simplicial complices by using the topological definition of orientation) and

z s.z2. Hence the coefficient of r in Od((O)) is zero. Thus (r/) belongs to
ker(Od).
Now we show that ker(0d) C im(e). Let z ,xa,(w)za ker(Od). For

cr Ad,p(W) define 0 := z(g,)p in Op. We check that r/ is independent of a.
Let al, a2 Aa,p(W). Since X is a manifold we know that there exists a sequence
cr .1, )2 Lk-1, .k or2 with .i in Ad,p(W) and i ,i+1 in Ad-I,p(W)
(see Lemma (6.4)). Thus we may assume that r al a2 e Ad-,p(W). Since
z E ker(Od) we know that (al, z)zl + (a2, r)z2 0. Then

rla, za (gcq)p --((O’1, ’).((O’2, "i)Za (ga2)p Za:(ga2)p rla.

Thus we define 0 "= r/ where a Ad,p(W). Then by construction e(r/) z. Hence
z e im(e).

Finally we prove exactness at Ci (Wp) for 0 < < d 1. Before we proceed we
need to build up yet another chain complex. Let A/’p be the simplicial neighborhood of
-1 (p) in S and let/p be the simplicial link of -1 (p) in S (see Definition (6.1)). Let
Ai(Jp) "= Ai Ajp and let Ai(Ep) :--- A I"l AEp. Let Ci(Jp) :’-" ]aAi(.hfp)Z
and denote an element of Ci(Afp) by Y’-eai(Azp)zcr. Define

i" Ci(P)’-’Y" Ci--I(JV’P): E ZaO’l- E E .(O’,T)Za.
trAi (A/’p) aEAi(Afp) facet of a
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Then (C.(A/’p), 8.) is a chain complex of Z-modules. Note that Ci(Wp) C Ci(.Afp)
but (C. (Wp), 0.) is not a subcomplex of (C. (A/’p), 8.). In a similar way we define
(C.(Ep), 8.) which is in fact a subcomplex of (C.(A/’p), 8.). Hence we can define the
relative homology groups Hi (C. (A/p, .p)) in the obvious way.

(6.20) CLAIM. H (C. (.Alp, p)) 0for 0 <_ <_ d 1.

Before proving this claim, we proceed with the proof of the lemma. Fix an integer
with 0 < < d 1. Since Ci(Wp) is a chain complex it suffices to prove that

ker(0i) C im(0i+l). So let O )-6,.p(w 0cr 6 ker(0i). Then, Oi(r
o’Ai,p(W)

Ai,p(W) facet

ti(l’])

Thus ti(]) Ci-l(ff-,p) since Oi(]) 0. Hence, by the claim, there exists c in
Ci+l(A/’p) and u in Ci(p) such that i+(c) + u. Let c -’xA+(AC,)Cx.
and define ap := -’zzxi+.,(w, cxZ. Then 0 8i+1 () Ci(.p). But by the same
argument as above also Oi+ () i+1 (ap) Ci(_.p).Thus rl Oi+l () Ci(ff-,p).
Since both 0 and Oi+l () belong to Ci(Wp) this means that r/= Oi+ (). r"i

Proofof Claim (6.20). Let Di(Jfp) be the free abelian group generated by the
ordered simplices of A (./fp), divided out by the subgroup generated by the elements
(ao ai)-sgn(p)(ap(o) ap(i)) where (ao ai) denotes an ordered simplex
of A (.}fp) and p is a permutation of the set {0 }. We let [ao ai] denote the
class of (ao ai) in Di(.Afp). Then we define O[ao ai]

j=o(- 1)J [ao dj ai ]. This is well-defined on the generators of Di (A/’p).
We extend this definition linearly to Di (Jk/’p). Similarly we define Di (p). Then again
we have a chain complex of Z-modules (D.(A/’p), 0.) with (D.(.p), 0.) as a subcom-
plex. So we can also consider the relative chain complex (D.(A/’p, .p), 0.). We define
morphisms fi" Ci (A/’p) Di (A/’p) and gi" De (A/’p) Ci (A/’p) by fi (or) "= o(cr) and
gi([ao ai]) := sgn[ao ai]{ao ai} where sgn[ao ai][ao ai]
o({ao ai }). One easily checks that these morphisms are well-defined, are each
others inverses and commute with 0. The same is true for there restrictions to Ci(ffp)
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and Di(ff.,p). Thus we have isomorphisms Hi(C.(A/’p, ft-,p)) " Hi(D.(Afp, ,p)). Now
by [Mau, Theorem 4.3.9 and Corollary 4.3.5], I-li(D.(A/’p, ,p)) n(IACpl, Ipl).
(Here the last homology group is the standard singular homology group associated
to the pair (IACpl, Ip I).) Then the claim follows from Lemma (6.2). rl

(6.21) LEMMA. Cd-. () is a 9-acyclic resolution of (R) 0 if conditions and
2 of the Poincard Duality Theorem (4.2) hold.

proof. Choose j > 0 and > 0. Since vanishes outside crw we have
H(W ) Hlw(aw, Zlaw) (e.g., see [Br, II,10.1] for general p or
[Go, II,4.10.1 for o paracompactifying). Thus

Then the lemma follows from Lemma (6.22) (since tp has the union property).

(6.22) LEMMA. Let Y be a topological space. Let {Gi}il be a locally finite
family of closed subsets of Y. Let lzi G Y be the inclusions. Let L be a ring.
Let i be sheaves of L-modules on G and let i (tzi).(i). Let o be afamily of
supports on Y such that. o has the union property (see (4.2)). Thenfor every j > 0
there is an injection H (Y, Hi ’i) -’ Hi H (Y, i).

Proof. For every i we choose a flabby resolution Bi. Let Jti (/zi)* (Bi)" Then
is a flabby resolution of /(see [Br, Corollary 5.6, p. 36]). But then, in addition,

Hi-AI" is a flabby resolution of I-Ii 3r/ Thus by Lemmas (6.12) and (6.13) we have
isomorphisms

Hi (Y, Hi .i) -- HJ (ro(I-Ii
I-Ii H(Y, .) - 1-Ii HJ(F(A;)).

We have a natural map

: HJ (F(1-IiAI.)) 1-[i Hj (r(A;.)). [HiSi] I- Hi[Si].

Here [-] denotes the class of an element in its cohomology module. It suffices to

.AJ+Ishow that c is injective. Let s I-Ii si ker(F(lIi A{) F(I-Ii )) such

that si e im(Fo(A{-1) ---> Fo(A/)) for every in I. Thus for every in I there exists

an element ti in Fo(A{-1) such that 0/-1 (ti) si. We choose ti 0 if si 0. Note
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that supp(si) C supp(ti) tq supp(s). Hence supp(ti) 0 if supp(ti) tq supp(s) 0.
The family {supp(ti)}ial is a locally finite family, so

supp(t) t3i1supp(ti) U{supp(ti)lsupp(ti) N supp(s) 0} e

since o has the union property. Because s (Hi /-1)(t) this proves the injectivity
ofa.

Proofofthe Poincard Duality Theorem (4.2). Theorem (4.2) now follows imme-
diately from Lemmas (6.17), (6.21) and Lemma (6.13).

REFERENCES

[A-V-G] V. Arnold, A. Varchenko and S. Goussein-Zade, Singularitgs des applications diffgrentiables
Tome 2, Editions Mir, Moscou, 1986.

[Bo] A. Borel et al., Intersection cohomology, Progress in Mathematics, Birkhiuser, 1984.
[Br] G.E. Bredon, Sheaf theory, McGraw-Hill Series in Higher Mathematics, 1967.
[D-J] J. Denefand P. Jacobs, On the vanishing ofprincipal value integrals, Comptes Rendus de l’Acad.

des Sciences de Paris, S6rie 1326 (1998), 1041-1046.
[Go] R. Godement, Topologie algbrique et thgorie desfaisceaux, Publications de l’institut de math-

matique de l’universit6 de Strasbourg XIII, Hermann, Pads 1964.
[Ha] R. Hartshorne, Algebraic geometry, Springer-Verlag New York, 1977.
[I J. Igusa, Complexpowers andasymptotic expansions I, II, J. reine Angew. Math. 265/269 (1974),

110-130; 275/279 (1975), 307-321.
[12] J. Igusa, Lectures onforms ofhigher degree, Tata Inst. Fund. Research, Bombay, 1978.
[J] P. Jacobs, Principal value integrals, cohomology and Igusa’s zeta functions, Ph.D. The-

sis, Catholic Univ. of Leuven, Belgium, 1998, http: //www. w+/- s. kuleuven, ac. be/wis
algebra Jacobs geheel, dvi

[J2] The distribution If x, oscillating integrals and principal value integrals, J. Anal.
Math., to appear.

[J3] Real principal value integrals, Monatsch. Math., to appear.
[Ka-Sch] M. Kashiwara and P. Schapira, Sheaves on manifolds, Springer-Verlag, New York, 1990.
[Lae] A. Laeremans, The distribution f s, topological zeta functions and Newton polyhedra, Ph.D.

thesis, KULeuven, 1997.
[L] R.P. Langlands, "Remarks on Igusa theory and real orbital integrals" in The Zetafunctions of

Picard modular surfaces, Les Publications CRM, Montral(1992), distributed by AMS.
[Mau] C.R. E Maunder, Algebraic topology, Van Nostrand Reinhold, London, 1970.

Department of Mathematics, University of Leuven, Celestijnenlaan 200 B, B-3001
Leuven, Belgium
Phi i ippe. Jacobs@wis. kuleuven, ac. be


