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A HIERARCHY FOR CUPPABLE DEGREES

ANGSHENG LI, GUOHUA WU AND ZAIYUE ZHANG

ABSTRACT. We say that a computably enumerable (c.e., for short) degree a is cuppable if there is a
c.e. degree b # 0 such that a /b 0t. A c.e. degree a is called low,-cuppable, n > 0, if there is a lown
c.e. degree such that a /1 0. Let LC, be the set of all low,-cuppable c.e. degrees. In this paper, we
show that LC1 C LC2

_
LC3 c_ ..., so giving a hierarchy for a class of cuppable degrees.

1. Introduction

We say that a set A c_ w {0, 1, 2, ...} is computably enumerable (c.e., for short),
if there is a computable function to enumerate the elements of it. The c.e. sets are fun-
damental to the computability theory because they are very "near" to the computable
functions, and because they form fine structures within the noncomputable universe.
Turing (1939) introduced the relation of relative computability between sets. Given
A, B

___
w, A is computable in B (or Turing reducible to B) if there is an algorithm

to decide whether or not x A for any x w, when given answers to all questions
of the form "Is y B?". We write A <T B to indicate that A is computable in B
and A =_T B if A < B and B < A. The equivalence class of A under-_-- is the
(Turing) degree of A and is written as deg(A) a. A degree is called computably
enumerable (c.e.), if it contains a c.e. set. The early undecidable problems from a
wide range of mathematics and computer science were united by the fact that they all
have the same degree 0’. Post (1944) noted that 0’ is exactly the greatest computably
enumerable degree, and asked whether there is a c.e. degree other than 0 (the least
c.e. degree) and 0’.

Friedberg [1957], and independently Muchnik [1956], answered Post’s question
by constructing two incomparable c.e. degrees. Improving this, Sacks 1963] showed
that every nonzero c.e. degree a can be written as a0 /al for some incomparable
c.e. degrees a0, al, where ao v al is the least upper bound of a0 and al, and Sacks
1964] proved that the computably enumerable degrees are dense. Shoenfield [1965]
then conjectured that for any finite partial orderings P c_ Q, with the least element
0 and the greatest element 1, any embedding of P into g (the set of all c.e. degrees)
can be extended to an embedding of Q into the same g.
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Two consequences of the conjecture which were listed by Shoenfield himself are:

C1. There are no incomparable c.e. degrees a, b such that a/x b (the greatest
lower bound of a, b) exists;

C2. For any c.e. degrees 0 < c < a, there is a c.e. degree b < a such that
bx/c=a.

C1 is refuted by the minimal pair theorem ofLachlan 1966], and independently of
Yates 1966], which states that there are c.e. degrees a0, al - 0 such that a0/x al 0.
The pair (ao, al) is called a minimal pair, and the method used in the proof is called
the minimal pair method.
We say that a degree a has the anticupping (a.c.) property if there is a

c.e. degree b such that 0 < b < a and that for no c.e. degree c < a does a
b x/c. C2 asserts that no a ,f has the a.c. property. However, Yates, Cooper
[1974a] and Harrington [1976] showed that 0’ has the a.c. property. A c.e. degree
a is called cuppable, if there is a c.e. degree b 0’ such that a v b 0’, and
noncuppable, otherwise. At the opposite extreme of the a.c. property, Harrington
showed the plus-cupping property" there exists a c.e. degree a 0 for which every
nonzero c.e. degree x < a cups to every c.e. degree y > a, so that not every degree
has the a.c. property. (For an interesting weak version of this, see Fejer and Soare
[1981].)

Using the Turing jump, we can define a hierarchy for a subset of the c.e. degrees.
For n > 0, define a c.e. degree a to be lown (highn) if a
where x+1 (x)’, x x. Let Ln and Hn be the set of all lown and highn
c.e. degrees. For n 1, an element of L1 is also called low, and an element of
is also called high. Now we have a high/low hierarchy that Ln C Ln+l and that
H 3 Hn+ for all n. The high/low hierarchy is closely related to the structure of the
c.e. degrees. For instance, the Robinson splitting theorem 1971 asserts that there
is no low Lachlan nonsplitting base, the Cooper minimal pair theorem 1974b] states
that every high c.e. degree bounds a minimal pair.
We say that a c.e. degree a is cappable, if there is a c.e. degree b # 0 such that

a/x b 0, and noncappable, otherwise. Let M and NC be the set of all cappable
and all noncappable degrees, respectively. Ambos-Spies, Jockusch, Shore and Soare
1984] showed that M is an ideal, that NC is a filter, and that NC PS LC, where
PS is the set of all degrees of promptly simple sets, LC is the set of all low-cuppable
c.e. degrees, the degrees which join to 0 with a low c.e. degree.

Extending the notion of low-cuppability, we say that a c.e. degree a is lown-
cuppable, if there is a lown c.e. degree b such that a x/b 0’. Let LCn be the set
of all lown-cuppable c.e. degrees. By the lowness hierarchy, we have LC1 LC2 c
LC3 .... In the present paper, we show the following:

THEOREM. LC1 C LC2.
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The result provides a base for a hierarchy for the cuppable degrees, and it also
extends the Harrington cup and cap theorem 1978], which asserts that there is some
c.e. degree both cuppable and cappable.

The paper is organized as follows. In Section 2, we describe the requirements
and describe the strategies to satisfy the requirements. In Section 3, we describe an
effective construction to build the desired objects. In Section 4, we verify that the
construction satisfies all of the requirements.

Our notation and terminology are standard and generally follow Soare [1987].
During the course of a construction, notations such as A, are used to denote the
current approximations to these objects, and ifwe want to specify the values ofobjects,
A, say, which are the approximation immediately at the end of stage s, then we
denote them by As, [s], etc.. For a partial computable (p.c.) functional, say, the
usefunction is denoted by the corresponding lower case letter b. The value of the use
function of a converging computation is the greatest number which is actually used
in the computation. For a p.c. functional which is not built by us, if a computation
is not defined, then we define its use function to be -1. For a p.c. functional, F say,
which is built by us, if F (x) is not defined, then we regard the use function ?’ (x) as
a. During the course of a construction, whenever we define a parameter, p say, as
fresh, we mean that p is defined as the least natural number which is greater than any
number mentioned so far, and in particular, if p is defined as fresh at stage s, then
p>s.

2. Requirements and strategies

To prove the theorem, we construct c.e. sets A, B, L, and partial computable
functionals F, f2, to satisfy the following requirements:

G: K = F(A, L);

Pe: n # e;
Re tYPe (A) Oe (B) h total --+ h is computable;

Le: TotL fl(0"; e)

where e 09, TotL {e: dPe(L) is total}, {(e, Oe): e o} is an effective enumer-
ation of all pairs (, ) such that is a partial computable function, is a partial
computable functional, and K is a fixed creative set.

Let a, b, and be the Turing degrees of A, B and L respectively. By the G-
requirement and the L-requirements, a e LC2. By the P- and the R-requirements,
a is cappable, so a ’ LC1. Therefore meeting the requirements is sufficient to prove
the theorem.
A strategy is an effective procedure designed to satisfy certain requirement. All

strategies are arranged on a priority tree, and a strategy is identical to a node of the
priority tree.
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The G-strategy The G-strategy will proceed as follows:
1. If there is an x such that IV (A, L; x) ,1,# K (x), then let k be the least such x,

enumerate ?’(k) into L, and let IV(A, L; x) be undefined for all x > k.
2. Ifk isthe least numberx such that IV(A, L; x) "1", then define IV(A, L; x) K(k)

with ?’(k) fresh.
The G-strategy runs the basic actions as above. We note that the G-strategy

never enumerates any element into A, so the G-strategy does not injure any R-
strategy. However, the G-strategy is not sufficient to satisfy the requirement G.
Otherwise, we always code the markers ?, into L, so that K <T L, contradicting
the L-requirements which are ensuring the low2-ness of L. Therefore the G-strategy
above threatens some of the L-requirements. This will be resolved gradually (see
below).

Returning to the building of 1-’, we will ensure that the use function ?’ of IV will
have the following basic properties:

(1) For any k, s, if IV(A, L; k)[s] $, then ?’(k)[s] ’ A. tO Ls;
(2) For any x, y, if x < y, and ?’(y) $, then ?’(x) $ and ?’(x) < ?’(y);
(3) Whenever we define ?’(k), we define it as fresh;
(4) IV(A, L; x) is injured at stage s iff at stage s, there is an y < x such that ?’(y)

is enumerated into A or L;
(5) If IV(A, L; k)[s] ,[, and k Ks+l Ks, then there is an n < k such that

?’(n)[s] A As or ?’(n)[s] L Ls.

We say that (1)-(5) above are ?’-rules. The ?’-rules ensure that if IV(A, L) is total,
then IV (A, L) K. G is satisfied.

Thus the point is we need to guarantee the totality of IV(A, L).

An L-strategy To satisfy an L- requirement, we will implicitly build a partial
computable functional f2 to ensure that Tote f2 (0").

Given an L-requirement, Le say, we define the "length function" for Le as fol-
lows:

l(e) max{xl(y < x)[dPe(L; y) ,1,]}.

We say that a stage s is Le-expansionary if s 0 or l(e)[s] > l(e)[t] for all t < s
and l(e)[s] > e + 1. If there are only finitely many Le-expansionary stages, then
e(L) is not total. This indicates to us that the L-requirements could be satisfied as
follows.

Suppose the next property holds:

(,) If there are infinitely many Le-expansionary stages, then e(L) is total.

Since our construction will be arranged as a normal 0"-priority argument (every
node has only finitely many branches), the true path TP will be computable in 13".
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By property (.), we can use TP (as oracle) to read out the totality of dPe(L) as
follows:

Given Le, find the unique Le-strategy, ct say, such that ote TP. Then if c0)
TP, then dPe(L is total; if or"(1) TP, then dPe(L is not total, where 0, denote
infinite and finite actions, respectively.

Thus we have that TotL <T TP < 0". The L-requirements are satisfied.
Now the key to the L-strategy is to ensure property (.). That is, if there are

infinitely many Le-expansionary stages, then we have to ensure that e(L) is
total.
An L-strategy, L say, will be injured by the G-strategy. This conflict is resolved

by enumerating certain ?’-uses into A to lift the ?’-markers. However, if there are
infinitely many L-expansionary stages, an L-strategy may enumerate the ?’-uses in-
finitely often, this may make F partial.

Our solution is to introduce infinitely many substrategies, Se,i say, for an L-
strategy, Le (if there are infinitely many Le-expansionary stages) say. Now an
Se,i-strategy will ensure that e(L)[(i + 1) converge eventually and permanently.
In this case, infinitely many Se,i ensure the totality of dPe(L). Le is satisfied. There-
fore for an L-requirement, Le say, we will introduce subrequirements Se.i for all
i>e.

An Se,i-strategy An Se,i-strategy will preserve the computations e(L)[(i + 1).
We note that the only possibility of the enumeration of L is the ?’-uses which is
enumerated by the G-strategy.

To preserve the computations e(L)[(i + 1), an Se,i-strategy will work with a
fixed threshold, k say. Whenever we define the threshold k, we define it as fresh. If
K [k changes, then we cancel all the previous actions for the Se,i-strategy, in which
case we say that the Se,i-strategy is reset. The point is that an Se.i-strategy will be
reset only finitely many times.

An Se.i-strategy will proceed as follows:

1. Wait for a stage at which dPe(L [(i + 1) are all defined;
2. Enumerate ?’ (k) into A, set r max{e(X): x < i} and stop.

Suppose that the Se,i-strategy will never be reset at any stage > so. Since there are
infinitely many Le-expansionary stages, we will reach step at a stage > so, sl
say; then by the actions in step 2, any ?’-uses which will be enumerated into L at a
stage > Sl will be greater than Sl, since all new uses are chosen fresh. Therefore,
e(L)[sl][(i + 1) will be preserved forever (We assume that the use function for a
given p.c. functional is bounded by stages.) Se.i is satisfied. The parameter r is just
to indicate that the strategy has passed Step 2 which will be useful in the description
of the construction and the verfication. And we note that an Se,i-strategy acts only
finitely many times.
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A P-strategy A P-strategy will satisfy a P-requirement, B say. It is a
Friedberg-Muchnik procedure and proceeds as follows:

1. Appoint a witness, b say, which is fresh;
2. Wait for a stage at which (b) $= 0 B(b), then enumerate b into B, and

stop.

The P-strategy above satisfies the P-requirement by one of the following cases:

Case 1.
Case 2.

d: (b) $= 0 B(b) for some b.
w: (b) $ 0 B(b) or (b) " for some b.

Therefore, the P-strategy has two possible outcomes d, to with priority ordering
d<Lw.

An R-strategy An R-strategy, ot say, attempts to satisfy an R-requirement, Re
say. It is a standard minimal pair strategy. That is, c tries to preserve computations
up to the last length of agreement between e(A) and e(B), unless it has gotten a
new length of agreement longer than any seen before. In the latter case, c imposes
no restraint.

To be more precise, define the length function of agreement as usual:

ll(e)[s] max{x (’v’y < x)(e(A; y)[s] ,1,= e(B; y)[s] ,)};

s is Re-expansionary if, for all < s, ln(e)[s] > ln(e)[t].
There are two possible outcomes for an R-strategy, 0, 1, with 0 <L 1, where 0

indicates that there are infinitely many Re-expansionary stages, and indicates the
finite case.

Obviously, if there are only finitely many Re-expansionary stages, then ln(e)[s]
will be bounded during the full construction, and so e(A) e(B), Re is satisfied.

Note that only S-strategies enumerate elements into A, and only P-strategies
enumerate elements into B, and at most one of A, B gets one element at a stage.
In addition, each such a strategy enumerates only finitely many elements into the
corresponding set.
We now look at the satisfaction of an R-requirement, R say (we drop the index).

Let ot be the R-strategy (which will be on the true path T P). First, by the choice
of or, ot is initialized by a strategy <L 0t only finitely many times; second, every
P- or S-strategy fl Cot will act only finitely many times. Therefore, a is initialized
only finitely many times. Let so be the greatest stage at which ot is initialized. By the
choice of So, ot will never be injured by any strategy < ot at any stage > so.

Suppose that there are infinitely many a-expansionary stages, i.e., or’(0} will be
on the true path TP. We compute a(A) a(B) ha as follows.

Given x, find the least or-expansionary stage, sl + 1 say, such thatll(e)[sl + 1] > x.
We conclude that ha (x) *a(A; x)[sl] I,a(B; x)[s1]. Suppose that v Sl+l <
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02 < V3 < are all or-expansionary stages. By the strategy, there is at most one
of A, B received an element, but not both, during stage Vl. Therefore, we have the
following:

(1) One of (1)a and (1)b below holds.
(1)a Ast FVl Art [v
(1)b Bs [131 By1

By the construction, all nodes with ot0) <L are initialized; therefore, we
have:

(2) Any number which is enumerated into A t_J B during stages s 6 (v, v2) will
be greater than v.

By (1), ha(x)[sl] a(A; X)[l)l] or ha(x)[s1] a(B; X)[l)l], SO by (2), we have
ha(x)[s] ha(x)[v2 1].

Suppose by the induction that ha(x)[s] ha(x)[sn] for Sn Vn 1. Since there
is at most one of A, B received elements during stage Vn, we have:

(1)’ One of (1) and (1) below holds.
(1)’a As. [vn Au. [vn;
(1)b Bsn FUn Bun [Vn.

By the initialization, all with c0) <L are initialized at the end of stage Vn.
Therefore, we have:

(2)’ Any number which is enumerated into A U B at a stage s (Vn, vn+) will be
greater than vn.

By (1)’, ha(x)[sn] a(A; x)[vn] or ha(x)[sn] a(B; x)[vn], so by (2)’ and by
the choice of Vn+l, we have ha(x)[sl] ha(x)[sn] ha(x)[Vn+l 1].

Now, for all n, ha(x)[sl] ha(x)[s], where s v 1. Thus, if a(A; x)
a(B; x) ha(x), then ha(x)[sl] a(A; x) a(B; x). We note that Sl is

effectively decided. If a(A) a(B) h is total, then a(A) is computable, R
is satisfied.

3. The construction

Before describing the construction, we define the priority tree, T say, effectively.

Definition 1. (i) We define the priority ranking of the requirements as follows:

G < Po<Ro<L0<So,0< P <R1 <L1 <So, <SI,

<’" < Pn < Rn < Ln < So,n <"" < Sn,n < Pn+l <’’’,
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where for any requirements, X, Y say, if X < Y, then X has higher priority
than Y;

(ii) A P-strategy has two possible outcomes, d, w, with d <L W;

(iii) An R-strategy has two possible outcomes, 0, 1, with 0 <L 1, to denote
infinite and finite actions, respectively;

(iv) An L-strategy has two possible outcomes, 0, 1, with 0 <L 1, to indicate
infinite and finite actions respectively;

(v) An S-strategy has only one possible outcome, denoted by 1.

Definition 2. Let T.
(i) We say that Pe is satisfied at , if there is a Pe-strategy
(ii) We say that Re is satisfied at , if there is an Re-strategy
(iii) We say that Le is satisfied at, if there is an Le-strategy ct such that

We say that Le is active at , if there is an Le-strategy cg such that c C oi"(0)

_ , in
which case Le is said to be active at via

(iv) We say that Se,i is satisfied at , if either Le is satisfied at , or Le is active at
via or, and there is an Se,i-strategy such that
Now we construct the priority tree T as follows:

Definition 3. (i) We define the root node, , say, as a P0-strategy.
(ii) The immediate successors of a node are the possible outcomes of the corre-

sponding strategy.
(iii) For T, works for the highest priority requirement which has not been

satisfied, and not been active at ’.
Continuing the inductive steps above, we have built our priority tree T.

Definition 4. Let T.
(i) If ot isan Re-strategy, thens isot-expansionaryifs Oorl(e)[s] > l(e)[v]

for all v < s at which ot is visited.
(ii) If r is an Le-strategy, we say that s is z-expansionary if s 0 or

l(e)[s] > l(e)[v] for all v < s at which r is visited, and l(e)[s] > e + 1.
A P-strategy ct has one parameter, b(ct). An Se,i-strategy has two parameters,

k(/), r(). L-strategies and R-strategies have no parameter attached. If a strategy
is initialized, then any parameter of it will be cancelled. If < 8, and is initialized,
then 8 is initialized simultaneously and automatically. If an S-strategy , is reset, then
set r(?’) to be undefined (if it is defined).

The construction Without loss of generality, we suppose that K is enumerated
at odd stages, 2n -I- 1, n e 09, and that only one element is enumerated into K at each
such a stage.

Stage O. Set A B L 0, and initialize all nodes.
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Stage s + 2n 4- 1. Let k be such that k Ks+l Ks.

1. If r’ (A, L; k) $, then:
Enumerate ?’ (k) into L;
For any strategy or, if the threshold k(oe) of ot is defined such that k < k(ct),
then oe is reset;
Go to stage s + 2.

2. Otherwise, let x be the least y such that F(A, L; y) "l’, define 1-’(A, L; x)
K (x) with ?, (x) fresh, and go to stage s + 2.

Stage s + 2(n + 1). A strategy is visited at stage s + 1, if is eligible to
act at a substage of stage s 4- 1. First, we allow the root node ) to be eligible to act
at substage 0.

Substage t. Let be eligible to act at substage t. If s 4- 1, then initialize any
with <L ?’, and go to stage s 4- 2. Otherwise, there are four cases:

Case 1. oe is a P-strategy.
Run program c below.

ot 1. If b(ot) ,1, and b(ot) B, then let ff"(d) be eligible to act at the next substage;
or2. If b(oe) $, (b(oe)) $= 0 B(b(ot)), then enumerate b(ct) into B, initialize

all fl ct and go to stage s 4- 2;
or3. If b(oe) ]’, then define b(ot) as fresh, initialize all 2 ot and go to stage s + 2;
ct4. Otherwise, let oe"(w) be eligible to act at the next substage.

Case 2. fl is an Re-strategy.

Run program fl:

fl 1. If s 4- is a fl-expansionary stage, then let if(0) be eligible to act at the next
substage.

f12. Otherwise, let fl"(1) be eligible to act at the next substage.

Case 3. 0 is an Le-strategy.
Run program as in Case 2.

Case 4. is an Se,i-strategy, for some e, i.
Run program :

" 1. If r(’) ,1,, then let ("(1) be eligible to act at the next substage;
’2. If r() ]’, k(fl) ,1,, and e(L)[(i 4- 1) are all defined, then enumerate ?’(k(())

into A, let r(’) max{dpe(x)lx < i}, initialize all 8 2 " and go to stage s + 2;
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(3. If r(() ]’, k(fl) $, and there is an x < such that dPe(L; x) ", then initialize
all 2 ( and go to stage s + 2;

(4. Ifr(() ]’, k(fl) ]’, then define k(() as fresh, initialize all ?, and go to stage
s+2.

This completes the description of the construction.

4. The verification

We now verify that the construction satisfies the requirements.

LEMMA 1. For any x, s"

(i) Ifr(A, L; x)[s] $, then ?’(x)[s] ’ (As td Ls).
(ii) Ifr(A, L; x + 1)[s] ,1., then r(A, L; x)[s] $ and ?,(x)[s] < ?,(x + 1)[s].
(iii) Ifr’(A, L; x) changes to be undefinedat stage s + 1, then As+l [(?’(x)[s] + 1) #,

As[(l(x)[s] + 1) or Ls+l[(’(x)[s] + 1) 7 Ls[(?’(x)[s] + 1).
(iv) If s < v, r’(A,L;x)[s] $, Ao[(?,(x)[s] + 1) As[(?’(x)[s] + 1)and

Lo[(I,(x)[s] + 1) Ls[(’(x)[s] + 1), then F(A, L; x)[v] $, and ,(x)[v]
(x)[s].

Proof. This is immediate from the construction.
For an even stage s, let 8s be the strategy which is visited at the last substage of

stage s. Define the true path ofthe construction TP lim infs12n: nol s.

LEMMA 2. For all ot T P"

(i) There is an a such that ot"(a) T P.
(ii) ota) TP is visited infinitely often.
(iii) ota) TP is initialized or reset onlyfinitely many times.
(iv) Ifor is a P- or an S-strategy, then ot acts onlyfinitely many times.

Proof. We prove it inductively. For the root node e TP, . will be initialized
only at stage s 0. By the construction, . is visited at every even stage > 0.
Therefore lims b()[s] b(.) < w. By Case 1 of the construction, if b(.) B, then
)d) TP, otherwise,)w) TP. LetSl bethestageatwhichlimsb())[s] b(L)
is defined. If,kw) TP, then for every even s > Sl,)w) TP is visited at stage
s, and Lw) will never be initialized at any stage > Sl, so Z"(w) will be initialized or
reset only finitely many times, and . will never act at any stage > sl. Ifd) TP,
then let s2 be the stage at which b() is enumerated into B. Then Ld) will never be
initialized at any stage > s2, so )"(d) will be initialized or reset only finitely many
times. And for any even s > s2, X"(d) is visited at stage s, and ) will never act at any
stage > s2. The lemma holds for ot ..



A HIERARCHY FOR CUPPABLE DEGREES 629

Suppose by induction that the lemma holds for all c’ C c, and that ot TP. We
have:

1. ot is visited infinitely often.
2. There is a stage so such that no/ c_ ot is reset or initialized after stage so and

such that for all ; C or, if ; is a P- or an S-strategy, then ; does not act after
stage so.

Now we have four cases.

Case 1. cisaP-strategy. By the choice ofso, and by the hypotheses, lims b(ot)[s]
b(ot) < o) exists. Let s be the stage at which b(ot) is defined. By Case 1 of the con-
struction, ifb(t) B, then oi"(d) TP; otherwise, ci"(w) TP. Ifb(c) B, then
let s2 be the stage at which b(ot) is enumerated into B; otherwise, let s2 Sl. Then
if oi"(a) TP, then ot"(a) TP will be initialized or reset only finitely many times.
By the choice of s2, if s > s2, ota) TP, and ot is visited at stage s, then
is visited at stage s. Again by the choice of s2, oe will never act after stage s2. The
lemma holds in Case 1.

Case 2. ot is an R-strategy. By Case 2 of the construction and by the induction
hypotheses, if there are infinitely many or-expansionary stages, then or’(0) TP,
otherwise ci"(1) T P. If c"(0) TP, then by the choice of so, ct’(0) will never be
initialized at any stage > So, so or"(0) will be initialized or reset only finitely many
times, and ct"(0) will be visited at every or-expansionary stage > so. If c"(1) TP,
let s be minimal after which there is no oe-expansionary stage. By the choice of s2,

ct"(1 will not be initialized at any stage > s2, so ot 1) will be initialized or reset only
finitely many times, and oe"(1) will be visited at every stage > s at which ot is visited.
The lemma holds in Case 2.

Case 3. oe is an L-strategy. Similar to that of Case 2.

Case 4. oe ; is an Se,i-strategy. By the choice of so, lims k(;)[s] k(;) exists
and it will be defined at a stage, Sl (> so) say. Let s2 be minimal > sl such that

Ks [k() K [k(). By the choice of s2, r()[s2] is undefined, and r() will not be
cancelled at any stage > s2 (if it is defined).

Let r be the Le-strategy C .
We have two subcases.

Subcase 4a. e. By the definition of the z-expansionary stage, let s3 be the
least z- expansionary stage > s, at which 8 is visited, then by the definition of z-
expansionary, ’e(L)[(e + 1) are all defined. Ifr(;) is currently undefined, then
enumerates y(k(8)) into A at stages3. By the choice ofso, Sl and sg., dPe(L)[s3][(e+
1) will be preserved forever, and r(8)[s3] will never be injured at any stage > s3.
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will never act at any stage > s3, and for any s > s3, if is visited at stage s, then so
is 5"(1).

Subcase 4b. e < i. By the choice of $2, dPe(L)[i has been preserved by a
strategy C 3 at a stage < s2, s- say. Therefore, during any r-expansionary stage
> s2, Pe (L) [(i / 1) are all defined. Thus at the least r-expansionary stage > s2, s3
say, at which 3 is visited, dPe(L)[(i -k- 1) are all defined, in which case preserves
CPe(L)(i + 1) forever (if r(3) has not been defined yet). So the S-strategy 3 will not
act at any stage > s3. By the construction, o’(1) will never be initialized at a
stage > s3, and will be visited at any stage > s3 at which 3 is visited and 3 will
never act at any stage > s3. The lemma holds in Case 4.

The lemma follows.
We now verify that the construction satisfies all requirements.

LEMMA 3. TP <T 0".

Proof By Lemma 2 (i), TP is a total function. By the definition of TP, the
question ofwhether "ct 6 TP" is a proposition offinitely many E2- and H2-questions,
by the definition of the lure path T P. So, TP <v 0". The lemma follows.

LEMMA 4. Let T P, where - is a P-strategy.

(i) If if(d), then t(b(/3)) $= 0 B(b(13)).
(ii) Ifct if(w), then (b(/3)) $= 0 B(b(i)), or t(b(/3)) ’.

Proof. This is immediate from the construction.

LEMMA 5. Let ot T P, where or- i is an Re-strategy.

(i) Ifc if(l), then Pe(A) dPe(B).
(ii) lfvt if(O), and h CPe(A) dPe(B is total, then h is computable.

Proof. Fix e. If ot if’(1), then there are only finitely many/3-expansionary
stages. Since/3 6 TP,/3 will be visited infinitely often, and so there are only finite
many Re-expansionary stages, e(A) 7 e(B), or one of e(A) and e(B) is not
total, (i) follows.

Assume that c if(0) and h e(A) e(B)is total. Since/3 TP and
every P- or S-strategy/3 C oe will act only finitely many times, we can choose so as
the greatest stage at which oe is initialized. That is, after stage so, /3 will never be
injured by any strategy < or. We compute e(A) e(B) h as follows.

Fix x and find the least/3-expansionary stage, s say, such that S > so and
ll(e)[sl] > x. Then h(x) dPe(A; x)[s1] dPe(B; x)[sl], because by the argument
given in the Re-strategy, if v > Sl is a/-expansionary stage, then only one side of
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computations can be injured at stage v, and the other side of computations are not
injured at this stage and will be preserved till the next fl-expansionary stage. Thus, if
e(A; x) e(B; x) h(x) is defined, then h(x) e(A; x)[sl] de(B; x)[sl].
Therefore, if dPe(A) dPe(B h is total, then h is computable, Re is satisfied and
(ii) follows.

LEMMA 6. Given Le" and Se.i- strategies r and t (respectively) with
ot T P, then ot succeeds in preserving the computations dPe(L [(i -4r 1).

Proof By the argument of Case 4 in Lemma 2.

LEMMA 7. L" <T 0".

Proof. Fix e and let 0 be the unique Le-strategy in TP. It is easy to see that
if r/l) TP, then dPe(L) is not total. If r"(0) E TP, by the construction of
the priority tree, for each > e, there is an Se,i-strategy ?’ in TP. By Lemma 6,
computations de(L)[(i q- 1) are preserved. Since is chosen arbitrarily, e(L) is
total. So Tot" <T TP. By lemma 3, TotL <T 0’t. Hence, L" <T 0’.

LEMMA 8. I" (A, L) K.

Proof. By Lemma 1, 1-’(A, L) is a p.c. functional. By actions during odd stages,
if 1-’ (A, L) is total, then 1-’ (A, L) K.

Suppose that 1-’ (A, L) is not total. Let k be the least number such that (A, L; x) ’,
then, {,(k)[s] s 09} will be unbounded during the full construction. By the
construction, we know that there is an S-strategy such that lims k(()[s] $= k(()
k, and the actions of " make F(A, L; k) undefined infinitely often. So, ( L TP.
Since lims k(’)[s] $, we have TP L (. So, E TP. Let r(() lim r(’)[s]. By
Lemma 2, r(’) exists, and so {?’ (k)[s] s o9} cannot be unbounded, a contradiction.
So, 1-’ (A, L) is total, and 1-’ (A, L) K.

This completes the proof of the theorem.
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