ON A SINGULAR INTEGRAL ESTIMATE FOR THE MAXIMUM MODULUS OF A CANONICAL PRODUCT

Fardk F. Abi-KhuZam and Bassam Shayya

ABSTRACT. If f is a canonical product with only real negative zeros and non-integral order $\rho, n(t, 0)$ is the zero counting function, and $B(r, f)=\sup _{0<\theta<\pi}\left|\log f\left(r e^{i \theta}\right)\right|$, then

$$
r^{-q-1} B(r, f) \leq \pi\{M \varphi(r)+M H \varphi(r)\}+\int_{0}^{\infty} \frac{\varphi(t) d t}{t+r}
$$

where $\varphi(t)=t^{-q-1} n(t, 0), H$ is the Hilbert transform operator and M is the Hardy-Littlewood maximal operator.

1. Introduction

Let f be an entire function with zeros $\left\{z_{n}\right\}$, and let

$$
M(r, f)=\sup _{|z|=r}|f(z)|, \quad n(r)=n(r, 0 ; f)=\sum_{\left|z_{n}\right| \leq r} 1
$$

The order of f is defined by

$$
\rho=\lim \sup _{r \rightarrow \infty} \frac{\log \log M(r, f)}{\log r},
$$

and a question of long standing is to find precise lower bounds for

$$
\lim \sup _{r \rightarrow \infty} \frac{n(r)}{\log M(r, f)}
$$

in terms of ρ.
Polya [1] and Valiron [4], [5] proved, independently, that

$$
\lim \sup _{r \rightarrow \infty} \frac{n(r)}{\log M(r, f)} \geq\left\{\begin{array}{cl}
\frac{1}{\pi}|\sin \pi \rho|, & 0 \leq \rho \leq 1 \tag{1}\\
\frac{|\sin \pi \rho|}{A_{0}(1+\log \rho)|\sin \pi \rho|+\pi}, & 1<\rho<\infty
\end{array}\right.
$$

where A_{0} is a positive absolute constant. The first inequality in (1) is sharp, the constant $\frac{1}{\pi}|\sin \pi \rho|$ being best possible and achieved when all the zeros of f are on one ray and $n(r)$ is regularly varying of order ρ. In connection with the second
inequality in (1), Shea and Wainger [2] proved the existence of a positive absolute constant A such that

$$
\begin{equation*}
\lim \sup _{r \rightarrow \infty} \frac{n(r)}{\log M(r, f)} \geq A|\sin \pi \rho|, \quad 1<\rho<\infty \tag{2}
\end{equation*}
$$

for f of order ρ, all of whose zeros lie on a single ray $\arg z=\pi$. Although the value of A obtained in [2] is not best possible, the existence of such a constant is rather remarkable. The starting point for the Shea-Wainger proof is the well-known formula of Valiron

$$
\begin{equation*}
\log f(z)=(-1)^{q} z^{q+1} \int_{0}^{\infty} \frac{n(t, 0) d t}{t^{q+1}(t+z)}, \quad q=[\rho], \quad|\arg z|<\pi \tag{3}
\end{equation*}
$$

which is valid for canonical products f of non-integral order ρ, having all their zeros on the ray $\arg z=\pi$.

Writing

$$
B(r, f)=\sup _{0<\theta<\pi}\left|\log f\left(r e^{i \theta}\right)\right|, \quad \Phi(r)=\frac{B(r, f)}{r^{q+1}}, \quad \varphi(r)=\frac{n(r, 0)}{r^{q+1}},
$$

employing Valiron's formula (3), and using some rather intricate singular integral estimates they obtain

$$
\begin{equation*}
\Phi(r) \leq 12 M \varphi(r)+\pi H^{*} \varphi(r)+10 \int_{0}^{\infty} \frac{\varphi(t)}{t+r} d t \tag{4}
\end{equation*}
$$

where

$$
M \varphi(r)=\sup _{\varepsilon>0} \frac{1}{2 \varepsilon} \int_{|t-r|<\varepsilon} \varphi(t) d t
$$

is the Hardy-Littlewood maximal function and

$$
H^{*} \varphi(r)=\frac{1}{\pi} \sup _{\varepsilon>0}\left|\int_{|t-r|>\varepsilon} \frac{\varphi(t) d t}{t-r}\right|
$$

is the maximal Hilbert transform. From the inequality (4) and using the $L_{p^{-}}$ boundedness of these maximal operators, together with Tauberian arguments, they obtain, for suitable sequences $R_{n} \rightarrow \infty, \varepsilon_{n} \rightarrow 0$, the inequality

$$
\begin{equation*}
\left\{\int_{R_{n}}^{\infty}\left(\frac{B(r, f)}{r^{q+1}}\right)^{p} d r\right\}^{\frac{1}{p}} \leq\left(A \sin \frac{\pi}{p}\right)^{-1}\left\{\int_{R_{n}}^{\infty}\left(\frac{n(r, 0)}{r^{q+1}}\right)^{p} d r\right\}^{\frac{1}{p}} \tag{5}
\end{equation*}
$$

where $p=(q+1-\rho)^{-1}+\varepsilon_{n}$. Now (2) follows immediately from (5).
This note arose in the course of examining the Shea-Wainger proof in [2] and attempting to simplify it. It turns out that the use of the maximal Hilbert transform of φ can be circumvented leading to a refinement of (4) in which the constants 12 and

10 are replaced by π and 1 respectively. Thus the value of the constant A in (2) is increased about 4 times.

2. An inequality for the maximum modulus

An examination of the integral occuring in Valiron's formula (3) suggests that it assumes the boundary values $\int_{0}^{\infty} \frac{\varphi(t)}{t+r} d t$ as $\theta \rightarrow 0$ and $H \varphi(r)$ as $\theta \rightarrow \pi$, where H is the Hilbert transform operator. It is then natural to expect these two terms to occur when estimating the integral. This is made precise in the following:

THEOREM 1. If f is a canonical product with only real negative zeros and nonintegral order ρ, then

$$
\begin{equation*}
\Phi(r) \leq \pi M \varphi(r)+\pi M(H \varphi)(r)+\int_{0}^{\infty} \frac{\varphi(t)}{t+r} d t \tag{6}
\end{equation*}
$$

where H is the Hilbert transform.
Proof. Write

$$
D_{1}=(t-r)^{2}+2 \operatorname{tr}(1-\cos \theta), \quad D_{2}=(t-r)^{2}+2 r^{2}(1-\cos \theta)
$$

and notice that $2 D_{1} \geq(1-\cos \theta)(t+r)^{2}$ and $D_{2} \geq 2|t-r| r \sqrt{2(1-\cos \theta)}$ so that $\sqrt{D_{1}} D_{2} \geq 2 r(1-\cos \theta)|t-r|(t+r)$. Thus

$$
\begin{equation*}
\left|\frac{1}{D_{1}}-\frac{1}{D_{2}}\right|=\frac{2 r(1-\cos \theta)|r-t|}{D_{1} D_{2}} \leq \frac{1}{\sqrt{D_{1}}(t+r)} \tag{7}
\end{equation*}
$$

Starting from Valiron's formula (3), if we put $\varphi(t)=0$ for $t \leq 0$ we have

$$
\begin{align*}
\left|r^{-q-1} \log f\left(r e^{i(\pi-\theta)}\right)\right|= & \left|\int_{-\infty}^{\infty} \varphi(t) \frac{t-r e^{i \theta}}{D_{1}} d t\right| \\
= & \left\lvert\, \int_{-\infty}^{\infty} \varphi(t)\left(t-r e^{i \theta}\right)\left(\frac{1}{D_{1}}-\frac{1}{D_{2}}\right) d t\right. \\
& \left.+\int_{-\infty}^{\infty} \varphi(t) \frac{(t-r)}{D_{2}} d t+\int_{-\infty}^{\infty} \varphi(t) \frac{\left(r-r e^{i \theta}\right)}{D_{2}} d t \right\rvert\, \\
\leq & \int_{-\infty}^{\infty} \frac{\varphi(t)}{t+r} d t+\left|\int_{-\infty}^{\infty} H \varphi(t) \frac{2 r \sin \frac{\theta}{2}}{D_{2}} d t\right| \\
& +\left|\int_{-\infty}^{\infty} \varphi(t) \frac{2 r \sin \frac{\theta}{2}}{D_{2}} d t\right| \tag{8}
\end{align*}
$$

where in the last line we have used Lemma 1.5, page 219 of [3]. We now use the fact that the Poisson integral of φ is bounded by the maximal function $M \varphi$. We indicate a short proof of this:

$$
\begin{aligned}
\int_{-\infty}^{\infty} \varphi(t) \frac{\varepsilon}{(t-r)^{2}+\varepsilon^{2}} d t & =\int_{0}^{\infty}[\varphi(r-t)+\varphi(r+t)] \frac{\varepsilon}{t^{2}+\varepsilon^{2}} d t \\
& =\int_{0}^{\infty}[\varphi(r-t)+\varphi(r+t)] \frac{1}{\varepsilon} \int_{t / \varepsilon}^{\infty} \frac{2 x d x}{\left(1+x^{2}\right)^{2}} d t \\
& =\int_{0}^{\infty} \frac{2 x d x}{\left(1+x^{2}\right)^{2}} \frac{1}{\varepsilon} \int_{0}^{\varepsilon x}[\varphi(r-t)+\varphi(r+t)] d t \\
& \leq \int_{0}^{\infty} \frac{2 x^{2} d x}{\left(1+x^{2}\right)^{2}} 2 M \varphi(r) \\
& =\pi M \varphi(r)
\end{aligned}
$$

If we put $\varepsilon=2 r \sin \frac{\theta}{2}$, then it follows from (8) that for $0<\theta<\pi$,

$$
\left|r^{-q-1} \log f\left(r e^{i(\pi-\theta)}\right)\right| \leq \pi M \varphi(r)+\pi M(H \varphi)(r)+\int_{0}^{\infty} \frac{\varphi(t)}{t+r} d t
$$

and (6) follows.

We remark that the exponent $p=2$ is, perhaps, the most convenient to use in connection with the Hilbert transform since $\|H \varphi\|_{2}=\|\varphi\|_{2}$. But this holds for $\varphi \in L_{2}(0, \infty)$ which, in the present context, requires that the order ρ be smaller than $q+1 / 2$. If we recall that $\|M \varphi\|_{p} \leq 2\left(\frac{3 p}{p-1}\right)^{1 / p}\|\varphi\|_{p}$ (see the proof of Theorem 3.7, page 58 of [3]) we obtain:

COROLLARY 1. If f is as in Theorem 1, and its order satisfies $q<\rho<q+1 / 2$ then

$$
\left\{\int_{0}^{\infty}\{\Phi(r)\}^{2} d r\right\}^{1 / 2} \leq\{4 \sqrt{6}+1\} \pi\left\{\int_{0}^{\infty}\{\varphi(r)\}^{2} d r\right\}^{1 / 2}
$$

REFERENCES

[1] G. Pólya, Bemerkungen über unendlichen Folgeundganzen Functionen, Math. Ann. 88 (1923), 169183.
[2] D. F. Shea and S. Wainger, Growth problems for a class of entire functions via singular integral estimates, Illinois. J. Math. 25 (1981), 41-50.
[3] E. M. Stein and G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Univ. Press, 1971.
[4] G. Valiron, Sur les fonctions entières d'ordre fini et ordre nul,et en particulier les fonctions à correspondence régulière, Ann. Fac. Sci. Toulouse (3) 5 (1913), 117-257.
[5] G. Valiron, A propos d'un mémoire de M. Pólya, Bull. Sci. Math. (2) 48 (1924), 9-12.

Department of Mathematics, American University of Beirut, Beirut, Lebanon farukakh@aub.edu.lb
bshayya@aub.edu. Ib

