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ESTIMATES OF GLOBAL BOUNDS FOR SOME
SCHRODINGER HEAT KERNELS ON MANIFOLDS

QI S. ZHANG AND Z. ZHAO

ABSTRACT. We establish global bounds for the heat kernel of Schr6dinger operators --A / V where V
is a certain long range potential. As a consequence we find some conditions for the heat kernel to have
global Gaussian lower and upper bound. Some of the conditions are sharp if the potential does not change
sign. We also provide a generalized Liouville theorem for Schr6dinger operators and a refined version of
the trace formula of Sa Barreto and Zworski [SZ].

1. Introduction

A fundamental result proved in [A] states that the fundamental solution of a second
order uniformly parabolic equation in divergence form has Gaussian lower and upper
bounds. However, in general, these bounds are not global in time since the parameters
in these bounds depend, in an implicit manner, on the lower order terms ofthe equation.
The following example illustrates the need for a better understanding of the bounds.
By standard estimates, the fundamental solution of A + V t with V L satisfies

Cn e-Ilvllt tx-r cn ell V llt

tn/2
e 4, < G(x,t; y,O) < tn/.-.....-e 4,

The presence of the functions eIIVIlt and e-IIVIlt masks a wealth of information and
makes the bounds less useful when
An important question arises:
Does there exist a global estimate on the heat kernel of -A + V, which reveals

an explicit dependence on the potential V?
Many authors have studied the above the problem. We refer the reader to [Sil],

[M], [DS], INS], [LY], [N], [SZ], [Se], [Zg2], [Zo2] and the papers quoted there.
Let us sketch two interesting recent results in [SZ] and [Se]. In the main Lemma 3.2

in [SZ], Sa Barreto and Zworski proved that the heat kernel of-A + V has global
Gaussian upper bound provided that V has super exponential decay and -A + V
has no negative eigenvalue and 0 is not a pole of the resolvent. On the other hand,
Semenov [Se] proved that -A + V with V > 0 has a global Gaussian lower bound
if and only if A-V LC(Rn). As indicated below in Remark 1.1, this class of
functions, also called Green bound functions, belong to short range potentials since
these functions essentially decay faster than 1/Ixl near infinity.

Received February 19, 1999; received in final form August 12, 1999.
1991 Mathematics Subject Classification. Primary 35K10, 35J10; Secondary 58G11.

(C) 2000 by the Board of Trustees of the University of Illinois
Manufactured in the United States of America

556



GLOBAL BOUNDS 557

These works show that knowledge of the global behavior of the fundamental
solution is instrumental in various fields such as scattering theory, spectrum analysis.
As pointed out in [Zg3], information on global bounds is also related to the study of
global solutions to semilinear parabolic equations.

In the first part of the paper we obtain a global lower bound for the heat kernel of V
which not only recaptures all the previous lower bounds obtained in the papers quoted
above but also covers far wider choices ofpotential V. For instance Theorem A below
is valid for long range potentials that are just L bounded near infinity. When V
satisfies V(x)l --+ cxz as Ix , global estimates for the heat kernel are well-
known. For example, see Section 4.5 in [D]. While the paper [Se] deals with short
range potentials essentially having faster than quadratic decay. Our result seems to
fill the gap when the potential is long range, i.e., when V is bounded or decays to
zero near infinity at slower than quadratic rate.

In the second part ofthe paper, we obtain several necessary and sufficient conditions
on a class of potentials V so that the heat kernel of L A + V has global Gaussian
upper bound. In contrast, previous papers [SZ] and [Se] established only certain
sufficient conditions.

In [Zo2], the equivalence of the subcriticality of L to a number of important
properties of L was established, assuming that the potential V is Green tight (see
Definition 1.1 below). In this paperwe shall introduce twomore equivalent conditions:
global Gaussian bound and uniform stability. As an application we offer a generalized
Liouville theorem and an improvement of a trace formula recently obtained in [SZ]
(see Section 4 below).

In addition to establishing the above new estimates in the Euclidean setting, we
will also generalize them to the case of complete noncompact manifolds where new
difficulties arise (see the remark after Corollary A).

Let us fix a number of notations and assumptions. Unless stated otherwise, M is
always an n-dimensional complete noncompact Riemannian manifold with nonneg-
ative Ricci curvature. G stands for the heat kernel of the operator -A + V on M;
Go is the heat kernel of-A, the Laplace Beltrami operator in M. 1-’0 and 1" will be
the Green’s functions of-A and -A + V respectively. We always assume that the
manifold is nonparabolic, i.e., 1"0 > 0. If c > 0 and > s, then we write

( Ix-yl2 )(1.1) Gc Gc(x, t; y, s) =_ exp -c
IB(x, (t s)/-)l s

Let V V(x) be any Borel measurable function and > 0; then we write

Kv(t) sup Gc(x,t; y,s)lV(y)ldyds.
X

The value of Kv(t) depends on c which is chosen to be sufficiently small. Note that
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Kv(t) is locally finite if V LlPoe with p > n/2 is merely bounded near infinity. To
better state Theorems B and C and following [Zo we have:

Definition 1.1. (a) A Borel measurable function V is called Green-bound in M
if SUPx fM I’o(X, y)IV(y)I dy < oz.

(b) A Borel measurable function V is called Green-tight in M’if

lim sup I l"0(x, y)IV(y)I dy O.
R---x x ,]Iv. I>R

Remark 1.1. Any functions V (x) satisfying IV (x)l < C/(1 + Ix q) with q > 2
are Green-tight functions in M. For a proof and other properties, please see [Zol ]. It
is also clear that V is a Green bound function if and only if A-1V 6 L. A Green
tight function is a Green bound function.

Remark 1.2. Throughout the paper we assume that the potential V restricted
to any compact set is in the Kato class Kn, which allows singularities worse

P n/2. A Borel measurable function V is in Kn ifthan those in Lloe, p >
1" IV(y)l dlmr-’0[SUPx flx-yl<_r Ix-yln-2’ Y] O. More properties about this natural class of
functions can be found in [AS] and [Si2].

The main results of the paper are the next three theorems. Theorem A covers
both long range and short range potentials. Here we say a potential has short range
if it is Green bound. We stress that Theorem A holds for all complete noncompact
manifolds with nonnegative Ricci curvature and no extra assumptions are needed.
Let V+ V+(x) max{V(x), 0}.

THEOREM A (GLOBAL LOWER BOUND).
pending only on M such that

There exist positive constants c, c2 de-

c ,-c2Kv+ (t)
IB(x ’’/2i’1

G(x t" y, O) > x,,2
c --2-"7--tav+ )]

iB(x,n)le

d(x, y)2 < t,

d(x, y)Z > t.

We emphasize that for each t, Kv(t) is easy to compute for all V (in the local
Kato class) which are L bounded near infinity. In particular this includes long range
potentials behaving like d( (near infinity) with any k 6 [0, 2]. This makes the result
new even in the Euclidean case. The next corollarles indicate the powerful nature of
the above estimates.

COROLLARY A. If V >_ O, then the heat kernel of -A + V has global Gaussian
lower and upper bound ifand only if V is Green bound.
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We remark that the result in Corollary A in the Euclidean case has been proven
recently in [Se], which uses a semigroup method. We are not able to generalize that
method to the present setting which is inhomogeneous in nature. For example the
L to L norm of the semigroup generated by -A, which is C/tn/2 in Rn, may be
difficult to compute or define in the general case. Therefore a different approach is
needed. We mention that Corollary A on the manifold case was first proved directly
in [Zg 1] and was used to study some nonlinear problems.

In the special case V V+ 1, we have Kv(s) < Cs for s or s dx.y):"
Theorem A then implies G(x, t; y, O) > CGc(x, t; y, O)e-ct. Since G Goe-, this
indicates that the on-diagonal part of the lower bound in Theorem A is sharp up to a
constant.

The next corollary deals with long range potentials having quadratic or slower
decay. Potentials with quadratic decay lie just beyond Green bound functions. From
[BG], we know this is a very subtle situation. The same result was obtained in [Zg3]
by a different method.

COROLLARY B. Let M Rn and n > 3.
(a) If 0 < V (x) < a with a > O, then there exist constants c > O, ot > 0l+d2(x.0)

depending only on M and a such that

G(x, t; y, O) >_ t-, d(x, y)2 < t.

a foranyO < k < 2, thenthereexistconstantscl, ca > 0(b) If 0 <_ V (x) <_ l_dk(x,Oi
such that

G(x, t; y, O) >_ cle-c2t)-<k/2)/tn/2, d(x, y)2 _< t.

THEOREM B. Let M Rn with n > 3. Suppose V is Green tight. Then the
following are equivalent.

(a) G, the heat kernel of-A + V, has global Gaussian bounds, i.e., there are
positive constants a and c such that

_alX-yl2
(t S)n/2

e-at-s <- G(x, t; y, s) <
(t S)n/2

e

for all > s and all x, y Rn, n > 3.
(b) For F, the Green’s function of-A + V, there is a positive constant b such

that, for all x, y Rn,

b-1 l"o(x, y) < I(x, y) _< bFo(x, y).

(c) The operator -A + V is subcritical, i.e., there exists > 0 such that -A +
(1 +e)V >_ 0.

(d) Gaugeability, i.e., uo(x) EX[e f vXtdt] is bounded in Rn.
(e) Uniform stability, i.e., IlPtll. < C < .
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Remark 1.3. In the above, {Xt > 0} is the set of Brownian motions in M and
Ex is the expectation on the Brownian paths starting from x. Pt is the semigroup
generated by --A + V, which is also denoted by e-t(-zx+v) for convenience.

There are many other conditions equiValent to the subcriticality of an operator. We
refer to [Zo2] for details.

Remark 1.4. The function u0 in (d) is a solution of -Au / Vu 0. A proof can
be found in [Zo2].

The classical Liouville theorem states that all bounded harmonic functions are
constants. This was later generalized to manifolds by S. T. Yau. The next theorem
provides a similar result for Schr6dinger operators on manifolds. In the Euclidean
case it has been proven by Z. Zhao [Zo3] using probability. The current result will
be proved by analytical means. To achieve this we make crucial use of the Gaussian
upper bound similar to that in Theorem B and the deep results in [Li].

THEOREM C (Generalized Liouville Theorem). Let M be a complete noncom-
pact manifold with Euclidean growth, which means [B(x, r)[ > Crn for C > O.
Suppose V V(x) satisfies IV(x)l < c for a > 2, n > 3, and the heat1+d(x,xo)a
kernel --A + V has global Gaussian upper bound. Then bounded solutions to the
Schrb’dinger equation

(1.3) Au + Vu 0

are unique up to a constant. More precisely, if U and u. are two bounded nontrivial
solutions to (1.3), then u cu2for a constant c.

Remark 1.5. If M Rn, then by Theorem B, the above condition that the heat
kernel Pt has global Gaussian upper bound can be replaced by --A + V subcritical.
Note that the result in [Zo3] is slightly stronger than Theorem C in the Euclidean
case since only the conditions that V is Green tight and --A + V is subcritical are
required in [Zo3]. However we are not able to generalize the method in [Zo3] to the
manifold case. By Theorem A in [Zg2], which holds for heat kernels Pt of--A -k- V
on all noncompact complete manifolds with Ricci > 0, there exists a 3 > 0 such that
Pt has global Gaussian upper bound provided that V+ (x) < for e > 2.l+d(x,xo),

Recently Grigo’yan and Hansen [GH] have obtained a different Liouville type
property for (1.3). They obtained conditions on V so that the only bounded solution
to (1.3) is 0. If one assumes a priori that (1.3) has a positive bounded solution then a
result similar to Theorem C in Rn was established by B. Simon ([Si], Theorem 3.4).
We will prove Theorems A, B, C in Sections 2, 3 and 4 respectively. More

applications and examples are given in Section 4.

2. Proof of Theorem A

Clearly we only need to prove the theorem when V > 0 i.e. V V+.
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Step 1. We prove that there exists > 0 depending only on M such that the
following holds. For any T > 0, suppose Kv(T) < , then G, the heat kernel of
-A + V, satisfies

(2.1) G(x, t; y, s) > C/IB(x, (t s)l/2)l
for all 0 < s < < T and d(x, y)2 < s. Here C is a positive constant independent
ofT.

By Duhamel’s principle, we have

(2.2) G(x, t; y, s) Go(x, t; y, s)

G(x, t; z, r) g(z) Go(z, r; y, s)dzdr,

where x, y M and s < t.
Iterating (2.2) we obtain

(2.2’) G(x,t y s) Go(x y,s) + Ek=lG0 (HGo)*k(x, t; y, s)

= Go(x y,s)-t- Z,k=OJk(x, t; y, S)

where HGo(x, t; y, s) =_ -V(x)Go(x, t; y, s).
First of all, by [LY], there is a constant A such that

A ( d(x,y)2)(2.3) Go(x, t" y, s) < <
IB(x, (t- s)l/2)l

exp -c-
s IB(x

Next,

(t s)l/2)

IJl(X, t; y,s)l Go(x,t; z, r)V(z)Go(z, r; y,s)dzdr

tfM (d(x’z)2)< A exp
[B(x, (t- r)l/2)[ ;-" r

(d(z’y)z)IV(z)l
exp -or dzdrx

[B(y, (r s)l/2)[ r s

Azfo dz dr + A dz dr.

Whenr6[s t+sl r > (t s)/2; when r 6 [t+s-T’, t] r- s > (t- s)/2. Hence2

IJl(X, t; y, s)l

CA2 (d(z,y)2)< IV(z)l exp-0 dzdr
IB(x, (t s)1/2) IB(y, (r s)l/2)l r s

CA2

exp -oe V(z)I dz dr./
IB(x, (t s)l/2)l IB(x, (t r)1/2) r
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Here we have used the fact that In(x, (t s)l/9-)[ is comparable to IB(y, (t s)l/2)l,
which is due to the inequality d(x, y)2 < s and the doubling property.

Hence we have

CA2

(2.4) J1 (x, t; y, s)l < Kv(t).
IB(x, (t s)l/)l

Following an induction argument as in [Zg2], for k > we have

(2.5) [Jk(x, t; y, s)l <
[CoKv(t)]

IB(x, (t s)/2)l’

Substituting the above estimate in (2.2’), we obtain

[CoKv(t)]
G(x, t; y, s) > Go(x, t; y, s) Ek= [B(x, (t s)/2)["

If d(x, y)2 <_ s, then Go(x, t; y, s) >_ C/[B(x, (t s)l/2)[. Since Kv(t) <_
Kv (T) < , clearly we can choose so small that

(2.6) G(x, t; y, s) > GliB(x, (t s)/2)[,

when d(x, y)2 < s and 0 < s < < T. Obviously can be chosen to depend on
M only.

Step 2. We prove that, for all > 0,

Cl -c2Kv+ (t)G(x, t; y, O) > e d(x, y)2 < t.
IB(x, tl/2)l

Here c and c2 depend only on M.
Fixing any > 0, we assume Kv(t) > e where e is the constant from step 1.

Otherwise step a_lready establishes the result. Let r/= /Kv(t). Then r/ < and
Kov(t) e. Let G be the heat kernel of-A + r/V. By step 1, for such a fixed t, we
have

C )2G(x,t; y,O) > d(x y < t.
IB(x,t/2)l’

The bridge between t and G is built by the Feynman-Kac formula, which is well-
known to hold for the current case since A is essentially self adjoint and it generates
a contraction semigroup when M has nonnegative Ricci curvature (see [D]). We point
out that one can also use the Trotter [T] product formula, which uses only analytic
method, to obtain the same result.

Let {Xt > 0} be the Brownian motions in M and Ex be the expectation on
the Brownian paths starting from x. Using H61der’s inequality on the Feynman-Kac
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formula, for any nonnegative f 6 C(M) one has

(x, t; y, O)f (y) dy

[EXexp(-rl fotV(Xr)dr) f(X,)]
Ex exp -r/ V(Xr)dr frl(Xt)fl-o(Xt)

< EXexp- V(Xr)dr f(X,) [EXf(Xt)] 1-r

G(x, t; y, O)f(y) dy Go(x, t; y, O)f(y) dy

By choosing a sequence approximating the Dirac function, we deduce that

d(x, t; y, O) <_ [G(x, t; y, 0)]"[Go(x, t; y, 0)] -".

Noting that Go is the heat kernel of the free Laplacian, we have

(x, t; y, O) <_ C[G(x, t; y, O)]O[1/IB(x, tl/2)l]l-o

which yields, via the lower bound for (,

]l/r/G(x, t; y, O) > C IB(x, t/e)ll-n(x, t; y, O)

> C [iB(x, tl/U),l-o c ll/iB(x’tl/)l
C1/rl e-cKv(t)-

IB(x, tl/2)l IB(x, tl/2)l

where d(x, y)2 < s and > s. This completes step 2.
Step 3. We establish the off-diagonal lower bound.
To this end, we follow a standard path in [FS]. One can also see Theorem 3.3.4 in

[D]. For completeness we present a proof modeling that in [D]. We remind the reader
that in [D] the lower order terms are zero.

Let > 0 and x, y M be arbitrary. Suppose l(s) is a minimal geodesic
connecting x and y which is parametrized by length. If we put

X l(rd(x, y)/M)

for0<r <Mthen

1 1/2d(xr, Xr+l) _< "(t/M)
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if and only if

4d(x, y)2/t < M.

We take M to be the smallest integer which satisfies this inequality Then

G(x, t; y, O)

> G(x, --; yl, O)G yl,--; y2; 0 ...G yt-1,-; y; 0 dyl...dyt-1

where we integrate Yr over the set

Yr d(yr, xr) < --(t/M)1/

Applying (2.6), for Yr in the region above, by the doubling property we have

G Yr-1, "-; Yr, 0 >_ Ce-rv(t/t)/IB(y, (t/M)1

> Ce-Clv(t/t)/IB(xr, (t/M)l/)l.

This yields the bound

G(x, t" y, O) > r’IrM_l [ Cg-cKv(t/M) ][B(xrl --’i?)[ 1-Iy [CiB(xr, (t/M)l/)[]

>_ CMe-cMKv(t/M)/IB(x, (tiM)l

Since M is close to 4d(x, y)2/t, by the doubling condition the above implies that for
some 1,172 > O,

G(x, t; y, O) > c-lGc;,(x,t; y, O)e-C2@rv(I.
for all x, y M, all > 0.

Proofof Corollary A. Suppose V >_ 0 is Green bound. Then, for all > 0,

< sup[ V(y)ro(x, y)dy < C < o.Kv(t)
x

The global Gaussian lower bound follows immediately from Theorem A. The Gaus-
sian upper bound always holds since V > 0.
Now suppose G, the heat kernel of-A + V, has global Gaussian lower and upper

bound. By Duhamel’s principle,

G(x,t;y,s)=Go(x,t;y,s)- G(x,t;z,z) V(z) Go(z,z;y,s)dzdr,



GLOBAL BOUNDS 565

where as before, Go is the heat kernel of the Laplacian. By assumption, there are
positive numbers Cl and ca such that G(x, t; z, r) > cl Gc2 (x, t; z, 3). Hence

cl Gc2(X,t;z,r) V(z)Go(z,r;y,s)dzdr <Go(x,t;y,s)-G(x,t;z,r).

Integrating the above inequality with respect to x, we deduce that for some C > 0,

ft ft V(Z) Go(z, 3; y, s)dzdz < C,

which implies

[ I’o(y, z) V (z) dz <_ C.sup
yM dM

This means V is Green bound.

Proofof Corollary B.
we have

c fork6[0,2] Fort >Suppose 0 < V(x) <
l+lx-x01’

flt fl e_cX,Kv(t) < C + C sup
X 1 + Ixo- y t dyds

fit fix 1 xz3_
< C + C sup

sn/’-’-7 e-cx o-y12_<, 1%- Ixo- yl t
dy ds

fx

x_zz3_
+ C sup sn/----e

-c

x o-yl2>_s 1%-IX0- yl t
dy ds

f fx_< C + C sup
s"l"-’-7 1 + Ixo Ylk

dy ds
x o-yl2<s

ft flx _cX_z+ C sup ,.sn/---se --,St’--"7 dy ds
X o--V[2>S_

flt flx flt< C+SUPx o_vl2<s. l+lxo-Yl
tdyds+C s-ds

<_ c + c s-777 ds.

If k 2, then Kv(t) < c %- fl Int. Here/3 is a nonnegative number. When
Ix y 2 < and > 1, using Theorem A we have

C -c2(C+lnt) C
G(x, t; y, O) >_ t-YTe t(n+2c2)/2
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If0 < k < 2, thenKv(t) < ct l-(k/9-. Using Theorem A again, when Ix-y[2 <
and > we have

Ce_ctl-(t/2)
G(x, t; y, O) >_

n/2
[-’l

3. Proof of Theorem B

We shall follow the chart: (a) =, (b) =, (c) == (d) = (e)and (c) =, (a).
The proof is divided into several steps.
Step 1. (a) =, (b) is trivial since F (x, y) f G(x, t; y, O) dt.
Next we show that (b) =, (c). To this end we first prove that the operator -A -t-

(1 + e)V has a positive Green’s function when e is sufficiently small. Let l" denote
the Green’s function of-A + (1 + e)V. Then, formally,

(3.1) l"(x, y) 1-’(x, y) - [ r(x, z) V(z) I’(z, y)dz.
dR

We use the word formally since the existence of I’, is not yet justified.
Iterating (3.1) we obtain

(3.2) F, (x y) r" (x y) + 1-’)*k]k=l 1-’ (-e V (x, y)

F(x y)+ 32k=OIk (X, y)

By (b), there is a positive constant c3 such that

(3.3) c 11-’o(x, y) _< l-’(x, Y) -< c-1 l"o(x3 Y),

for all x, y R. Hence

Illl < e [ ro(x,z)lV(z)lro(z, y)dz

_< f to(x, z)lV(z)lro(z, y) dz
-zl>_lx-yl/2

/ [ r0(x, z)lV(z)lr’o(z, y)dz
ad(z.y)>lx-yt/2

Hence

Illl CK(V)Fo(x, y)

where K(V) SUPx fR, Fo(X, y)lV(y)ldy.
By an induction, for k 1, 2 we have

(3.4) Ilkl < [CK(V)]kI’o(x, y).



GLOBAL BOUNDS 567

Using the lower bound in (3.3) together with (3.2) and (3.4), we deduce that

r’,(x, y) > F0(x, Y) k=l: [CK(V)]kI-,o(X, y) _> C4V0(X, y) > 0
c3

when e is sufficiently small. From here it is standard to show that 1’4 is a positive
Green’s function for A + (1 -t- e) V. Now we can follow the Allegretto-Piepenbrink
theory (see [Si2]) to show that the operator -A + (1 + )V > 0, and hence the
operator -A + V is subcritical by definition. Indeed let f C(Rn); we choose
a point xo outside of the support of f. Then u F(x, x0) is a positive solution of
-Au + (1 + )Vu 0 in Rn {xo} (see Theorem 6.4 in [CZ]). By Theorem C.8.2
in [Si2], we have f(lVfl + (1 -t- )Vf2)dx >_ O. Since f is arbitrary, we know
that A + (1 + )V is a nonnegative operator in Rn.

Step 2. From [Zo2] we know that (c) is equivalent to (d). Now we prove that (d)
is equivalent to (e).

First we show that (e) =, (d). By the positivity of pt, it is clear that

[[Ptl[. Ilptll[ SUPx Ex Ie-fv(x dr].
Assuming Pt has uniform stability, then Pt I1. C. Hence EX[e f v(X,dr < C.
By Fatou’s lemma, we have

uo(x) EX [e-f v(xdr] < C.

This proves (d), i.e., gaugeability.
Next we prove that (d) =, (e).

Again let uo EX[e-f’ V(Xdr]. We claim that there exist A, B > 0 such that
B < uo(x) < A < cz for all x e Rn. Since V is Green tight, we have

sup Ex IV(Xt)ldt < sup l"o(x, y)lV(y)ldy < C < .
x.R x

By Jensen’s inequality,

-E f V(Xr)dtuo EX[e fo v(x,)a,] >_ e >B>0.

The upper bound holds by assumption. This proves the claim. By Theorem 2 of
[Zo2], uo is a solution to --Au + Vu 0. Hence puo uo. Therefore

A
Pt l(x) < ptuo(x)= uo(x) < --.

t O

Therefore IIP, llo. IlPtlllo A/B.
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Step 3. Finally we only need to show that (c) = (a) since we already proved that
(a) = (c).
We will follow the arguments in Lemma 3.2 in [SZ], which uses a combination of

ideas in [D] and [Si2]. For this reason we will be brief. Since --A / V is subcritical,
there is an e > 0 such that -A + (1 + 2e)V >_ 0. Hence

(3.5) A 4- (1 4- )V > --eA.

Since (c) is equivalent to (e), we know that lip, IIo. _< C < , which, by duality and
interpolation, implies Pt 1., Pt 112.2 _< C < oo. Hence we can apply Theorem 2.4.2
in [D] to conclude that

Ile-t(-/+(l+’)Vll2.oo < C(V)t-n/4.

As in [SZ], one obtains

(3.6) e-t(-+l+V(x, y) < C(V)/tn/2.

Let < q, q’ < cxz satisfy / 7 1. Applying H61der’s inequality to the Feynman-
Kac formula, we obtain

(3.7) e_.(_zx+V)(x, y) < {e_t(_A+qV)(x, y)],/q {e_t(_zXl(x, y)]l/q’.
Taking q + , using (3.6) and (3.7), the Gaussian upper bound follows. The
Gaussian lower bound is a consequence of Corollary A as follows.

First we use Corollary A with V is replaced by V+. We stress that we did not use
the condition that -A + V is subcritical in the proof of the global lower bound. As
V+ is Green bound, we know that the heat kernel of -/x + V+ has global Gaussian
lower bound. By the maximum principle, we know that the heat kernel of -A 4- V is
not smaller than that of -A 4- V+. Hence the former must also have global Gaussian
lower bound. This completes the proof Theorem B.

4. Proof of Theorem C and other applications and examples

Proofof Theorem C. First we claim that any bounded solution to

(4.1) Au + Vu 0

satisfies the following integral equation for a suitable constant C"

u(x) C ft l"(x, y)V(y)u(y)dy.

The proof of the claim is as follows. Since u is bounded, it is easy to verify that
uo(x) -fM F(x, y)V(y)u(y) dy satisfies

AUo Vu.
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Hence A(u--Uo) 0. Moreover u-uo is bounded. By S. T. Yau’s Liouville theorem
for the free Laplacian on M, we know that u uo C. This proves the claim.

Next we prove that the only bounded solution to

(4.2) u(x) fM l"0(x, y)V(y)u(y)dy

is zero. Let u be a bounded solution to (4.2), then

lu(x)l < C fM I’o(x, y)lV(y)ldy.

By our assumption on V and the estimate in [LY], we have

lu(x)l <_ C
d(x, y)n-(l’+ d(y; xo)")

dy.

Since a > 2 and M has maximum growth, we can find a constant b > 0 such that

C
(4.3) lu(x)l _<

+ d(x, xo)b"

Since u is a solution to (4.1), it is also a solution to the corresponding heat equation,
i.e.,

Au(x) V(x)u(x) ut(x) 0 in M x (0,

with u itself as the initial value.
As before, let G be the heat kernel of-A + V. We have

u(x) f G(x, t; y, O)u(y) dy.

By assumption, G has global Gaussian upper bound. This, together with (4.3), implies

(4.4) lu(x)l <_ C
t/ i"+d(y, Xo)

dy.

Direct computations show that, for any x,

lim IB(x, R)1-1 fR---oo (x,R) 1 + d(y, Xo)b
dy O.

By Theorem 3 in [Li], we know that the righthand side of (4.4) converges to zero
when -- x. Hence u 0.

Let u and u2 be two bounded nontrivial solutions to (4.1). According to the above
claim we know that

ui(x) Ci l F’(x, y)V(y)ui(y)dy,
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where 1, 2 and Ci are constants. Since Ci cannot be zero by the last paragraph,
we can find a constant c such that C cC2 and hence

u(x) cu2(x) fM I’(x, y)V(y)(u cu2)(y)dy.

By the last paragraph again, u cu2 O.

Remark 4.1. If-A + V is not subcritical, then the above Liouville type theorem
does not hold in general. For example, consider the Helmholtz operator H A 1
in R3. It is well-known that Hu 0 has a bounded nontrivial solution. By symmetry,
every translation of a solution to Hu 0 is also a solution. Obviously they are not
constant multiples of each other.

Using Theorem B, we derive an improved version of the trace formula obtained
in [SZ]. Note that we have eliminated the restriction that the potential has superex-
ponential decay and is smooth.

PROPOSITION 4.1. Let V LI(Rn) fq Kn, where Kn is the Kato class. Suppose
that-A + V is subcritical. Then there exists C(V) > 0 such that

[Tr (e-t(-zx+v) e-t(-zx))l <_ C(V)tl-
for all > O.

Proof. We observe that if V L(Rn) K, then V is Green bound. Indeed,
fixing r > O, we have

fa l/(Y)l fx IV(Y)l
dy + sup flx ’V(y)l

dysup dy < sup
In-2 _vl> Ix yln-2x IX y ln-2 x -yl<_r Ix y x

< C q- r -(n-2) V IlL’ <
Now that we know V is Green bound and -A + V is subcritical, by Theorem A we
know that the corresponding heat kernel has global Gaussian upper bound.

Once we have the Gaussian upper bound, the proof of the proposition is identical
to that in [SZ]. Here we give a sketch of the proof while referring the reader to
Proposition 3.1 in [SZ] for details. Indeed, by Duhamel’s principle and Theorem A,
there are c, C > 0 such that

Tr(e-t(-zx+V)-e-t(-’x)) f [G(x, t; x, O) Go(x, t; x, 0)] dx

< Go(x,t;z,s)G(x,s;z,O)lV(z)ldzdxds

< C Go(x, t; z, s)Gc(x, s; z, 0)1V(z)l dz dx ds

Ct- f IV(z)[ dz. [2]
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Next we give examples of Schr6dinger operators whose heat kernels do not have
Sinceglobal Gaussian bounds. Let L --A + i/lxl.

f. fo r
dy c -------dr c,

[yln-2(1 / ly[ 2) q-r2

we know that V i.+IX12 is not Green bound. By Corollary A, the corresponding heat
kernel does not have global Gaussian lower bound. But Corollary B shows that the
heat kernel will still have a polynomial decay on diagonal. By Corollary A again we
know that the heat kernel of the operator --A l/ixl2 does not have global Gaussian
upper bound.

In contrast, Theorem A shows that the heat kernel of the operator

(1 + Ixl 2) ln(2 + Ixl’)

iswith ot > has global Gaussian bounds. This is because V (2/lxl2)ln(l/lxl)
Green bound (see [Zo ]).
We have assumed that the local singularities of the potentials are in the Kato class

Kn. This includes local singularity in the form of ixl2111n ixll
with ot > 1. Even though

Kn (the Kato class) is already a natural class for Schr6dinger equations (see [Si2]),
one may still wonder whether ot can take values in [0, 1 ]. The answer is no. In fact
by (3.11) in the proof of Theorem B (iii), if the heat kernel of --A

ixl2llnlxll had
global Gaussian lower and upper bound, then

yR, IxlZllnlxll Ix- yl"-
dx <C <o,

which is not true if ot 6 [0, 1]. Here we remind the reader that in order to use
Theorem B, an approximation argument like that in [BG] is needed. This is because
the integral on the right hand side of the Duhamel’s principle may not converge if V
is an arbitrary measurable function.

As a final example, we recall the equation

c
ut Au iTfru O,

u(x, O) uo(x),

(x, t) Rn (0,
x cr_ Rn.

By [BG], there exists C* > 0 such that the above problem has no positive solution if
C > C* and uo(> 0) is not zero. The heat kernel is even undefined in this case.

Remark 4.2. Theorems A andB still hold ifA is replaced by any time-independent
uniformly elliptic operators in R". Only minor modifications are needed for the
proof.
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