
RESIDUAL PROPERTIES OF POLYCYCLIC GROUPS

BY. LEARNER

1. Let P be a group property. group is resuay-P if to any non-
identity element in there is a normal subgroup of excluding x, and such
that/ has P. K. . Hirsch [6] proved that a polycyclic group, which is a
soluble group with maxhnal condition, is residually finite. Our aim is to
sharpen this result.

Let v be a set of prime numbers. A v-numSer is a positive integer whose
prhne dvisors lie in v. v-group is a finite group of order a v-number.
If v contains just one prime p, we write p-number and p-group. Thus a
p-group here always means a finite pogroup.
Our man result is

THEOREM 1. A polycyclic group is residually a v-group for a finite set of
primes v.

We give below an explicit method for constructing the set v. It depends
only on the group G and the finite factors occurring in a normal series for G.
In particular if G is completely infinite (defined below), we can give a definite
bound for v depending only on an invariant of G. A corollary to the theorem
is a result of K. W. Gruenberg [3] on finitely generated nilpotent groups, which
are a special class of polycyclic groups [7, p. 232].
Our notation is as follows"

If S is a subset of a group G, Gp(S) subgroup generated by S;
G Gp(g g e G), where is a positive integer;
[H, K] Gp([h, k] h-lk-lhk h H, e K), where H, K are subsets of G;
Ca(F) centraliser in G of a factor group F in G;
(G) Frattini subgroup of G;

Greek letters are used for sets of primes.
As usual v’ is the complementary set to v.

2. For any positive integer t, G is a characteristic subgroup of finite index
in a polycyclic group G. If is a v-number, then GIG has exponent a v-num-
ber and so is a v-group. Hence any normal subgroup H of index a v-number
m in G, contains the characteristic subgroup Gm, also of index a v-number.
If H is residually a v-group, then for the same reason any x e H is excluded
from some H where n is a v-number. Now H" is normal in G and of index
a v-number. These remarks make the following lemma obvious.

LEMMA 1. If a normal subgroup of index a "-number in G is residually a
-group, then G is residually a --group, where v is the union of " and .
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Any polycyclic group G has a series of subgroups of the following type"

G G0> GI> > Gk 1,

where each Gi is normal in G and G_I/Gi is finitely generated free abelian or
finite abelian. We shall use the term "normal series" only in this special
sense. If all the factors in some normal series are infinite, G is called com-
pletely infinite.
We can refine (A) so that it contains the greatest possible number of

infinite factors. It is then called a strong series. By mutually refining two
strong series we see that the maximum of the ranks of the free abelian factors
in such a series is an invariant of G. We call it the widthw(G). For example
a finitely generated nilpotent group has width =< 1. In what follows (A) is
any normal series, not necessarily a strong series.

3. G is a given polycyclic group and we have chosen a normal series (A).
Let r be a finite set of primes such that all the finite factors in (A) are r-groups.
We say r is a suitable set for G. It is clearly not unique since two different
normal series may have different finite factors (cf. [2]), and in any case a
set which contains r is also suitable. We always choose r nonempty. If
G is completely infinite we may take r to be an arbitrary single prime p.
We now construct the set of Theorem 1. Let w be the product of all the

primes in r, so that any r-number divides some power of w. Put F
G_/G (i 1, ...,/c). Let C be the centraliser in G of (i) F if it is a
finite group, or (ii) F/F if F is free abelian. All the G/C are finite
groups so that the set of all primes dividing their orders is finite. We now
define r to be the union of r and . This set r apparently depends on series
(A) and on the choice of r, and so we write r f(A, r). We show later that
r is in a sense independent of the choice of (A).
The following lemmas demonstrate why r is defined in the above way.

LEMMA 2. Let be any r-number and Fi G_/G, some factor in (A).
There is a r-number r such that

We notice that if F is finite, its order is a r-number and so the lemma
states that [G_, G] -< G for some r-number r. This is obvious since by
definition of r, the centraliser of a finite F has index a r-number. Now
suppose F is infinite. The centraliser of F/F. is again by definition of index
a r-number. Hence [Gi_, G’] -< G_ G for some r-number s. But G_/G
is free abelian and one can now prove by induction that for any positive
integer n, [G_, G] =< G_I G, where r sw’-1 is a r-number. We finally
choose n so that the given r-number divides w, and the lemma is proved.

This term, used in [2] is preferable to "special polycyclic" in [8].
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We now extend this result to any finite normal r-factor in G.
need the following observation.

First we

LEMMA 3. Let F be a finitely generated free abelian group containing a

finite r-factor B/C. Then there is a r-number such that B r F <= C.

Proof. We are given B/CI s, say, is a r-number. F has a free basis
al a,,such thatB hasa basisbl b, (m <= n) withb a. Choose
t to be the product of s and all the primes in ul, , um occurring in s. Then
s divides each v/ui where v lcm(t, u). But B n F is freely generated
bya (i 1, ...,m),andsoBnF <= B <= C.

LEMMA 4. Let L, M be normal subgroups of G and let L/M be a r-group.
Then Ca(L/M) is of index a r-number in G.

Proof. First assume G_I -> L > M >- G for some i. The result is im-
mediate by Lemma 2 if F G_I/G is finite. If F is free abelian, then by
Lemma 3 there is a r-number such that L n G_ G =< M. But L is normal
in G, so using Lemma 2 we have a -number with [L, Gr] -< M. This proves
the result in this case.
Now assume L/M is any normal r-factor, of order r say. Put L

(L G)M. Then L_I/L is isomorphic to a r-factor group in G_/G by
the Zassenhaus isomorphism. This isomorphism preserves transformation by
elements of G and so by the first case above, there is a r-number s with
[L_, G8] -< L (i 1, ..., /). Now ifbeL L0, xeG’,then

[b, xr] [b, x] 1 (mod L).

Similarly [b, x*] e L3. Since M L, we can prove by induction that
[L, G] -< M where u sr- and so is a r-number.

4. Lemma 4 is the main tool in the proof of Theorem 1. However before
giving the proof, we note that r can be constructed using any normal series
all of whose finite factors are r-groups. Thus suppose

(B) G K0> K > > K. 1

is such a normal series. If K_/K is finite, its centraliser is of index a
r-number by Lemma 4. If K_I/K is infinite, then again by Lemma 4 the
centraliser of K_/K_K is of index a r-number. Hence the set of primes
f(B, r) lies in r f(A, r). Reversing the argument, we have equality and
so we can put r f(G, r). This means G has some normal series whose
finite factors are r-groups, and that r is formed in the way explained from
any such series.
We need the following technical lemma.

LEMMA 5. Let r be suitable for G and r f G, r).
(i) /fr

_
a then



RESIDUAL PROPERTIES OF POLYCYCLIC GROUPS 539

()
(iii)

r is suitable for any subgroup H. It H is normal then f(H, r) r.

If r is suitable for G/H then f(G/H,

Proof. (i) Any finite normal r-factor in G is also a z-factor and so has
centraliser of index a f(G, z)-number by the previous lemma. (ii) The
normal series (A) for G induces a normal series on H with terms H H n G.
H_I/H is isomorphic to a subgroup of G_I/G and so is a nontrivial finite
group if and only if G_/G is finite. Hence r is suitable for H. If H is
normal in G and we use this induced series to construct f(H, r), then the
factors concerned are normal r-factors in G. By Lemma 4 they are all
centralised by a subgroup C of index a -number in G. Then H/H n C is
a r-group and so f(H, r) r. (iii) We are given that G/H has a normal
series for which r is suitable, and the result follows as in (ii). We must
specify that r is suitable for G/H since the induced series with terms HG may
have finite factors not r-groups. For instance if G is free abelian and p any
prime, then f(G, p) p. However p does not divide G/H] if H Gq

andq p.
We now turn to the main theorem for which we need the following result

of P. Hall and G. Higman [5].

LEMMA. If F is a finite soluble group containing no nontrivial normal
p’-subgroup and P is a maximal normal p-subgroup of F, then P C,(P/(P ).

Proof of Theorem 1. Let (A) be a normal series for G of length/ with all
finite factors r-groups and r f(G, r). We use induction on/c to prove
that G is residually a -group. If/ 1, G is finitely generated abelian and
either a finite r-group or free. In both cases G is residually a r-group, and
afortiori residually a -group. Assume/c > 1 and put H Gk-1, the last
nontrivial term in series (A). Truncating (A) at H gives a normal series
for G/H whose finite factors are r-groups. By Lemma 5, f(G/H, r)

_
ahd so by induction hypothesis, G/H is residually a -group. It is now
sufficient to take x 1 in H and find a normal subgroup K excluding x
and such that G/K is a r-group. Whether H is finite or not, there is a prime
per and a positive integern such that xB H. Choose K to be a
maximal normal subgroup => B and excluding x. Since G is residually
finite (Hirsch’s theorem), G/K F is a finite soluble group. Every normal
subgroup of F contains xK of p-power order. Hence if P L/K is a maximal
normal p-subgroup of F we have P C,(P/(P)) by the lemma above.
This implies that L is the centraliser in G of a normal p-factor L/L. Since
p e r, by Lemma 4, [G/L[ is a r-number. But L/K is a p-group and so
G/K is a r-group. This completes Theorem 1.

5. By [6, Theorem 3.21] any polycyclic group has a completely infinite
subgroup of finite index. Here by convention the trivial group is completely
infinite. We can make this more precise.
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THEOREM 2. G has a completely infinite subgroup M of index a --number.
(By a remartc in 2 we can choose M to be characteristic in G.

Proof. Let G have normal series (A) with finite factors all r-groups. If
G is finite, it is a r-group and r

_
r and so we put M 1. Assume G is

infinite. We use induction on the length k of (A). If k 1, G is already
free abelian. If k > 1, put G_ H. The theorem holds for G/H and so
there is a r-number such that (G/H) GtH/H is completely infinite. If
H is free abelian, then GtH itself is completely infinite and we are finished.
Assume H is a finite abelian r-group of order m say. By Lemma 4, [H, G’] 1
where s is a r-number. Put L Gt’H so that G/L is a r-group, H is central
in L, and L/H is completely infinite being a subgroup of GtH/H. L/H has
a normal series (X) of length =< (k 1 induced by (A) and the finite factors
of (X) are r-groups. The last factor, K/H say, of (_) must be free abelian
since L/H is completely infinite and so certainly torsion-free. Let
xH, ..., x.H be a set of free generators of K/H. Then [x, x]
[x, x] lfori, j 1, ...,n. HenceK Gp (x, ..., x) is free
abelian and K/KI K/KHI HI is a r-number. Thus for some
r-number r, K is free abelian. Now replace K/H in series (X) by K/K
to obtain a normal series of length

_
(k 1) for L/K whose finite factors

are still r-groups. Hence by induction L/K has a completely infinite sub-
group M/K of index a v-number. But K is free abelian by construction
and so M is completely infinite, which proves Theorem 2.
We could of course use Theorem 2 to give a different proof of Theorem 1.

It reduces the problem to completely infinite groups which are easier to handle.

6. Example 6.1. Suppose G is a finitely generated nilpotent group. We
choose (A) to be a central series so that G itself centralises all the factors
used in defining . Therefore r the set of primes occurring in the
finite factors of (A). In this case the torsion elements of G form a r-sub-
group. If G happens to be torsion-free, we can choose r as an arbitrary single
prime. We have thus obtained Theorem 2.1 of [3].

This simple result is not true of polycyclic groups in general even if the
periodic elements happen to form a subgroup. For example take

G Gp (x, y ly 1, x-yx y).

Any normal subgroup of G excluding y lies in K Gp (x2), and G/K[ 6.
Put A Gp (y), the torsion subgroup of G. The normal series G > A > 1
gives f(G, 3) (2, 3). Hence G is residually a r-group if and only if
r (2, 3).

Example 6.2. Suppose G is completely infinite of width n (see 2 above).
We can choose r to be any single prime p. The normal factors F used in
defining f(G, p) are elementary abelian p-groups of dimension at most n.
Hence IG/C(F) divides lGL(n, p)[. Thus v lies in the set of primes
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dividing Pl GL(n, p)I. This set is a specific upper bound. However it is
different for each choice of p, and is in general much too large. Consider for
example the completely infinite metabelian group

G Gp (x, a, b l[a b] 1, x-lax ab, x-lbx aSb6).

If A Gp (a, b), G > A > 1 is a completely infinite series.

C(A/A) Gp (x, A ), C(A/A3) Gp (x6, A)
and

C(A/A) Gp (x, A).

Hence choosing p 2 or 3 we see G is residually a (2, 3)-group, and choosing
p 5, G is also residually a 5-group. Thus is by no means unique.

Example 6.3. A supersoluble group is a polycyclic group with a normal
series all of whose factors are cyclic. We may make the finite factors of
prime order, ql, ..., q say. The infinite cyclic factors have centralisers
of index at most 2, and so = is contained in the union of (2, q) and the primes
dividing q 1 (i 1, ..., m). Thus if G is completely infinite it is re-
sidually a 2-group. An example is the dihedral group, Gp (x, y y-lxy x-1).
This is residually a -group if and only if 2 e = because all normal subgroups
of odd index contain the element x.

7. Given a polycyclic group we have constructed a finite set of primes
such that G has a unit filter, (Ka) say, of normal subgroups with all

G/Ka =-groups. We can now complete G to inverse lim G/K with the
usual projections (cf. [4]). G is soluble, but of course no longer polycyclic.
However G has certain interesting properties. One can transfer the definition
of Hall subgroups and the Hall theorems from the finite soluble groups G/K= to
C. The details of this process can be found in [1].

8. It is an open question whether the above theorems possess suitable
converses. Given that G is residually a p-group, for example, what can be
said about possible normal series for G? Several attractive conjectures can
be made which are supported by known examples. The author has been
unable yet to obtain satisfactory results in this direction.
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