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Introduction

In the theory of elliptic modular functions F. Kleia’s concept of the level
of a congruence subgroup of the modular group has proved of fundamental
importance. That this concept should be extendable to apply, in particular,
to arbitrary subgroups of finite index seems never to have beea sufficiently
appreciated. Such a generalization was, in effect, provided for by R. Fricke,
who introduced the notion of the "class" of a modular subgroup, but there is
no evidence in his work to suggest that he perceived of it in that light. It is
therefore remarkable that, for a congruence subgroup, the identity o.f the two
concepts is a consequence of one of R. Fricke’s theor.ems.

It is the purpose of this note to introduce a general level concept for the
modular group and to show its usefulness in investigations into the structure
of that group. There will be occasioa to throw some light oa the connection
between certaia modular subgroups and Riemana surfaces associated with
them. Account will also be taken of some recent results, concerning the
structure of the modular group, of I. Reiner and of M. Newman, as well as
of old results of R. Fricke.

A theorem of R. Fricke

We take for the modular group 1F the group of all 2 2 matrices with
rational integral elements and determinant 1. Any L e 1F induces a linear
transformation of Poincar’s half-plane. If his transformation is different
from the identity map and leaves a rational point or fixed it is of parabolic
type and L is called a parabolic matrix. It is well known that such a matrix
has the form -+-A-U’A where A e 1F and i" A-1 is a parabolic fixed point
of the induced transformation or, as we shall say, of L. Here U ( )
and m is a rational integer, not zero and uniquely determined by L. The
modulus m of m will be called the amplitude of the parabolic matrix L.
The group consisting of the two matrices =I, where I ( 0), will be de-

noted by E. Then let F be any subgroup of 1F and, for coavenience, let
-I e F, so that the quotient group F/E is isomorphic to the group of linear
transformations induced by the matrices of r. If F contains parabolic ma-
trices P their fixed points are called cusps of r.

If is a cusp of r the subgroup of all matrices of F with fixed point is
generated by -I and a certain parabolic matrix P. While P is not uniquely
determined by F and , the choice is only between =P, =hP-1 of a common
.amplitude m. This number will be called the amplitude of " relative to F.
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If is a cusp equivalent to i" under F, i. e. if L" with L e 1, then and "have equal amplitudes relative to 1. We now make the following

DEFINITION. Let F be any subgroup of lr and denote by C(F) the subset
of all cusp amplitudes relative to F in the set N of all positive rational integers.

If C(F) is nonempty and bounded in N, the least common multiple of all the
numbers in C(F) is a number m N and will be called the level of F. If C(F)
is empty or unbounded, the level of F is defined to be the number zero.

If I’ is of finite index in 1F, the number of equivalence classes of cusps under
1" is positive and finite. The level of F will then be positive.
For any positive integer m we now define the subgroup m of lr as the

group generated by all parabolic P e 1 of amplitude m. The groups m were
originally introduced by R. Fricke [3] and have recently reappeared as I.
Reiner’s groups A (m) (see [11]) and also in J. L. Brenner [1]. m may
alternatively be defined as the least normal subgroup of 1 containing both
-I and Um. Omitting an easy proof we have

THEOREM 1. If the subgroup F has positive level m then F m. Con-
versely, if m c F F for some positive integer m then the level of F divides m
and so is positive.

If we regard any positive integer as a divisor of zero, we have an immediate

COROLLARY. The inclusion F F implies the relation m ml between the
corresponding levels, provided only that m. is positive.

The principal congruence groups

mr {LeY L-- =i=I modm}

are known to be normal subgroups of finite index in Y. Any subgroup of Y
which contains a principal congruence group is called a congruence subgroup
and is, of course, of finite index in Y.
For congruence subgroups F, F. Klein has defined the level of 1’ to be the

least positive integer with I’ ,1 (or any multiple of l, but we ignore here
the latter possibility). We shall see that this is equal to our general level
mofr.

This is true, at any rate, for principal congruence groups ml, which have
all cusp amplitudes equal to m. But if r is any congruence subgroup, from
Y D Y we have, by the corollary above, m[ with m the general level of Y.
That lm is also true, and therefore m, will follow from a result of R.
Frieke (see [3, p. 417], and [12]), which we state as

THEOREM 2. If Y is a congruence subgroup of the (general) level m then

For then 1 ml and F F, implying 1 (m.)r.
by the minimum property of l, and l[m follows.

Therefore (m, l) >-
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To prove Theorem 2, let M ( ) be any matrix of ml. It will suffice to
take M I mod m. We have to show that M is in I’. If R and S are any
two matrices of F then M will belong to 1 if and only if RMS does. If we
choose R and S from mr, as we shall do, our hypothesis M e mF will not be
affected on replacing M by RMS. Changing M in the manner lust indicated
allows for simplifying assumptions to be made without loss of generality.
The first of these is (d, l) 1, where denotes Klein’s level of r. If this

is not originally true then d q-1. But (d, mc) 1 is easily inferred from
M e ml and so c 0. Using Dirichlet’s theorem on primes in an arithmetic
progression we can find an integer g such that d -b gmc and are relatively
prime. On taking MUm in place of M our assumption is justified.
Next we assume b 0 mod 1. Since U"M has b "-b hmd in place of b,

this is permitted if the congruence b -k hmd 0 mod can be solved for h.
This is so for (rod, 1)[ b. But from (d, l) 1 and m we have (rod, l) m,
reducing the condition to b 0 mod m, a consequence of M e inF.

Similarly, c -= 0 mod may be assumed to hold.
Since M has determinant 1 our assumptions imply ad -= 1 mod 1. But

then M is congruent mod to the matrix

Mo 1 ad d(2- ad)

and so L M-1Mo e F. Therefore L is in F and M may be replaced by
Mo ML. Now M0 is the product

M- (d 1 01)(1 a 2- 1

of three matrices each of which, unless it reduces to the matrix I, is parabolic
of amplitude a multiple of m by virtue of d 1 mod m. Therefore hey
are matrices of F, and M0 e I’ follows, to complete the proof.
We conclude this section by an application of Frieke’s theorem. The

modular group can be showno contain a subgroup of index 7 and with exactly
two equivalence classes of cusps, of amplitudes 1 and 6 respectively. If this
subgroup were a congruence subgroup, by Theorem 2 it would have to contain
the principal congruence group I’. Bug as 72 is not divisible by
7 this is not possible. Our subgroup of index 7 is therefore not a congruence
subgroup.

A class of normal subgroups
With any subgroup 1 of F a Riemann surface S is associated by takg

equivalence classes of the pots of Poincar’s half-plane under r and local
uniformizing parameters in the usual manner (see [6]). If r is of finite index

r, S will be compact. This, by the way, is the basis for a short proof of
the well-known theorem that a function automorphic with respec to F, which
is regular and bounded in the upper half-plane, is necessarily constant.
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It is trivially verified that 1 1F. Now let m >- 2, 1 mF and let p
denote the genus of S. F has no elliptic fixed points and all cusp amplitudes
equal m. The same applies to the group m, which is contained in 1
according to Theorem 1. The Riemann surface associated with is there-
fore a smooth unlimited covering of S. It is, in fact, the universal covering.
We prove the last statement by showing that the quotient group 1/ of

all covering transformations of over S has the structure of a fundamental
group of the compact Riemann surfaces of genus p. Indeed, in the particular
system of generators of 1 with defining relations, obtained by H. Petersson
[6], [7], the elliptic generators are missing and the parabolic ones as well as
-I are in . There remain2p generators Gp, Hp (1 -< -< p) and one
defining relation

(modulo ).
The same reasoning applies to any normal subgroup of finite index, of level
m and without elliptic matrices, in place of F, and so to all normal subgroups
of finite index except the groups F, F in M. Newman [5].
Now the genus of F is zero if m -<_ 5 and positive in all other cases and the

universal covering surface of a compact Riemann surface S of positive genus
is infinite-sheeted over S. The considerations above them imply

THEOREM 3. For 1 <= m <- 5 we have I’, while for m >= 6, m is a
subgroup of infinite index in ,r.

In particular, if m >- 6 then does not contain any principal congruence
group. This settles a question left open in I. Reiner [11], where the groups

are denoted by A(m). Theorem 3 was recently also proved by 5/I. I.
Knopp [4].
We shall now take up a method of I. Reiner [10] to construct a class of

normal subgroups F of finite index in F. mI’* will be of level m and not be
a congruence subgroup except for s 1. In view of Theorem 3 we suppose
m >= 6. Leaving suffixes aside for the moment we put F mF, m.

Let P r/, P’ the commutator subgroup of P and the inverse image
of P’ under the canonical mapping of F onto P. Then c c F, is a
normal subgroup in 1 and A 1/ is the free abelian group of 2p generators.
All this follows readily from the results on the structure of the quotient group
P as stated above. The rest of the argument is exactly like I. Reiner’s in
[10, p. 142] with A replacing A(m), and will not be repeated.

Instead of I. Reiner’s groups 2(p, s) an infinite set of groups 18

(m >- ; s >= 1) is thus arrived at with the following properties.

(1)
(2)
(3)
(4)

F is a normal subgroup of finite index in 1F.
el"’ is generated by m and the s’ powers of the matrices in F.

mF F.
1’ is of level m.
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nl implies m n and s t.
does not contain any principal congruence group except for s 1.

Properties (1), (2) correspond to like properties in the groups 12(p, s).
They follow readily from the construction, as does (3). In fact, ml c mI’.

Since F is of level m, (4) follows from (3), Theorem 1 and its corollary.
For m fixed and s he groups z and A are distinct by construction.

So then are 1 and r. This proves (5) in view of the fact that groups of
different levels are certainly distinct.

Finally, let 1’ contain a principal congruence group, i.e. let it be a con-
gruence subgroup. In view of (4) Theorem 2 gives ml c F8. This is true
for s 1 when, in fact, 1 Mr’ holds. (6) then follows from (5).

Normal subgroups of level 6
As before, let E be the normal subgroup of 11 consisting of +/-I. Let P’

be the commutator subgroup of the quotient group P ll/E and 1’ the
inverse image of P’ in the canonical mapping of 1 onto P. We use a well-
known arithmetic characterization of the matrices L ( ) e 1 belonging
to 1’ which may be found, for instance, in H. Petersson [8].. The condition is

ab --t- 3bc -t- cd 0 mod 6.

Incidentally, M. Newman’s groups F2, r (see [5]) are characterized, re-
spectively, by

ab+bc--i-cd--O mod2 and ab+cd--O mod3.

This makes F n F 11’ obvious.
It follows that F’ is a congruence subgroup and of level 6.
We shall now state a result due to R. Fricke [2]. To do so we need a

function h(c, d) of the pairs c, d of coprime rational integers and with values
in the field K Q(), where exp(1/2ri), of the third roots of unity over
the rationals, h(c, d) may be recursively computed from the relations

h(0, 1) O, h(--d, c) -t- h(c, d) 1, h(c, c -t- d) sh(c, d).

Then, according to Fricke, there is a one-to-one mapping of the set of normal
subgroups F in F satisfying c F c F’ onto the set of ideals H of algebraic
integers of K. Any such F ischaracterized arithmetically by

where H is the ideal corresponding to F. Furthermore, the number of classes
of cusps equivalent under 1 is equal to the norm of H.
M. Newman shows [5, Theorem 6] that the group r generated by -I and

the sixth powers of modular matrices is contained in P’ and that (11’" F) 36.
On the other hand, U F. Fe Then, being a normal subgroup in 1", F6.
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Thus 16 is of level 6 and the question arises as to the ideal H of K corresponding
to F in Fricke’s mapping.
The answer is easy to find. Since (F" F6) 216 and F is of level 6, this

group has exactly 36 inequivalent cusps. Therefore H has norm 36. But
H (6) is the only ideal in K with this norm and hence follows

TIOnEM 4. The subgroup F of F generated by -I and the sixth powers of
the malrices ofF consists of all L ( ) e F’ which haye h(c, d) 0 rood (6).

Remark. The numbers h(c, d) are closely related to the periods of an
integral of the first kind belonging to the Riemann surface, of genus p 1,
associated with F’. This connection may be used to establish the results of
R. Fricke [2] as given bove.

Modular subgroups of small indices

By a slight generaliztio of he results of R. Fricke [2] a subgroup F of
level 6 and index 7 in F can be constructed .consisting of all L ( ) in the
modular group F which have h(c, d) 0 rood (1 + 2). That F is not a
congruence subgroup has already been inferred from Theorem 2. The same
is then also true of the transformed groups A-FA (A F).

Thus, from Theorem 5 below it follows that 7 is the least positive integer
# such that there is a modular subgroup 1, which is not a congruence subgroup,
of index t in F.
THEOREM 5. Let F be a subgroup in F of index <- 6. Then F is a con-

gruence subgroup.

Two remarks will precede the proof of the theorem. We first note that the
index of a modular subgroup 1 is equul to the sum of the umplitudes of a
complete set of cusps inequivalent uffder r, as is clear from the usual method
of constructing a fundamental domain for 1 out of the classical one for W.
Any positive integer m appearing as the level of a modular subgroup F of
index is then the least common multiple of the parts in an unrestricted
partition of into positive integers.
We also need the fundamental topological equation

12(p 1) - 6 - 3e. -t- 4e,,

which may be found in H. Petersson [8, formula (1)].
Here a is the number of equivalence classes of cusps under F, while e. and

ca, respectively, denote the corresponding class numbers for elliptic fixed
points of F of orders 2 and 3. The formula shows, in particular, that there
does not exist subgroup F with 5, 2, which would have cusp ampli-
tudes m 2, m 3 nd therefore be of level 6. But then any subgroup F
of index t -<_ 5 is of level m _<_ 5 and so, by Theorems 1 und 3, a congruence
subgroup.
To prove Theorem 5 it is, therefore, sufficient to consider subgroups of
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index 6. If the level m of 1 does not exceed 5, 1 is disposed of as above.
As the number 6 cannot be partitioned into parts whose least common multiple
exceeds 6 we are left with groups 1 which have m 6. There is then
either a 1 (cusp amplitude 6) or 3 (amplitudes 1, 2, 3). It is u resul
of H. Petersson that the latter case is impossible, while in the former there
exist the following groups 1, all congruence subgroups, and no others"

p 1, e. e 0 1 group,

p 0, e 4, ea 0 3 groups,

p 0, e. 0, e 3 2 groups.

With these results the theorem is proved.
Remark. H. Petersson [9] asserts the truth of Theorem 5. His (un-

published) proof of it consists in a systematic search, in particular, for all
modular subgroups of index less than 7.
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