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1. Introduction
In this note we continue the study of problems concerning extension of

compact operators and the characterization of the spaces having various
extension properties. In [11], [12] and [13] our main interest was in character-
izing the spaces X for which certain classes of operators having X as range
space can be extended. In [14] some further results concerning the "into"
extension problem are announced. Our aim here is to complement these
results by studying the corresponding "from" extension properties. The
main result of the present note shows that if all the operators defined on X
and having a 3-dimensional range can be extended in a norm-preserving
manner then the same is true for every compact operator defined on X, and
this is the case if and only if X* is an L1 space (see .Theorem 1 for a precise
formulation). It is shown (Theorems 2 and 3) that in the preceding results
3 cannot be replaced by 2. Indeed, all the L1 spaces have the "from" ex-
tension property for operators with a 2-dimensional range. In Section 4 a
comparison between the "into" and "from" extension properties for compact
operators is given. The paper ends with two theorems concerning the lifting
of operators with a 2 or 3-dimensional range. These theorems complement
some results of KSthe and Grothendieck [3].

Notations. By "operator" we mean a bounded linear operator. All Banach
spaces are assumed to be over the reals. Let I be a set; the Banach space of
all bounded real-valued functions on I with the supremum as norm is denoted
by m(I). If I is finite and consists of n points we denote re(I) also by l.
The conjugate of l is denoted by/;it is the n-dimensional L1 space. The
cell {x; x e X, x x0 -< r} is denoted by Sx(Xo, r). A Banach space X
is called a (Px space if from every Y X there is a projection of norm -<
onto X. For the basic facts concerning (x spaces we refer to the book of
Day [2, pp. 94-96]. The projection constant ((X) of a Banach space X is
defined by (cf. [4])

((X) inf },; X is a (x space}.

For a set K in a Banach space Cl(K) [resp. Int(K)] denotes the norm closure
[resp. interior] of K.
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2. The main result
In the proof of Theorem 1 we shall use three known results which we state

here as lemmas. Lemma 1 is due to Nachbin [15] and it plays a decisive
role in many extension problems. Griinbaum [5, the proof of Theorem 1]
gave a proof of the lemma which is simpler than that of Nachbin. We give
here a different simple proof of it.

LEPTA 1. Let X be a Banach space and let {Sx(xa, ra)} be a collection
of mutually intersecting cells in X. Then there is a Banach space Z containing
X with dim Z/X 1 such that f Sz(x, r) 0.

Proof. X is (isometric to) a subspace of m(I) for a set I with a sufficiently
large cardinality. In re(I) every collection of mutually intersecting cells has
a common point (this is an immediate consequence of Helly’s theorem [7] in
one dimension). Hence a Sin(x)(x,, r,) 0. Let z be any point in this
intersection. If z e X then the subspace Z of re(I) spanned by X and z has
the required properties. If z e X we may take as Z any space containing X
and satisfying dim Z/X 1.
The next lemma is due to Klee [8].

LEMMA 2. Let {C}+ be convex open sets in a Banach spaceX of dimension
CI n-b [->= n such that ,i-1 , . Then there is a closed subspace V of X with

dim X/V n such that neither V nor any translate of V intersects all the C.
Klee stated his results in [8] only for finite-dimensional Banach spaces but

(as remarked in [8]) the results and their proofs hold also for infinite-di-
mensional Banach spaces (and even in more general linear spaces). The
assertion of Lemma 2 follows from paragraphs (3.1) and (3.2) of [8].
The proof of the next lemma is given in [11] and [12].

LEMMA 3. Let X be a Banach space. X* is an L1 space if and only if for
every collection offour mutually intersecting cells {Sx(xi ri)} in X and every
e>O, 4

We are now ready to prove

THEOREM 1. Let X be a Banach space. The following four statements are
equivalent.

X* is an L( space for some measure t.
(ii) For every two Banach spaces Z and Y with Z X and every compact

operator T from X into Y there is a compact norm-preserving extension of T
from Z into Y.

(iii) For every two Banach spaces Z and Y with Z X and every weakly
compact operator T from X into Y there is a weakly compact norm-preserving
extension of T from Z into Y.

(iv) For every two Banach spaces Z and Y with Z X, dim Z/X 1,
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dim Y 3 and every operator T from X into Y there is a norm-preserving
extension of T from Z into Y.

Proof. That (i) (ii) and (i) (iii) was shown in [10] and [12]. Actu-
ally it was shown there that under an additional hypothesis (the "metric
approximation property") either of (ii) and (iii) is equivalent to (i) (cf.
[13, properties (2), (8) and (9) of Theorem 1]). Thus the only new fact in
the present theorem concerning the equivalence of the first three properties
is that the requirement concerning the metric approximation property can be
discarded. That (ii) (iv) and (iii) (iv) is obvious. Hence we have
to show only that (iv) (i). If dim X _-< 3 we may take as T in (iv) the
identity operator on X and hence in this case the fact that (iv) (i) is well
known (cf. [15]). We assume therefore that dim X > 3.
By Lemma 3 it is sufficient to show that if in a Banach space X there are

four mutually intersecting cells {Sx(x r)}
__

and an s > 0 such that

(1) rl

__
S(x, r + ). ,

then X does not satisfy (iv). Let a Banach space X, four mutually inter-
secting cells in it and an > 0 be given such that (1) holds. We apply
Lemma 2 to the four sets C Int(S(x, r W )). Let V be a subspace of
X having the properties stated in Lemma 2, let Y X/V and let T be the

N= TC t. Sincequotient map from X onto Y. By the choice of V,
TC, CI(TS(x,, r,)) it follows that

(2) n__ CI(TS.(x, r,) .
Let now Z be a Banach space containing X with dim Z/X 1 such that
there isazeZwith]lz- x,]l =< r,,i 1, ...,4(cf. Lemmal). Suppose
T has an extension of norm 1 from Z into X. Then (z x,) e r, St(0, 1)
for every i. But since St(0, 1) is, by the definition of the quotient norm,
equal to CI(TSx(0, 1)) it would follow that for every i

’z e Tx - r, Sy(O, 1) CI(TSx(x, r) ),

and this contradicts (2).
This concludes the proof of Theorem 1.
In statement (iv) of Theorem 1 we cannot replace 3 by 2. The spaces

having the weaker extension property obtained from (iv) if we replace 3 by 2
are characterized in

THEOREM 2. Let X be a Banach space. The following two statements are
equivalent.

) Every three mutually intersecting cells in X have a point in common.
(ii) For every two Banach spaces Z and Y with Z X, dim Z/X 1,

dim Y 2 and every operator T from X into Y there is a norm-preserving
extension of T from Z into Y.
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Proof. That (ii) (i) follows as in the proof of (iv) (i) in Theorem 1.
We have only to use the fact (proved in [11]) that if for every collection of
three mutually intersecting cells {S(x r) _-1 in X and every e > 0,
=1S(x, r - ) 0 then X has property (i) of Theorem 2. We show
now that (i) (ii). Let z be any point in Z but not in X and let T be an
operator with norm 1 from X into Y. We have to choose z e Y so that

(3) II kz Tx <- ),z x II, x e X, k real.

Since (3) holds for ), 0 (and every choice of z) we may divide (3) by
k and hence it is sufficient to show that there is a u e Y such that
u Tx <- z x for every x e X. In other words we have to show that

(The preceding argument is due to Nachbin [15].) Clearly S.(Tx, z x
contains CI(TSx(x, z x 11)). By the triangle inequality in Z any two
of the cells Sx(x, z x ), x e X, intersect. Since X satisfies (i) any three
of these cells have a point in common. Hence any three of the compact
convex sets CI(TS:(x, x z II)) have a point in common. Since Y is
2-dimensional the desired result follows from Helly’s theorem [7].
Hanner [6] gave an intrinsic characterization of the unit cells of finite-

dimensional spaces X satisfying (i) of Theorem 2. Some results concerning
infinite-dimensional spaces X satisfying (i) of Theorem 2 are proved in [11,
chapter 2]. No functional representation is known (even in the finite-
dimensional case) of the spaces having this intersection property. The most
important spaces having the properties of Theorem 2 but not those of Theorem
1 are the L1 spaces of dimension => 3 (cf. [11] and Theorem 3 below; if X is
an L space then X* is an L space if and only if dim X =< 2).

3. An extension theorem for operators defined on an L space

In this section we prove that L1 spaces have the extension property obtained
from property (ii) in Theorem 2 by discarding the requirement dim Z/X 1.
It seems likely that the same holds for every Banach space which has property
(i) of Theorem 2. We shall need the following elementary lemma.

LEMMA 4. Let K be a convex polygon in the plane, symmetric with respect to
the origin, having 4n 2 vertices. Let {=t=z}= be the vertices of K, the indices
being chosen so that

arg z _<_ arg z2 =< -< arg z+ =< -t-arg z,

for a suitable choice of the arguments. Put

y z z z "[- z., z,+l,

Then y K.
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Proof. Suppose we renumber the vertices by choosing a different vertex
as the first one but still requiring that the vertices are numbered in the
counterclockwise direction. Let denote the alternating sum of the vertices
corresponding to this new choice of indices. It is easy to check that either
y or y -. Hence in order to prove the lemma we have only to
show that if a linear functional f satisfies

(4) f(z) 1; f(z)l <- 1, z eg,
then f(Y)i -< 1. Let now f satisfy (4). Then

(5) f(z) >- f(z) >- >- f(z,+).

Indeed, if i > j then z az -t- z with a, f -> 0, a + => 1. Hencef(z)
af(z) + >= (a + )f(z). Thusf(z.) => f(zi) if at least one of these numbers
is positive. If f(z), f(z) -< 0 we get that f(z.) >- f(z) from the relation
z ,z.W(-z),% >- 0,,W >- 1. This proves (5). Now

f(z ) >= f(z ) f(z ) + + + >=
thus If(Y)] -< 1 and this concludes the proof of the lemma.

THEOaE 3. Let X be an L space. For every two Banach spaces Z and Y
with Z X, dim Y 2 and every operator T from X into Y there is a norm-
preserving extension of T from Z into Y.

Proof. We assume that T 1. We shall first prove the theorem for
X l’. This will be done by induction on n. For n 1 the assertion is
clear. Denote the extreme points of the unit cell of by +/-e} ’... Suppose
first that some Te is contained in the convex hull of {-+-Te}, say Te,

Te with [ 1. Let l- be the subspace of l’ spanned by
_- and let P be a projection of norm I from l onto - defined by Pe e,

i < n, and Pe,, :.,.. Xe. Further let r be any (P space containing
l-. The projection P from l onto l- has a norm-preserving extension to
an operator P from Z into V (cf. [2, p. 94]). By the induction hypothesis
the restriction of T to l- has a norm-preserving extension T’ from V into Y.
Put T’P. is a norm-preserving extension of T from Z into Y.
Hence we may assume that no Te is in the convex hull of +/- Te}. We

assume also that

(6) arg Te <- arg Te. <- <-_ arg Te, <= - - arg Te
this can always be achieved by a suitable naming of the extreme points of l.
Consider the space l (where m 2) and let/u} denote the basis vectors
of this space--all the coordinates of u are zero except the ]c which is one.
It is well known and easy to see (see for example [4, p. 458])that l can be
embedded isometrically into l by taking e . u, i 1, ..., n,
with . W 1 or 1 for every i and ]c and such that for every choice of signs
/} there is a for which , i for every i. We assume that the u
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are numbered so that v,k -t-1 for i >__ / and ,k -1 for i < h -< n (the
signs of e, for h > n are of no importance in the sequel). We now extend
T to an operator from l into Y. We take ’uk 0 for h > n, hence in
order that P be an extension of T we must have

Te Z=l i,k Uk Zik--_l Uk ZkniT1 Uk, i 1, 2, ", n,

that is

ul (Tel + Te,, /2, u Tek Te_ /2, ]c 2, ..., n.

We have to show that the just defined has norm 1, that is that the images
by of the extreme points of the unit cell of l are in the unit cell of Y. In
other words, we have to show that =1 =t= uk -< 1 for every choice of
signs. Any sum .-1 d=’u is equal to an expression of the form

-+- (Tel Te2 Tej - Te2j+l)
with 1 -_< i < i2 < < i2’+1 -< n.

Since T i it follows from Lemma 4 that :i= IPu -< 1.
We show next that T has an extension of norm 1 from Z into Y. Since

l is a (P space there is an operator To of norm 1 from Z into l whose re-
striction to l is the identity. PT0 is a norm-preserving extension of T from
Z into Y. This proves Theorem 3 for X

Finally let X be a general L() space. Denote the measure space on
which is defined by 2 and consider the set II of all partitions 7 of 2 into a
finite number of disjoint measurable sets. We say that 72 is finer than 7
(72 > 7) if each set in 7 is a union of sets in 72. In this ordering II is a
directed set. For each 7 e II let X be the subspace of X spanned by those
characteristic functions of the sets of 7 which are -integrable. From what
we have already shown it follows that for every 7 there is an operator of
norm -< 1 from Z into Y whose restriction to X is equal to the restriction
of T to X. Let be any limiting point of the net in the weak operator
topology (for operators from Z into Y). is a norm-preserving extension of
T from Z into Y (cf. the proof of the lemma in [9]). This concludes the proof
of Theorem 3.

COOLLAY 1. Let the Banach space X contain a subspace isometric to l.
Then every 2-dimensional Banach space is a quotient space of X.

This follows immediately from Theorem 3 and the fact that every separable
Banach space is a quotient space of 11 [1].
COaOLLAY 2. Let B be a 2-dimensional Banach space. Then B is (iso-

metric to) a subspace of LI(O, 1 ).

Proof. By Corollary 1, B* is a quotient space of C(0, 1) and hence B is a
subspace of C(0, 1 )*. But every separable subspace of C(0, 1)* is isometric
to a subspace of L(0, 1) [1].
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As pointed out to me by Professor S. Kakutani it is not difficult to verify
Corollary 2 directly by constructing a subspace of L(0, 1) isometric to B
for every given B. In Corollary 2 we cannot replace L(0, 1) by l since l
has, for example, no smooth subspace of dimension -> 2 (cf. the proof of
Theorem 5).

COIOLRV 3. If B is a 2-dimensional Banach space then 6(B) 6(B*).
This Corollary follows immediately from Corollary 2 and the following.

LEMMA 5. Let the Banach space X be a subspace of an L space Z. Then
((X) >- (X*).

Proof. Let k > (P(X) and let P be a projection from Z onto X with
P i] --< k. Let V be a Banach space containing X*. Since Z* is a (P space

the operator P* from X* into Z* has a norm-preserving extension To from
V into Z*. Let T be the canonical quotient map from Z* into X* (that is
the operator which assigns to each functional on Z its restriction, to X). Then
/ T To is a projection from V onto X* with norm -< k.

Corollaries 1, 2 and 3 do not hold if we consider Banach spaces of dimension
greater than 2. (e(l) > (P(l) 1 and hence no 3-dimensional space
sufficiently close to l is a quotient space of a C(K) space and no 3-dimensional
space sufficiently close to l is a subspace of an L space.

4. Comparison with the "into" extension property
We now point out the min differences between the "into" nd "from"

extension theorems.
1. In the "into" extension problem there is a significant difference between

the existence of a norm-preserving extension and the existence of an "almost
norm-preserving" extension. We have for example (cf. [3] and [13]) that X*
is anL space if and only if for every two Banach spaces Z D Y, every compact
T from Y into X and every e > 0 there is a compact extension T of T from
ZintoZwith [I -< (1 + e)llTil. The spaces Z which have the pre-
ceding extension property with e 0 form a much smaller class (all finite,
dimensional subspaces of X must have a polyhedron as unit cell). The
situation is the same for related "into" extension properties, even for "into"
extension properties for operators with a 2-dimensional range. For some
results in this direction we refer to [12], [13], [14]. Nothing like this occurs
with the "from" extension properties of Theorems 1 and 2. For example it
is easily seen from the proof of (iv) (i) in Theorem 1 that if for a Banach
space X there is, for every two Banach spaces Z and Y with Z D X,
dim Z/X 1, dim Y 3, every operator T from X into Y and every e > 0,
an extension of T from Z into Z with iP -<- (1 - ) T then X* L.

By "sufficiently close" we mean that the norm in the space satisfies x -<
ill Ill =< (x + )ll x or every x where Ill [1[ is an l, norm and e is a suitable positive
number.
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From this it follows that properties (ii) and (iii) of Theorem 1 are also
equivalent to their "almost norm-preserving" versions.

2. The spaces whose conjugates are L1 spaces do not have an "into"
extension property for weakly compact operators similar to property (iii) of
Theorem 1. For a discussion of this question we refer to [10].

3. We have shown here that the "from" extension property for operators
with a 3-dimensional range implies the "from" extension property for compact
operators but that the "from" extension property for operators with a 2-di-
mensional range is a strictly weaker property. In the corresponding "into"
situation it seems likely that the 2-dimensional extension property already
implies the extension property for compact operators. We have been able
to show that this is the case if we restrict ourselves to spaces whose unit cells
have at least one extreme point (cf. [14] for a precise formulation of this
result).
We conclude this section with a problem concerning extension of operators

from X into itself. It is proved in [12] that if X has the "metric approxi-
mation property" and if for every Z D X with dim Z/X 1 and every
operator T from X into itself with a finite-dimensional range there is a norm-
preserving extension of T from Z into X then X* is an L1 space. We do not
know whether this result still holds if we consider only operators T with a
3-dimensional range.

5. Lifting of operators

In this section we prove, using the results of the previous sections and of
[14], some results concerning lifting of operators. These results complement
those of KSthe and Grothendieck (cf. [3] and also Nachbin [16]). We first
define the relevant notions. Let X, Y and Z be Banach spaces with Y being
a quotient space of Z (with the quotient norm). We denote by the quotient
map from Z onto Y (quotient maps will be denoted by throughout this
section). Let T be an operator from X into Y. We say that T can be
lifted in a norm-preserving manner to Z if there is an operator from X into
Z satisfying T and T. We say that T can be lifted in an
almost norm-preserving manner if for every e > 0 there is an operator
from Z into Z satisfying <= (1 + s)[I T and T.
Our main theorem concerning lifting is the following. ((i) = (iii) is due

to Grothendieck [3].)

THEOREM 4. Let X be a Banach space. The following statements are
equivalent.

X is an L( space for some measure .
fi For every two Banach spaces Z and Y with Y being a quotient space of

Z and dim Y 2, dim Z 3, every operator from X into Y can be lifted in a
norm-preserving manner to Z.

(iii) For every two finite-dimensional Banach spaces Z and Y with Y being
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a quotient space of Z, every operator from X into Y can be lifted in a norm-
preserving manner to Z.

(iv) For every Banach space Z having X as a quotient space and such that
dim -1(0) 1 (where q is the quotient map), and for every 3-dimensional Y,
every operator from Y into X can be lifted in an almost norm-preserving manner
to Z.

(v) For every Banach space Z having X as a quotient space and every
Banach space Y, every compact operator from Y into X can be lifted in an almost
norm-preserving manner to Z.

Proof. (iii) (ii) and (v) (iv) are trivial. (i) (iii) was proved
by Grothendieck [3] and thus we have only to show that (ii) (i), (i) (v),
and (iv) (i).

Proof of (ii) (i). Let X satisfy (ii). By passing to the dual it follows
that X* has the following extension property. For every two Banach spaces
Z 3 Y with dim Z 3, dim Y 2, every operator from Y into X* has a
norm-preserving extension from Z into X*. From Theorem 1 of [14] we
deduce that X** is an L1 space. Hence, X is an L. space (this is an easy
and well-known consequence of the results in [3]).

Proof of (i) (v). Let X be LI(). If is purely atomic it is known
that X satisfies (v) (even for noncompact T, cf. Nachbin [16, p. 346]). In
the general case let a compact T from Y into X and an e > 0 be given. It
follows easily from the compactness of T that there are a subspace B of X
isometric to l for some finite n, and a projection P of norm 1 from X onto
B such that P T T __< e/4. Since (v) is known to hold if we replace
X by B it follows that there is an operator T’ from Y into Z such that
IIPV’il <- IlVil q- e/i,P1T’ PT. PutT PlTand PT’.
Next we find a projection P. of norm 1 from X onto a finite-dimensional sub-
space isometric to some l such that T T T. =< e’4-, where
T P(T T). Repeating the same argument we get a sequence of
operators {T}:= from Y into X and a sequence of operators {.}.. from Y
into Z such that T, T, iP T and -I1 <- T, if- e’4- for
every n, and T =< e.4-+ for n => 2. The operator , satisfies

T and =< T q- e. It is clear that in our construction we get
a compact T.

Proof of (iv) (i). Let X satisfy (iv). Passing to the dual we obtain
that X* has the following extension property. Let U be any Banach space
having X as a quotient space such that dim U*/X* 1. Then for every
3-dimensional Y, for every e > 0, and for every operator T from X* into Y
which is a transpose of an operator from Y* into X there is an extension of
Tfrom U* into Ywith ]1[I -< (1 q- e)llT]l. Thus Z* has a property
which is similar to but (formally) weaker than property (iv) of Theorem 1.
We shall now point out the modification needed in the proof of (iv) (i) of
Theorem 1 in order to show that also here (iv) (i).
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a. We have to show that in Lemma 1 if X is a conjugate space and if the
set A is finite (we actually need only the case in which A consists of 4 elements)
then the space Z can be chosen to be a conjugate space such that on X the w
topology induced from Z coincides with the given w* topology. The simplest
way to do this is to use Griinbaum’s proof of the Lemma [5, proof of Theorem
1]. In this proof the unit cell Sz of Z is chosen to be the convex hull of S
and a finite set of points (Z as a vector space is, of course, taken to be the
direct sum of X and a 1-dimensional space, and Sz is then chosen so that,
among other requirements, Sz n X S:). It follows that Sz iS compact if
we take in Z the product of the given w* topology on X and the usual topology
of the line. Hence this Z has the required properties.

b. The fact that we assume the existence of an almost norm-preserving
extension rather than a norm-preserving one does not cause any difficulty--see
paragraph 1 of Section 4.

c. The fact that, for conjugate X, it is sufficient in (iv) of Theorem 1 to
consider only transposed operators is a consequence of the following version
of Lemma 2 (applied to X with its w* topology).

LEMMA 6. Let X be a locally convex Hausdorff linear topological space of
dimension >-_ n. Let {S} =+ be a collection of closed convex sets in X at least
one of which is compact, such that /.-_ S . Then there is a closed subspace.
V of X with dim X/V n such that neither V nor any translate of it intersects
all the sets S.

Proof. We assume that $1 is compact. For every i we can represent S
as ,A Q., where the Q,, are closed half spaces (that is sets of the form

X*{x; f(x) =< } for some f e and real ),), containing S in their interior.
Hence

By the compactness of $1 it follows that for every i => 2 there is finite set
(which we may clearly assume to be nonempty) B c A such that

N2 N.. q,. n 0.

It follows that there is a closed half space Q containing S in its interior such
that

Put C Int(Q) and C M.. Int(Q.,) for i _-> 2. The C are open sets
and we have C S for every i and NC l. To these C we can apply
without any change the arguments in (3.1) and (3.2) of [8]. This concludes
the proof of the lemma and hence also of Theorem 4.

Remarlc 1. The lifting property obtained from (iv) by replacing the re-
quirement dim Y 3 by dim Y 2 is strictly weaker than (iv). For
example it follows from Theorem 3 that every l satisfies this weaker version
of (iv).
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Remar 2. In properties (iv) and (v) we cannot in general assert that T
has a norm-preserving lifting. This is obvious from the following trivial
example. Let X be 1-dimensional and Y and Z any Banach spaces. For
every f e Z* with f 1 we may consider the mapping 9 from Z into X
defined by 9(z) f(z) as a quotient map. Let g e Y* be a nonzero functional
which attains its supremum on Sy. The operator Ty g(y) from Y into X
can be lifted in a norm-preserving manner to Z if and only if f attains its
supremum on Sz, that is if Sz Sx. Thus if Sz # Sx there does not
exist a norm-preserving lifting even in the most simple situation. The
question whether there exists a norm-preserving lifting if we assume that
9Sz Sx is treated in

THEOREM 5. Let X be a Banach space. The following statements are
equivalent.

X is an LI( space with purely atomic.
(ii) For every Banach space Z having X as a quotient space such that

9Sz Sx, and every 3-dimensional Y, every operator from Y into X has a
norm-preserving lifting to Z.

(iii) The same as ii but without any restriction on dim Y.

Proof. (i) (iii). Let X ll(I) for a set I and for each i e I let ei be
the characteristic function of this point. Let {zi} satisfy 9z e and
z il 1 for every i. Let y e Y and let Ty e (in this sum at most

a countable number of terms are different from 0). Define y
In this way we get a norm-preserving lifting of T (this proof is a slight modifi-
cation of a proof due to KSthe of a related result, cf. [3]). (iii) (ii) is clear.

Proof of (ii) (i). Let X satisfy (ii). By Theorem 4, X is an L()
space. If t is not purely atomic X contains a subspace isometric to LI(0, 1)
and hence by Corollary 2 of Theorem 3, X has a subspace B isometric to the
2-dimensional inner product space. Let Y be a 3-dimensional subspace of X
containing B, and let T be the identity map from Y into X. Let Z be l(Sx)
(Sx plays here the role of an index set). The map 9 from Z onto X defined
by(e) x, ]lx]] _-< 1, [1 < isaquotientmapand
satisfies Sz Sx. T has no norm-preserving lifting to Z since Z does not
contain a subspace isometric to B. That 11 does not contain any smooth
subspace (and in particular no subspace isometric to B) follows from the
fact that every nonconstant function of the form f(h) = ai -4- Xbi[ is
nondifferentiable for some h (this was pointed out to me by Professor S.
Kakutani).

In this connection it should be remarked, perhaps, that l has strictly convex
subspaces. This follows from the fact that if the set {ai/b} is dense in the
line then f(h) is not linear on any interval.
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