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SINGULARITIES AND WANDERING DOMAINS IN
ITERATION OF MEROMORPHIC FUNCTIONS

JIAN-HUA ZHENG

ABSTRACT. Let f be a transcendental meromorphic function and let U be a wandering domain of f.
Under some conditions, we prove that a finite limit function of {f’)} on U is in the derived set of the
forward orbit of the set sing(f-1) of singularities of the inverse function of f. The existence of {n, such
that f’ Iv tends to oo is also considered when f is entire. If sing(f-l) is bounded, however, we show
that {f" (z)}=o in F(f) does not tend to

1. Introduction and results

Let f: C - ( be a transcendental meromorphic function, and fn, n N, denote
the nth iterate of f. Then fn (z) is defined for all z C except for a countable set of
the poles of f, f2 fn-. Define the Fatou set of f by

F(f) {z C; {fn} is defined and normal in some neighbourhood of z}

and the Julia set of f by J(f) \F(f). It is well known that F(f) is open and
complete invariant under f, i.e., z F(f) if and only if f(z) F(f). Let U be
a connected component of F(f); then fn(U) c_. U, where Un also is a component
of F(f). If Un Um for n rn then U is called a wandering domain of f.
For a wandering domain U, a basic result is that all the limit functions of {f"lv}
are constants. And Sullivan 17] proved that a rational function has no wandering
domains. In this paper, we discuss the connection of the wandering domains with the
set of singularities of the inverse function, denoted by sing(f-I), that is, the set of
critical and asymptotic values and limit points of these values. Define

O+(sing(f-1)) :-- U fk(sing(f-l))"
k=O

Let W be a hyperbolic open set in the complex plane, that is, C\W is closed and
contains at least two points. We can define the hyperbolic metric on W. By Zw(z)
we denote the hyperbolic density on W. (For details, see Section 2). For a ’ W, put

Cw(a) :---inf{w(z)dist(z, a); z W},

where dist(z, a) Iz al. If Cw(a) > 0, a is called to be a uniformly perfect point
of W. We shall describe the case where Cw(a) > 0 in Section 2.
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THEOREM 1. Let f be a transcendental meromorphic function and let U be a
wandering domaim of f Assume that a is a finite limit function of {fn} on U. If
CF(f)(a) > O, then a is in the derived set of O+(sing(f-1)).

Remark. By Theorem and some results in Section 2, we can have the following:

(A). Ifeach fn(U) c_ Un is simply connected, then all the limitfunctions of{fn

on U is contained in the derived set of 0+ (sing(f-1)).

The result (A) was proved in Bergweiler et al. [9] for the case of f being an entire
function by using the Koebe Theorem and the fact that an isolated singularity must
be either critical or logarithmic. In this paper, we shall prove Theorem with the
Principle of Hyperbolic Metric, which allows us to avoid the requirement of univalent
correspondence in the proof of Theorem 1. However, some ideas used in the proof
of Theorem comes from [9].

In the case that f is a holomorphic function of C* C\{0} onto C* C\{0}, all
the limit functions of {fn} on a wandering domain are contained in the derived set of
O+ (sing(f-l)), for there is at most one multiply connected component of Fatou set
for such a function.

Let B denote the class consisting of all meromorphic functions f such that
sing(f-1) is bounded. By the methods used in the proofs of [13, Theorem 1] and
[7, Theorem 16], we can easily establish the following theorem, which extends [13,
Theorem from entire functions to meromorphic functions.

THEOREM 2. If f B, then for z F(f) the orbit {fn(z) }n=0 does not tend
to xo

If f is an entire function in B, then, in fact, for each p > 0, the orbit {fPn(z) oo}n=0
does not tend to oo. However, this result is not true for a meromorphic function in
B. We observe that the function 1/z e is in B and has a cycle of Baker domains
of order 2 (see [5]).

In [12] an entire function was constructed with a wandering domain on which
fn(z) has an unbounded infinite limit set and in [4] a meromorphic function was
constructed with a multiply-connected wandering domain on which fn(z) does so.
Thus the limit functions of {f(z)} may not be uniformly perfect points of F(f)
and cannot be claimed to be in the derived set of O+ (sing(f-1)) by the arguments
in this paper. Under certain additional assumptions, we give the following negative
answer to 10, Problem 2.87] which asks whether there exists an entire function f
with wandering domain V such that [.-Jn>_0 f (V) is bounded in C.

THEOREM 3. Let f be a transcendental entire function. If f has a multiply-
connected component of normality, then for any wandering domain U of f, there
exists a subsequence of fn} on U tending to cxz.
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THEOREM 4. Let f be a transcendental entire function such that for an un-
bounded sequence ofr,

m(r, f) := min{lf(z)[; Izl r} > r. (1)

Then for any wandering domain U of f, there exists a subsequence of {fn} on U
tending to cxz.

We have an immediate consequence of Theorem 4.

COROLLARY. Let f be a transcendental entirefunction ofgrowth not exceeding
order 1/2, minimal type. Then for any wandering domain U of f, there exists a
subsequence of {f’} on U tending to cxz.

This is because we can easily prove that for any positive integer n, the f in Corollary
satisfies

m(r, f)
lim sup------- +cx.

r--> rn

2. Some results on hyperbolic metric

Let us recall the basic facts about the hyperbolic metric on a plane hyperbolic
domain, that is, the domain whose boundary has at least two points in C. Let Xn(z)
denote the density of the hyperbolic metric on hyperbolic domain f2, A the unit disk
and H the half plane {Imz > 0}. It is well known that

o.zx(z)
1- Izl 2’ ;i(z)--2Imz

The density Ln(w) of the hyperbolic metric on other hyperbolic domain f2 is defined
as follows. Let p(z) be a holomorphic universal covering mapping of A onto
Then the density ,n(w) is determined from

kn(p(z))lp’(z)l
Izl 2"

(2)

Indeed, noting that p(z) is locally homeomorphic, from equation (2), ,ka(w) can be
determined because of conformal invariance of hyperbolic metric. For a hyperbolic
open set W, )w(z) is defined to be the hyperbolic density on each connected compo-
nent of W. The main results of the paper will be proved using the following Principle
of Hyperbolic Metric (see 15]).

THEOREM A. Let f(z) be holomorphic in A and f2 a hyperbolic domain such
that f(A) c_ f2. Then

)(f(z))lf’(z)l <_ Z(z), Yz A

with equality ifand only if f is a covering mapping ofA onto
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From the Principle of Hyperbolic Metric, we easily prove the Picard Theorem
which says that any non-constant entire function can take on as values all finite
complex numbers, with possibly at most one exception. Indeed, suppose there are
two finite complex numbers not taken as values by a non-constant entire function
F(z). Without loss of generality, we may assume they are 0 and 1. Then for any
positive number R, F(z): AR -- C\{0, 1}, where AR denotes the disk {Izl < g}.
The Principle of Hyperbolic Metric implies

R
)o, (F(z))IF;(z)I < Ra izl,

(3)

where )0.1 (w) is the hyperbolic density for C\{0, }. For any fixed z, let R +c,
so that the right side of (3) tends to zero. Then we have F’ (z) 0, for .o.1 (F(z)) > O,
and so F(z) is a constant, which contradicts the assumption. The above proofofPicard
theorem is essentially due to Ahlfors, who was the first person to prove the big and
small Picard theorems, the Schottky theorem and the Bloch theorem by hyperbolic
metric (see 1 ]).

For all wo , put Ctoo )a(wo)dist(wo, 0f2), where dist(w0, 0f2) is the eu-
clidean distance from wo to 0f2. Then

Cw ]Iw- w01 < C f.
.(Wo)

Now we introduce a domain constant

Ca "= inf{co; w e f}.

(see [14]). When cx ’ f2, Of is called uniformly perfect,In general, 0 < Ca <

provided Ca > 0. It is obvious that Ca inf {Ca(a)}. Hence when 0f2 is
aO()

unifoly perfect, then any finite point on is a unifoly perfect one of. By the
argument used in the proofof Corollary in [6], it is easy to see that for a {),
C(a) 0 if and only if there exists a sequence of annuli {An) in such that for
each n, An separates a and (that is, the bounded component ofCAn contains a),
dist(a, An) 0 or and mod(An) as n , where mod(An) denotes the
modulus of An. Then for a {), if {a) is not a component of , we have
C(a) > 0; otherwise dist(a, An) . However, this condition is not necessary for
C(a) > 0. Obviously, by a property of hyperbolic density, for a , C(a) > O.
There exist many mutually equivalent conditions of unifo perfectness of a closed
set (see [16] and [14]). If is simply connected, from the Koebe Theorem, we

< C. And C if and only if is convex (see [14]).easily prove

THEOREM 5.
Ca > 0, then

Let f(z) be holomorphic in A with f’(O) 7 0 and f(A) c_ f2. If

{Iw- f(0)l < Cnlf’(0)l} if2
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andfor all a OS2, we have

If(z)-al < ,f(O)-al(l/lzl)
1/c"

(4)

Proof By the Principle of Hyperbolic Metric, we have

xn(f(z))lf’(z)l _< 1-1z12"Cz A.

c. < )n(f(0)), from (5) we obtainSince 0 < dist(f(0),0f2)

CIf’(0)I < dist(f(0), 0f2).

Since dist(f(z), 0Q) < If(z) al, from (5) we have

Clf’(z)l Clf’(z)l
< < Xn(f(z))lf’(z)l <_

If(z) al dist(f(z), 0f2)

Integrating both the sides along the segment [0, z], we get

If(z) al + Izl< log.C log
If(0) al

This is the desired inequality (4).
Theorem 5 follows.

-Izl="

()

We observe Theorem 5. When f(A) is simply connected with f(0) 0 and
f’(0) 1, we have

{ 1}Iwl < c f(A).

This result generalizes the Koebe Theorem, since we do not make the assumption
of univalence on f(z). And if f(z) is univalent in A, then f(A) must be simply
connected, but if f(A) is simply connected, it does not imply that f(z) is univalent.
For this, we observe the following example: Choose z0 6 A\{0}; then

z + z zx zx T(z)
z z)

T1 (z) + 0z 1 z A - A

and g(z) := T2(T2(z)) maps A onto A. It is obvious that g(0) 0 and g’(0)
2z0

1+1zol2 =fi 0, but g(z) is not univalent and

{1}{Iwl < lg’(0)l Iwl <
Izol }2(1 + Izol =)

c g(A) A.

When f(A) is convex with f(0) 0 and f’(0) 1, then

{ 1}Iwl < c f(A).
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3. Proofs of theorems

Proofof Theorem 1. Suppose that a 6 C\ (O+(sing(f-1))) is a limit function
of {fnlv }, say fn, Iv a. For the convenience, we may assume that a 0.
Then we can choose a point z0 6 U, R > 0 and r > 0 such that N(z0, R) C U,

fn (N(zo, R)) C N(0, r)\{0} and

N(O, r) f’l (O+(sing(f-1))\{O}) 0, (6)

where N(zo, R) denotes the disk ofradius R with center zo. Put Nk := fn. (N(zo, R)).
Since fn,: N(ZO, R) - Nk C F(f), by the Principle of Hyperbolic Metric, we have

and therefore

kF(r)(fn(Zo))l(fn*)’(Zo)l <-R’

nCF(f)(O)I(ff)’(Zo)I < dist(f (Zo), 0)-- -Iff(zo)l, (7)

hk: H - C\{p, q}.

By the Principle of Hyperbolic Metric, we have

.p.q(hk(W))lh’k(W)l <_ .H(W)
2(log r Re w)"

Define 110k gk(ZO), then it follows from hk(tOk) Zo that

A’P’qZO)IHk’Wk)I 2(logr Re wk)’

and therefore by h’k (wk)g’k (Z0) 1, we have

2.p.q(Zo)(logr Re wk) < Ig,(zo)l
I(fn*)’(Zo)l
Ifn(Zo)l

This contradicts (7), for p,q (Z0) > 0 and Re wk -x, as k -- +cx.
Theorem follows.

since fn, is analytic in N(zo, R).
On the other hand, define gk(Z) log fn,. (Z) on N(zo, R) for some branch of the

logarithm such that gk: N(Zo, R) - H {z; Rez < logr}. Since H is simply
connected, by (6) we can continue the inverse function of gk analytically to a single-
valued function hk on H, such that hk(gk(z)) =-- Z for all z 6 N(z0, R). Since

f has infinitely many periodic cycles of order 2 (see [7, Theorem 3] or [18]), we
choose a periodic cycle, say {p, q}, of order 2 with N(0, r) N {p, q} 0. We have
f-n(N(O, r)\{0}) N {p, q} 0, and therefore {p, q} f"lhk(H) , that is,
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In the proof of Theorem 2, we need the following lemma, which is a combination
of [7, Lemma 8] and [8, Lemma 2].

LEMMA 1. Suppose f B and 0 Ux_ f-k(x). Then there exist a positive
constant R and a curve connecting 0 and such that [f(z)l < R on I" andfor all
z C\{O} which are not poles of f,

If(z)l ]f(z)lIf’(z)l 2rizl log

Proofof Theorem 2. We may assume without any loss of generalities that 0 f
=1 f-k(cx). Then Lemma 1 holds. Suppose that there exists a point z F(f)
such that fn(z) -- cxz, as n --+ oe. Obviously, there exist zo F(f) and a
positive constant Ro such that fn[N(zo.Ro CX:), as n -- cxz and fn(N(zo, Ro)) C
F(f) N {Izl > R}. Lemma implies

fn. N(ZO, Ro) w- C\I’.

By Theorem 5, we have

-o 4
fnI(fn)’(zo)[ < dist(fn(zo), 1-’) < ool (zo)l, (8)

for fn is analytic on N(zo, Ro) and C\r’ is simply connected.
On the other hand, put Wn fn (zo). Then by Lemma 1, we have

If(Wn)l If (Wn)l IWn+ll[f’(wn)l > log log
2at IWn R 2zr IWn R

and therefore

n--1 n--1 IWk+ll IWnl IWk+ll](f)’(zo)l I-I If’(wk)l > I-I IWk+ll log
2zrlwkl R Izol Ilk=0 log

k=0 k=0
R

n-1It is obvious that the above inequality contradicts (8), for l-Ik=o " log --cx (n --+ cx:).
Theorem 2 follows.

Remarks. (I) In the proof of Theorem 1, if for each k > 0, there exists a
curve 1-’ connecting a and cx such that Nk C C\l-’t, then a is in the derived set
of O+(sing(f-)).

(II) Analysing the proof of Theorem 2 or of [7, Theorem 16], we can deduce
that if fP(sing(f-1)) is bounded, then for z F(f), {fPn(Z)} does not tend to c.
Obviously, Theorem 16 in [7] easily follows from this result.
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ProofofTheorem 3. Since f has a multiply-connected component of normality,
all the components of F(f) are bounded, and further, for each n > O, fn(u) is
bounded. Suppose that the limit set of {fn It] is bounded; then for a real number
M>0,

U fn(U) C N(O, M).
n>O

By Theorem 3.1 in Baker [2], we can find a closed Jordan curve ?’ in a multiply-
connected component W of F(f) with N(0, M) C inty, where inty denotes the
interior which is bounded by y, such that there exists a closed Jordan curve 1-" C
f(y) with int"-- C intl-’. Let D be a component of f-l(intl-’) intersecting inty;
then f(D) intF. It is easy to see that OD C F(f), and further, OD C W;
consequently, N(0, M) C D C int F. D is simply connected. Suppose not. We
draw a simple closed Jordan curve ot in D which is not homotopic to a point there.
Since f(OD) 1-’, f(intot) fq 1-’ 0; therefore, since f(ot) C intF, we have
cx e f(intot), but f is analytic on intot. We will derive a contradiction. Noting
that by Theorem 3.1 in Baker [2], f has no asymptotic values, we have proved that
f: D w-> int 1" is a polynomial-like mapping (see [11, p. 99]). It follows from
Theorem 1.1 in [11, p.99] that there exist a polynomial P and a quasiconformal
mapping o such that f o-1 o P o q9 on D. Obviously,

U fn(u) C int K(f) intN f-n(o) C F(f),
n>O n>_O

where K(f) is usually called the filled-in Julia set of polynomial-like mapping
f" D -+ int 1-’, and therefore o(U) is a wandering domain of P. But P has no
wandering domains.

Theorem 3 follows.

Proofof Theorem 4. Suppose that the limit set of {fn IU is bounded. Since f has
no asymptotic values, for each n > O, fn(u) is simply-connected and a component
of F(f). Since all the limit functions of {fn Iu are constants, under the assumption
of (1), we have:

CLAIM. U is bounded, and hence so is fn (U) for each n.

The claim will be proved after we complete the proof of Theorem 4. Therefore
for some real number M > 0,

U fn (U) C N(0, M).
n>O

Take R > M so that

If(z)l m(R, f) > R, on y" [zl e. (9)
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We can assume that f’(z) 7 0, on ?,, for we can change R a little bit so that (9) still
holds. Then there exists a closed Jordan curve 1-’ C f(?’) such that , C int 1-’ and
int F f3 f(?,) 0. We may assume that f2(z) has a fixed point zo with {zo, f(zo)} C
int?,. Let D be the bounded component of f-l(int 1") containing z0, and then D
is simply connected and f: D - int I" is proper, for f has no asymptotic values.
D C int 1-’. Suppose not. We have a point z in , f3 D sent to 1" under f, which
contradicts the fact that f is analytic, for z is an interior point of D. Obviously, we
can have N(0, M) C D as long as R is sufficiently large. Therefore, f: D - int F
is a polynomial-like mapping.
A contradiction follows from the same argument as in the proof of Theorem 3.

Thus we complete the proof of Theorem 4.

Now we are in position to prove the claim. First of all, we need the following.

LEMMA 2 [3]. Let f (z) be analytic in A < Izl < B. lf lf (z)l > R, on Izl B
and If(z)l < R on Izl A, then there exists a simple closed curve 1" C {A < Izl <
B} with 0 intr’ and If(z)[ R on F.

It is obvious that Lemma 2 also holds if "lzl A" and "lzl B" are replaced by
two simple closed curves which go around the origin once.

Suppose that U is unbounded. Since the limit set of {fnlu} is bounded, there
exists a point cr U and a positive number B such that for all n > 0, [fn(ot)l < n.

By (1), we can choose a sufficiently large R such that

If(z)l > m(R, f) > R, on F" Izl R,

and R M(R, or, f) > R > Ifn(ot)l, where M(R1, or, f) max{If(z)l; Iz
oil R1}. Then there exists a simple closed curve 11 Q: {R < ]z-ogl} I"] {Izl < R}
with oe int I" such that If(z)l R, on I’. And furthermore on 1-’1,

[f2(z) > m(R, f) > R.

Assume that for k > 0, there exists a simple closed curve r’k_ c {Izl < R} with
int 1-’k_ such that

If(z)l >_ m(R, f) > R, on I"k_ 1. (10)

Since R > If(oe)l, it is easy to see that there exists a Rt > 0 such that

R M(Rt, or, fk) > If(oe)l.

An application of maximal principle to (10) implies that

{Iz -oil < R,} C int Ft_l and R > R, > 0.
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Then on Iz -eel Rk, [fk(z)[ R. By Lemma 2, we can find a simple closed curve
r’ c {Rk < Iz--oel} Nintr’g_l with c 6 int r’ on which If(z)l R, and therefore

Ifk+l(z)l > m(R, f) > R, on l"k.

Thus by induction, we have proved:

ASSERTION. For arbitrary positive integer s, there exists a simple closed curve
r’, c {Izl <_ R} with ot int 1-’s such that

IfS(z)l m(R, f) > R on (11)

We draw a Jordan curve ?’ in U connecting oe and a point in Izl R} N U. It is
easy to see from (11) that for all n > O, fn(?,) always has points in (Izl < B} and in
{R < Izl}, and hence fn(z) in U has no constant limits, a contradiction.

The claim follows. The idea used in the proof of the claim comes from 19].

The present author would like to thank the referee very much for useful comments.
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