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1. Introduction

In this paper we consider certain exponential sums W(c, n, , v) which are
intimately related to the well-known Kloosterman sums and which arise
naturally in the theory of modular forms. It is our purpose to show that
when the dimension of the modular form is-half-integral we can obtain for
these sums the asymptotic estimate

(1) W(c, It, l.t, y) 0(cl/2/),
where the constant involved depends upon and v, but is independent of
n (see 2 for definitions and an explanation of the notation).
We use a method of Petersson [4, pp. 16-19] to reduce W(c, n, , v) to a

finite sum of sums Kc, for which the estimate (1) has recently been obtained
by Malishev [3]. In this way we obtain (1) for all multiplier systems v
connected with the modular group and any half-integral dimension. For
integral dimension the Petersson method alone suffices to derive (1), no use
being made in this case of Malishev’s result.
The estimate (1) was obtained by Lehmer [1] in the particular case when

W(c, n, , v) is the sum connected with 7-1(r), the well-known modular form
of dimension 1/2. It is conceivable that his method could be extended to give
the estimate in all the cases for which we obtain it here.

In 5 we remark on the impossibility of obtaining 1 for certain dimensions
and choices of the parameters n, , v, and conclude with an application of (1)
to the estimation of the Fourier coefficients of cusp forms.

2. Preliminaries

Let r(1) denote the modular group, that is, the set of all 2 X 2 matrices
with rational integral entries and determinant one. Let F (n) be the principal
congruence subgroup of level n, the set of all elements of F( 1 which are con-
gruent, elementwise, to the identity matrix modulo n. If r is a real number,
we define a modular form of dimension r to be a function F(r) meromorphic in
the upper half-plane, Im (r) > 0, such that lim+ [F(iy) exists (pos-
sibly - ), and satisfying

(2) F(Mr) v(M)(cr - d)-rF(r),

for each M ( )e I’(1). Here v(M) is complex-valued, independent of
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and satisfies Iv(M) 1, for each M e 1"(1). By Mr we mean

(at - b)/(cr - d).

In order to fix the branch of (cr -t- d) when r is not an integer, for any com-
plex number z and real s we define z’ z I* exp (i arg z), with v _<_ arg z < 7.

A modular form F(r) is called a cusp form if F(r) is regular in Im (r) > 0,
and lim+ F iy O.
When a function exists satisfying (2) it follows that if

cl dl
e r(1),

cs ds
e r(1),

then

(3) v(M Ms)(c3 r - d3)-" v(M)v(M.)(cl Ms r + dl)-’(cs r - d.)-,
where i Ms (* 3). Any complex-valued function v(M) defined on
F(1) such that Iv(M) 1, for all M e F(1), and satisfying (3) is called a
multiplier system for F(1 and the dimension r. Let U ( ), and define K by

(4) v(U) e2riK, 0 =< < 1.

We observe from (3) that when r is an integer v is a character on F 1 ). Also
it follows from (3) that

(5) v(MU) (UM) v(i)v(U), Mer(1).

From now on we assume that is connected with a half-integral dimension
r s/2. Letu= 2(r- [r]);u=0ifsiseven, andu= lifsisodd. Then
it is immediate that

(6) v(M) v(M)v(M), Me r(1),

where v is a multiplier system for the dimension [r] (and hence a character on
F(1) ), and w. is the multiplier system for v-(r). Let , , s be associated
with v, vl, vs, respectively, as in (4). By (6), + uKs (mod 1). It
follows from [6, p. 445] that 1/6 (1 0, 1, 2, 3, 4, 5) if [r] is even, and

1/12 (l 1, 3, 5, 7, 9, 11) if [r] is odd. In either case we can write

(7) -- 1/12 (0 <__

_
11).

Furthermore it is known that Ks 23/24.
It is shown in [2] that any character on F(1) is identically 1 on F(12).

Hence,
(8) v(M) 1, for M e 1,(24).

This fact will be critical later.
We now come to the definition of the exponential sums W(c, n, t, ).

Let c be a positive integer and let n and t be any integers. We put

(9)
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where Mc. ( ) is any element of with lower row (c, d), v is any
multiplier system connected with F(1), and K is defined by (4). (We are
here restricting ourselves to v connected with hMf-integral dimension, but the
definition makes sense for arbitrary dimension. In 5 we will have occasion
to discuss sums W arising from arbitrary real dimension.)

Writing

g(a, b, c, d)=(Mc.)exp I2-/ {(n + K)a + ( + )d},
we observe from (5) that

(10) g(a + c, b + d, c, d) g(a, b, c, d)

and

(11) g(a, b + a, c, d + c) g(a, b, c, d).

By (10) we see that g(a, b, c, d) is a function of (c, d) only and does not
depend upon the particular choice of a and b in M,.. Hence W well
defined.

Finally we state Malishev’s result [3] of which we will make important use.
Let

K(, n; q) ()exp{2i(o)
+ n’)

where v nd n re integers, q is a positive integer and c is n odd positive
teger M1 of whose prime fctors divide q. Furthermore x’ is ny integrM

of the congruence xx’ l(mod q) nd () is the Jacobisolution symbol.

Then

(12) ]K,(v, n; )1 A(e).q/+ m{ (, q)/, (n, q)}
for ech e > 0, where A (e) > 0 depends only on e.

3. Reduction of the sum W
By (11), we hve

(13) 24W O(M) exp (ma + d)

where m 24(n + ) and 24( + ) are integers. Notice that we hve
written M for M,. We will follow this practice for the remainder of the
paper.
We write

r(1) r(24)vg.,
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a coset decomposition of 1(1) modulo F(24), where the K8 form a complete
set of representatives modulo 1(24), subiect to the added restriction that the
second rows of the K8 be distinct modulo 24. If we put

K,=(a, f3,) (s=l,... v)
",

it follows from (10) that (13) can be rewritten as

24W= ’ ’o(M) exp (ma+cod)

where K. indicates that the inner sum is restricted by the condition
M K8 (mod 24), and the prime on the outer sum indicates that we are
restricted to those s such that (13) can be satisfied with our fixed c. Using
(6), (8), and the fact that vl is a character on F(1), we obtain

(14)
24W

24c F2ri’ ol(g,) -7’_K’ O(M) exp (ma + cod)

I(Ks.).W(K.).
l<s<v

Let

(’K’,= UKUk= a
Then

(15)

f3, + l, + k(a, + l,)
k,, + , )

W(K’,) ; O(M) exp (ma + cod)
d=l [_24c

v U v U) exp [_-
exp (2ri qs) W(K,),

W(K,)

where we have made use of (5) applied to the multiplier system v.
summation condition on W(K’,) is M --- K’8 (mod 24), or

(16) a------ a,, d-- i, (mod24), ad =- 1 +’,c (mod24c).

The

Since (as, %) 1 we can choose an integer l, so that (a + l%, 24) 1.
Then we choose an integer k, so that k8 (a, + l,.) - l,, (mod 24). In
short we choose/c, and l, such that 0 (mod 24). Then the conditions
(16) become

a---- a,, d--- i8 (mod24), ad-- 1 (mod24c).

Now (’, 24) 1, ,ti, ati. (mod 24), and d ti, (mod24) together imply
that a (mod 24:). The same reasoning shows that if a --- a (mod 24),
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then d i (mod 24). Therefore

W(KI) O(M) exp (ma - d)
d=l L24c

where the sum is restricted by the conditions ad 1 (mod 24c),
d --- : (mod 24).
From the fact that

241 exp(2rirt/24) 1 if r------0 (mod24),
24

0 otherwise
we conclude that

W(K:) - = exp (-2vi: t/24),
d-1* 0(M) exp -- {ma - ( - re)d}

where the sum * is restricted only by the conditions ad 1 (mod 24c),
(d, 24c) 1. Denoting this inner sum on d by K(t), we conclude from (14)
and (15) that

24

(17) 24W 2411__’ 0(g,) exp (-2iq,) _, exp (-2i: t/24) g(t).

4. Proof of (1)
Recall that u 0 or 1. If u 0, K(t) the classical Kloosterman sum

for which we have the famous estimate of Sali and Weil [7], [8].

K(t) 0(( + tc, c).c+) O(cTM)
for any e > O, where the constant involved depends only on . Sce

24( + ), (1) follows from (17) and this concludes the case u O.
If u 1, the proof is more complicated. In this case we make use of an

explicit expression for v [2]. It is

v(M) () exp [-ri{(a + d) c bd(c 1) 3c}/12], ffc is odd,

exp[-vi{(a+d)c-bd(c 1)+3d-3-3cd}/121, ffciseven,

where M ( ) e F (1), with c > 0, d > 0. Putting this into the definition
of K(t), with u 1, we get for odd c,

g(t) * exp {(a + d)c bd(c- 1) 3c}

]=e-’’* exp {(u+ )a+(+c+ -bc(c 1))d}= L24c
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But since ad 1 (mod 24c), bc =- 0 (mod 24c), and this becomes

]K(t) e-’ic/’ * exp {(m + c2) a + ( q- tc + c) d}
d=l 124C

e-’/4 K(o q- tc q- c, m q- c; 24c),

in the notation of Malishev. By (12), we conclude that

K(t) 0((o, c)/c+) O(c+),
for any v > 0, where the constant depends only on . Hence for odd c, (1)
follows from (17) as before.

If c is even,

’ (_;) [’K(t) * exp {(
dl -e-il4 Z exp

a q- d c bd c 1) -t- 3d 3 3cd ]
]exp k2- {ma q- (o W tc) d}

c ]-{(mq- )a-l- (o q- tc 2c q- 3c) d

Write c 2cl, c odd and z _-> 1. Then by quadratic reciprocity

1)(d2-1)z/8 (-- 1)(c1-1)(d-1)/4 d

and we obtain

K(t) e-’’/4 * d (d-)/s

dl
(-1) exp (c d d)

exPL24c {(m+ )a+(+tc-2c+3c) d}

A simple calculation shows that

1) (d2--1)/8 1) (d-1)/4 if d 1 (mod 4),

(-1)(d+)/4 if d-- 3 (mod4).
Hence

K(t)
dl

d=_l (rood 4)

(18)
.exp

2ri
m - c) a - ( - tc 2c - 3c (z + c 2)) d}

dffiffil
d3(mod 4)

.exp m-t-c)aq- (+tc--2c2-t-3c(z+c-2))d}
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The same device used to remove the condition d -= (mod 24) in the sum
W(K:) can now be used to remove the congruence condition on each of the
sums appearing on the right side of (18). If we then apply (12), with q
replaced by 24c and c replaced by cl, to each of the resulting sums we obtain

c :lc:l+ (cK(t) 0(o, 0 ), for any e > 0,

where the constant depends only on . Again, (1) follows from (17), and
we are done.

5. Conclusion

As Rademacher remarked in [5, p. 69], it is not possible to obtain (1) for
sums W connected with all choices of the parameters n, , and v. In fact, he
observed that if 1 did hold in all cases, we could conclude from an application
of the circle method that the cusp forms (r) (0 < t < 1) of dimensions
-/2, vanish identically contrary to well-known fact. This shows that for
each dimension r (-1/2 < r < 0) there exist and n such that (1) does not

2rhold for W(c, n, t, v ). By observing that W(c, n, , v) W(c, -n, -, 9)
we see that for each r in the range 0 < r < 1/2 there exist , n, and v, connected
with the dimension r, such that (1) does not hold for W(c, n, , ). Since, as is
readily seen from (3), a multiplier system for the dimension r is also one for
the dimensions r + 2j (j O, +/-1, -4-2, ), the same holds true in all di-
mensions r given by 0 < r 2.7"1 < 1/2 (j 0, +/-1, +/-2, ...). We conjecture
that for each real r not equal to a half-integer there exist , n, and a multiplier
system v for the dimension r such that (1) is false for W(c, n, , v). No
proof has yet been found.
Another application of the circle method and the estimate (1) together

show that if an (n => 1) are the Fourier coefficients of a cusp form of dimension
r (r < 0), then as n --* ,

a O(n-2-+), for any e > O.
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